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Abstract: Bibliometric studies allow to collect, organize and process information that can be used
to guide the development of research and innovation and to provide basis for decision-making.
Paraffin/olefin separations constitute an important industrial issue because cryogenic separation
methods are frequently needed in industrial sites and are very expensive. As a consequence, the use
of membrane separation processes has been extensively encouraged and has become an attractive
alternative for commercial separation processes, as this may lead to reduction of production costs,
equipment size, energy consumption and waste generation. For these reasons, a bibliometric survey
of paraffin/olefin membrane separation processes is carried out in the present study in order to
evaluate the maturity of the technology for this specific application. Although different studies
have proposed the use of distinct alternatives for olefin/paraffin separations, the present work
makes clear that consensus has yet to be reached among researchers and technicians regarding the
specific membranes and operation conditions that will make these processes scalable for large-scale
commercial applications.
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1. Introduction

Cost-effective gas separation technologies are required in many important industrial applications
to withstand the harsh operating conditions of a petroleum refinery [1]. Particularly, cryogenic
distillation is the commonest technology employed for purification of gaseous streams, despite the high
costs of cryogenic operations and equipment. For this reason, the use of separation technologies based
on adsorption, absorption and membranes has been encouraged lately in order to reduce energy costs
and improve gas separation efficiencies. However, some inherent characteristics of these technologies
(such as sensitivity to impurities, degradation of separation materials, narrow ranges of operation
conditions, among others) still negatively affect their full acceptance and prevent the replacement of
the expensive cryogenic distillation techniques [1,2]. For example, absorption columns may be unable
to handle very high and low flow rates, demand high capital investments and require high operational
costs. Besides, solvent regeneration may lead to significant energy consumption, while unavoidable
solvent loss increases the environmental impacts of the process, due to solvent emissions, among
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other causes. On the other hand, adsorption processes may be subject to kinetic limitations and loss
of sorption capacity over multiple adsorption cycles. Additionally, adsorbent particles may present
thermal, chemical and mechanical stability issues, which can lead to particle erosion and degradation
over the operation cycles. In turn, membranes usually suffer from poisoning by impurities present in
the feed streams and most membrane processes have not been validated industrially yet [3]. More
specifically, facilitated transport membranes usually lack stability due to the loss of the carrier during
the operation or inactivation of the carrier in the presence of impurities [4]. As carbon molecular sieves
are brittle, these alternative materials require careful handling, and may be much more expensive than
polymeric membranes [5]. Similarly, alternative ceramic and zeolite membranes can also be subject to
poisoning by minor components present in the feed stream [6]. Finally, most polymeric membranes do
not resist severe operating conditions (such as high temperatures) and the presence of many organic
vapors and solvents [7], showing low selectivity to olefin/paraffin separation [8].

Despite the previous remarks, the main advantage of using membranes for gas separation is the
fact that membrane processes can allow for process intensification, leading to significant reduction of
production costs, equipment size, energy consumption and waste generation. Besides, membranes
can usually be provided by manufacturers and installed in plant sites in modules, allowing for easier
fitting to the particular process demands [5]. Consequently, membrane separation processes have
gained industrial acceptance and compete favorably with other consolidated operations in some
specific niches of gas separation. In particular, the use of membranes for separation of N2/O2 [5],
CH4/CO2 [9–46], N2/CO2 [47–52] and H2/CO2 [11] streams has become industrially attractive and
commercially available. Air Products, Generon, Honeywell UOP and Schlumberger are some of the
players that are involved with the production of membranes for gas separation. Therefore, there are
many indicatives that membrane technology has vast potential to overcome energy issues encountered
in cryogenic distillation processes and that membrane technologies will deserve deeper technical and
scientific attention in the near future [53].

Otherwise, one of the main difficulties of most membrane technologies is the simultaneous
obtainment of high separation selectivities and high permeabilities (or process productivities) [54],
which many times hampers the commercial use of membrane technologies. This undesired effect is
related to the fact that there is an upper bound on the trade-off between membrane permeability, which
limits flow rates, and the selectivity, which limits the quality of the separation process [54]. According
to Robeson [55,56], the inverse relationship between selectivity and permeability can be observed for
most pairs of permeable gases and polymeric membranes, which leads to a practical limit named as
the Robeson’s Upper Bound [56], which can be correlated with the molecular characteristics of the
permeating gas and of the polymer used to manufacture the membrane barrier. These correlations can
be eventually used for design of membrane materials and improvement of gas separation processes [57].

For this reason, development of effective membrane separations can be rather complex and
normally requires a great deal of research and development in order to deliver acceptable commercial
performances [58]. As a consequence, it is not surprising to observe that different types of membrane
technologies have been proposed throughout the years and that the field continues to evolve [8,59].

Olefins are among the most important products of a petrochemical industry because they are
used as intermediates for manufacture of many other chemicals [60]. For this reason, olefin/paraffin
separation is one of the most important processes in oil refineries. As a matter of fact, even very small
improvements in this area may exert an enormous financial impact on the economical performances of
refineries. Additionally, the growing demand for olefins, such as ethylene and propylene, especially in
emerging consumer markets, creates new opportunities for technologies that can lead to increase of
olefin supply and reduction of production costs [8,59,61]. As a consequence, membrane separations
can constitute excellent alternatives to expensive distillation processes [1,2,5].

Despite that, membrane-based processes still do not find full industrial acceptance in the field of
paraffin/olefin separations, which encourages the conduction of bibliometric analyses to characterize
the maturity and the main bottlenecks of this technology. Particularly, Tables 1 and 2 summarize the
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membranes and the respective separation mechanisms that have been presented most often as possible
solutions for separation of olefin/paraffin streams, as well as the key challenges that affect the progress
in this area.

Table 1. Characteristics of membrane systems used most often to separate olefin/paraffin streams.

Membrane Type Definition and Characteristics Drawbacks

CMS

Carbon molecular sieves constitute a class of
amorphous carbon materials produced through the

pyrolysis of microporous polymer
precursors [8,59,62]. Although the surface area is
relatively small, the characteristic pore sizes are

small with narrow size distributions, enabling the
separation at molecular level based on the size and

shape of the molecules [8,63].

The pore diameters can be significantly different
from characteristic sizes of molecules that must
be separated. CMS materials can be fragile and

it may be difficult to scale-up the production
process [59,64].

Polymer

Polymer membranes can be casted with different
thicknesses and porosities (PIMs) [2,58]. Carriers

can be easily added to allow for; facilitated
transport [8,65].

Polymer films can present low gas permeabilities
and selectivities [8] and are subject to swelling,
plasticization, and heterogeneous structure and

porosity [66]. Carriers can be subject to
deactivation by poisonous agents [59].

Zeolite

Zeolites are hydrated aluminosilicate materials,
which possess outstanding ion-exchange and

sorption properties [8,67]. Separation is based on
pore sizes and polarity, which can be uniform [66]

and are controllable [8]. Zeolites present higher
thermal and chemical stabilities than polymers,
large surface areas, high selectivities and high

permeabilities [8,68]

Preparation conditions can be aggressive, with
combination of high temperatures, high

pressures and extreme pH values. The ranges of
pore sizes can be narrow, adhesion properties
onto different substrates can be poor and the

production costs can be high [66,69].

MOF

Metal organic frameworks are hybrid materials
constituted by metallic nodes, which are linked to

each other through organic bridges, leading to
functional porous structures [66,70].

The manufacture of continuous MOF layers can
be difficult and the produced films can be very

fragile. Adhesion properties onto different
substrates can be poor and the production costs

can be high [66].

MMM

Mixed matrix membranes are hybrid materials
produced through mixing of polymers and

inorganic fillers, including activated carbon, carbon
nanotubes, zeolites, silica, molecular sieves, and
MOFs [66]. Consequently, the final membrane

properties can be manipulated with high flexibility.

The matrix and fillers must be compatible and
filler aggregation and sedimentation must be
prevented during membrane preparation [8].

Table 2. Usual mechanisms of olefin/paraffin separation through membranes.

Separation
Mechanisms Membrane Material Permeation Mechanisms Drawbacks

Solution-diffusion Polymers

(1) Molecules adsorb and dissolve into
the membrane material. (2) Molecules
diffuse through the membrane, driven

by pressure, temperature or
concentration gradients. (3) Molecules

desorb into the bulk stream in the
permeate side [8].

Gas solubility in conventional
polymer membranes is closely
related to compressibility [8].

Discrimination of
olefin/paraffin pairs is not

effective [59].

Interaction
between olefin
and membrane

Zeolites, polymers, MOF,
MMM, ionic liquids,

adsorbents, absorbents

(1) Carriers can form complexes with
gaseous components and allow the

facilitated transport [59]. (2) The
adsorption step can be followed by
stepwise thermal regeneration and

desorption [1].

Carriers are subject to
deactivation by poisonous
agents [59] and can be very

expensive [71].

Molecular sieving MOF, CMS, zeolites
(1) Molecules are separated due to

different molecular sizes and shapes
(geometrical selectivity) [8].

The pore diameters can be
significantly different from

characteristic sizes of
molecules that must be

separated. It may be difficult
to scale-up the production

process [59].
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Based on the previous paragraphs, the main objective of the present work is the development of
an extensive bibliometric survey regarding the use of membranes for gas separations in petrochemical
processes. In particular, it is intended to characterize the degree of maturity and the main bottlenecks of
processes used for separation of light hydrocarbon mixtures containing homologous series of paraffins
(methane, ethane, propane, among others) and olefins (ethene, propene, among others), focusing
on ethane/ethylene and propane/propylene mixtures. Therefore, the present study also reports the
membranes that are used most often, the usual process configurations, the operating conditions and
the stability of the applied materials, as described in the available scientific and technical literature.

2. Data Sources and Methodology

The investigation of paraffin/olefin separations using membranes was performed with help of
electronic search tools including Google Scholar, Google Patents, USPTO and EspaceNet. At first,
screening searches were performed using the expressions “gas separation membrane(s)” and “olefin/paraffin
separation membrane(s)”, placed anywhere in the text. Afterwards the searches were refined with help
of more specific expressions located in the title or abstract, including “membrane(s) separation(s)” AND
“olefin(s)”; “membrane(s) separation(s)” AND “paraffin(s)”; “membrane(s) separation(s)” AND (“ethane”
OR “C2H6”); “membrane(s) separation(s)” AND (“ethene” OR “ethylene” OR “C2H4”); “membrane(s)
separation(s)” AND (“propane” OR “C3H8”); “membrane(s) separation(s)” AND (“propene” OR “propylene”
OR “C3H6”). Searches were performed considering the papers published until August 2019. Then,
the obtained documents were downloaded, analyzed and eventually accepted for this bibliometric
survey, as described in the following paragraphs. After reading and analyzing the selected documents,
additional relevant references not captured by the electronic searches were also included in the set of
accepted documents. For the purposes of the present investigation, accepted documents were also
used to provide information regarding the fifteen information categories listed in Table 3, which were
analyzed as presented in Section 3.

Table 3. Information categories investigated in the present study.

# Category # Category # Category

1 Institution 6 Feed composition 11 Separated gases
2 Country 7 Selectivity or separation factor 12 Type of material
3 Journal 8 Permeability 13 Metal carrier
4 Year of publication 9 Operation temperature/◦C 14 Layout
5 Number of citations 10 Operation pressure/bar 15 Lifetime

In Table 3, categories #1 and #2, institutions and countries, were reported considering the affiliation
of the corresponding author. Category #5, number of citations of the analyzed document, is important
because it can be used to evaluate the relative relevance of the publication. Categories #6 to #10
(gas feed compositions, selectivities or separation factors, permeabilities, operation temperatures and
operation pressures) provide information about the reported operation conditions. Categories #11
regards the processed gaseous streams, while category #12 describes the material used to manufacture
the membranes, classified as: 12.1) polymer: polymer membranes that do not include the use of carriers
or other components; 12.2) zeolite: zeolite membranes that do not include the use of carriers or other
components; 12.3) facilitated transport (polymer): polymer membranes that include the use of carriers to
facilitate olefin permeance through the membrane; 12.4) facilitated transport (liquid): liquid membranes
that are supported by different kinds of materials, usually containing a metal carrier to facilitate the
olefin transportation through the liquid solution (typically AgNO3 or AgBF4); 12.5) facilitated transport
(hybrid): membranes that combine two or more types of materials, as composites or mixtures of
polymers and inorganic matrices, and use metal carriers to facilitate olefin transportation; 12.6) CMS
(carbon molecular sieve): membranes composed of pyrolyzed polymers; 12.7) MOF (metal-organic
frameworks): organic or inorganic membrane matrices where metal compounds are anchored to
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facilitate transportation; 12.8) others: including absorbents, adsorbents, hybrid systems (membranes
that combine two or more types of materials as composites or mixtures of polymers and inorganic
matrices) and ionic liquid membranes. Category #13 reports the metals used to facilitate the olefin
transportation, whenever applicable. Category #14 describes the geometric features of the membrane
separation equipment, classified as flat sheets, spiral wounds and hollow fiber membranes. In this
category, adsorption and absorption columns were also considered, as these separation strategies also
constitute interesting alternatives for paraffin/olefin separations. Finally, category #15 reports the
lifetime of the analyzed membranes, one of the main concerns in the field [66].

3. Results

The preliminary screening search regarding “membrane gas separation” resulted in 5660
documents. After initial filtering, as mentioned in the previous section, the final set of documents
comprised 300 papers (Table S3) published since the 1960s, which are analyzed below in accordance
with the categories described in Table 3, which were analyzed as presented in Section 3.

From this set of documents, 236 papers regard membrane separations of gaseous streams contain
studies related to mixtures between paraffins and olefins, while 64 papers regard membrane studies that
analyze paraffin and/or olefin permeation (not necessarily considering their mutual separation). Thus,
considering the proposed search methodology, it seems correct to say that membrane olefin/paraffin
separations represent approximately 5% of the total number of papers published in this field, indicating
that membrane olefin/paraffin separations do not constitute the mainstream of the area and suggesting
that this technology is still under development, as reinforced in the next sections.

3.1. The Annual Distribution

Figures 1 and 2 present the annual distribution of publications and patents in the field of
olefin/paraffin membrane separations. It must be highlighted that the first document in the analyzed
field was published in 1962, regarding the separation between pentene and pentane by adsorption
in solid matrixes, using charcoal as adsorber by Kellogg Company [72]. Then, in 1988, ExxonMobil
published a study regarding the ethylene/ethane separation through complexation with cuprous
diketonate in alpha-methyl styrene [73]. According to the methodology used in the present study, the
number of papers and patents published in the field is relatively small and has not grown significantly
through the years, being subject to periodic oscillations that are related to economical constraints, such
as the development of shale gas technologies and the oscillation of prices of oil and gas [74]. In more
recent years, the rate of scientific production increased to about 20 papers per year, due to the arousal
of new technologies, such as metal-organic-frameworks (MOF) [75–80] and carbon molecular sieves
(CMS) [81–87], which became more visible after 1995. When one considers the significant economic
advantages that can be attained with membrane separation processes and the relatively small number
of publications in this field, one can probably conclude that bottlenecks still inhibit the full industrial
development of the technology.

Thomas Graham was the first to propose a description for the sorption-diffusion process in
1866 [88]. Between the years of 1940 and 1950, Barrer, van Amerongen, Meares, and others, built the
fundamentals of the modern theory of gas permeation, incorporating advances of polymer sciences.
The sorption-diffusion model for gas permeation, developed by Graham, continues to be a widely
accepted model for the transport of gases through membranes. However, membrane manufacturing
technologies have not been sufficiently robust to make membrane systems useful for separation of
paraffins and olefins from gaseous streams in commercial scale, which partially justifies the lack of
scientific production in the area from 1963 to 1988 [89]. Despite that, in 1989 an important paper about
paraffin/olefin separations using membranes entitled “Separation of ethylene from ethane by a flowing liquid
membrane using silver nitrate as a carrier” was published, reporting a new type of liquid membrane with
the ability to overcome the instability and the low permeability of thin-layer liquid membranes [90].
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3.2. The Scientific Journals Distribution

The distribution of publications in scientific journals is shown in Table 4, for journals that published
5 or more papers in the analyzed area. As one can see, publications have been concentrated in relatively
few journals, with significant concentration in Journal of Membrane Science (101 papers or 34% of the
analyzed set) and Industrial and Engineering Chemistry Research (32 papers or 11% of the analyzed
set). The high quality of the journals (with IF values above 1.1) must be highlighted and indicates
that this issue is regarded as relevant by the academic community. On the other hand, the extremely
high concentration of papers in few journals indicates that relatively few aspects of the analyzed
problem have been addressed by the scientific community, with emphasis on the production and
characterization of membranes used to perform the separation of the gaseous streams.

Table 4. Distribution of papers in scientific journals in the field of membrane paraffin/olefin
gas separations.

Ranking Journal IF NP Percentage (%)

1 Journal of Membrane Science 6.03 101 34%
2 Industrial and Engineering Chemistry Research 2.84 32 11%
3 Separation and Purification Technology 3.35 14 5%
4 Microporous and Mesoporous Materials 3.61 5 2%
5 Journal of the American Chemical Society 13.85 5 2%
6 Chemical Communications 6.31 5 2%
7 Separation Science and Technology 1.10 5 2%
8 Chemical Engineering Science 2.89 5 2%

NP: Number of Publications; IF: Impact Factor.
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3.3. The Country and Institutions Distribution

Figure 3 and Table 5 show the country distribution of papers in the analyzed field. As a whole,
the papers involved 130 institutions of 32 distinct countries, indicating the widespread interest in this
area, although 6 countries concentrate more than 60% of the total number of documents of the area.
Among these 6 countries, the concentration of papers in USA, Iran and China is probably related to
the fact that these countries are major oil producers and present well-established refining complexes,
while the concentration of papers in Netherlands and Japan probably indicates a more genuine interest
of the involved institutions in the technical aspects of membrane separation technologies.
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Table 5. Distribution of papers in the 9 most productive countries in the field of membrane paraffin/olefin
gas separations (with more than 10 papers).

Ranking Country Total Publications Percentage (%)

1 USA 63 21%
2 South Korea 46 16%
3 Iran 27 9%
4 China 26 9%
5 Japan 20 7%
6 Netherlands 18 6%
7 Malaysia 13 5%
8 Germany 12 4%
9 Spain 10 4%

The participations of USA and Korea are also prominent in the patent area, concentrating almost
80% of all patents published in this field. When compared to published papers, France, Canada,
Portugal and Saudi Arabia can be regarded as relevant developers of patents in the analyzed area (5%
of the total number of published papers and 24% of the total number of patents), despite the lower
number of patents, as shown in Table 6.

Table 6. Distribution of patents in the 3 most productive countries in the field of membrane paraffin/olefin
gas separations (with more than 10 patents).

Ranking Country Percentage (%)

1 USA 56
2 Korea 21
3 France 12
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The considerable contribution of South Korea, responsible for 16% of the total number of
publications, may represent the efforts made by the South Korean government to support investments
in research and development (RandD) related to more sustainable processes [91]. It is interesting to
note that, although Japan and China are among the most productive countries in the field, Japanese and
Chinese institutions are not among the most productive ones, as observed in Table 7, which indicates
that Japanese and Chinese productions are shared with other international institutions.

Table 7. Distribution of papers in the 4 most productive institutions in the field of membrane
paraffin/olefin gas separations (with more than 10 papers).

Ranking Institutions Documents Percentage (%)

1 Korea Institute of Science and Technology
(South Korea) 21 7

2 Amirkabir University of Technology
(Iran) 12 4

2 Georgia Institute of Technology
(USA) 12 4

3 University of Twente
(The Nerthelands) 10 3

Table 8 presents the ranking of patent applicants. ExxonMobil, UOP, Institut Français du
Petrole, Industry-University Cooperation Foundation Hanyang University and Korea Institute of
Science and Technology apparently stand out as top patent applicants for paraffin/olefin separations
using membranes. Despite that, the patent production does not reflect the availability of large-scale
commercial facilities, although it is true that pilot plants are currently under operation in different
institutions, as recently reported by Dow Chemical. It is worth mentioning that the authors of patents
filed by the Korea Institute of Science and Technology are the same authors that published many of
the Korean papers, which may indicate that this innovative activity is not necessarily connected with
actual commercial manufacture of new membrane products [92–100].

Table 8. Distribution of patents in the 6 most productive institutions in the field of membrane
paraffin/olefin gas separations.

Ranking Institution Countries Percentage (%)

1 ExxonMobil Research and Engineering Company USA 9
1 UOP LLC USA 9
1 Institut Français du Petrole France 9

1 Industry-University Cooperation Foundation
Hanyang University Korea 9

1 Korea Institute of Science and Technology Korea 9
2 Membrane Technology and Research, Inc. USA 6

3.4. The Most Cited Papers

Table 9 shows the most cited papers in the investigated field. As one can observe, the most
cited papers describe the use of different membrane materials for separation of gaseous streams
that contain paraffins and olefins. This probably shows that the scientific research in this area is
still driven by the necessity to develop new materials that can improve the efficiency of membrane
paraffin/olefin separations. Still, it is important to note that among the most cited documents, three
deal with a relatively recent membrane type, which may be an indicative that MOFs are being seen by
the scientific community as promising materials for gas stream separation, specifically considering the
paraffin/olefin mixture.
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Table 9. The most cited papers in the field of membrane paraffin/olefin gas separations.

Ranking Paper Separated Gases Type of Membrane (Name) Citations Ref.

1

Hydrocarbon Separations in a Metal-Organic Framework with Open
Iron(II) Coordination Sites

Authors: Bloch, E.D., Queen, W.L., Krishna, R., Zadrozny, J.M.,
Brown, C.M., Long, J.R.
Source: Science (2012)

Ethylene/Ethane
Propane/Propane MOF (Fe2(dobdc)) 1008 [101]

2

Pushing the limits on possibilities for large scale gas separation: which
strategies?

Authors: Koros, W.J., Mahajan, R.
Source: Journal of Membrane Science (2000)

Olefin/Paraffin
Others Various (Review) 829 [102]

3
Gas solubility, diffusivity and permeability in poly(ethylene oxide)

Authors: Lin, H., Freeman, B.D.
Source: Journal of Membrane Science (2004)

Ethylene/Ethane
Propylene/Propane

Others
Polymer (PEO) 627 [103]

4
Olefin/Paraffin Separation Technology: A Review

Author: Eldridge, R.B.
Source: Industrial and Engineering Chemistry Research (1993)

Olefin/Paraffin Various (Review) 580 [1]

5

Application of membrane separation processes in petrochemical
industry: a review

Authors: Ravanchi, M.T., Kaghazchi, T., Kargari, A.
Source: Desalination (2009)

Propylene/Propane Polymer (6FDA-DDBT) 487 [53]

6

Title: Zeolitic Imidazolate Frameworks for Kinetic Separation of Propane
and Propene

Author(s): Li, K., Olson, D.H., Seidel, J., Emge, T.J., Gong, H., Zeng, H.,
Li, J.

Source: Journal of the American Chemical Society (2009)

Propylene/Propane MOF (ZIF-8) 466 [104]

7

Title: Ethane/Ethene Separation Turned on Its Head: Selective Ethane
Adsorption on the Metal-Organic Framework ZIF-7 through a

Gate-Opening Mechanism.
Author(s): Gücüyener, C., Bergh, J.V.D., Gascon, J., Kapteijn, F.

Source: Journal of the American Chemical Society (2010)

Ethylene/Ethane MOF
(ZIF-7) 408 [77]

8
Title: Olefin/Paraffin Separations by Reactive Absorption: A Review

Author(s): Safarik, D.J., Eldridge, R.B.
Source: Industrial and Engineering Chemistry Research (1998)

Olefin/Paraffin Absorbent
(Review) 312 [105]
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3.5. The Separated Streams

Based on the adopted search criteria, 322 distinct streams have been reported in the literature,
being that 248 streams of them contained mixtures of paraffin/olefin and 74 of them contained other
gaseous components. In the last case, membrane permeabilities of pure gaseous streams, such as
single paraffins or single olefins; separations of streams containing paraffin mixtures (butane/methane,
butane isomers, pentane/octane, and propane/methane, for example) or olefin mixtures (butenes,
di-olefin/mono-olefin, 1-hexene/1,5-hexadiene, acetylene/ethylene, for example); and separations of
olefins or paraffins from other gases, such as N2, air, argon, H2S, CO, H2, and CO2

, have also been
reported, as summarized in Figure 4.Membranes 2019, 9, x FOR PEER REVIEW  10 of 37 
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It is important to notice that the number of studies involving separations of mixtures of paraffins
with other gases is expressive. Almost 85% of the publications reported in the field of membrane gas
separations regard mixtures of paraffins and CO2, especially methane and CO2, due to the importance
of this gaseous stream for the oil production industry and necessity to remove carbon dioxide from
natural gas during oil production and enhanced oil recovery [106].

Although the present work has emphasized the separation of ethane/ethylene and
propane/propylene streams, studies with other olefin and paraffin streams, strongly associated
with gaseous effluents from petrochemical industries, have also been evidenced. This may be
attributed to the necessity to enrich and utilize certain valuable chemicals, such as isobutene (in
isobutene/isobutane mixtures), 1,3-butadiene (in 1,3-butadiene//n-butane mixtures), 1-heptene (in
heptene/heptane mixtures), 1-hexene (in hexene/hexane mixtures), 1-pentene (in pentene/pentane
mixtures), cyclohexene (in cyclohexene/cyclohexane mixtures), among others, with help of technologies
that can be more efficient than conventional distillation processes.

The collected data set was filtered and is available as Supplementary Material. Table S1 shows the
reported membranes and the separation factors for some gaseous streams containing paraffins and/or
olefins. Table S2 displays some papers that present detailed geometric configurations and operation
conditions for olefin/paraffin membrane separations, with emphasis on separations of ethane/ethylene
and propane/propylene streams.

3.6. The Used Membranes

Membranes have been successfully employed for separations of many liquid streams [107] and
many specific gaseous streams, such as mixtures of H2, CO2 and CH4, known as “fast gases” or gases
with high permeations [108]. AirLiquide©, Schlumberger©, Generon©, AirProducts©, among others,
are companies that provide commercial membranes for separation of these fast gases. However,
membrane paraffin/olefin separation technologies are not consolidated yet, so that process development
is still in the pilot scale phase in most cases. Particularly, researchers observed a long time ago that
addition of a carrier to the membrane material might lead to higher selectivities and permeabilities,
constituting a major advance in the area [4,109]. As observed in the analyzed papers, 55% of the papers
used some type of carrier to facilitate the separation process, indicating a tendency to adopt Facilitated
Transport Membranes (FTM) for paraffin/olefin separations [8]. The carrier is expected to interact
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with one component of the gaseous stream (usually the olefin), increasing the apparent solubility and
permeability of the compound in the membrane material [8,110]. Usually, the carrier contains a metal
atom with free valences that make possible the electronic interaction with the electronic cloud of the
carbon double bond of olefins [8,111–113].

Figure 5 presents the schematic representation of the evolution of membrane technology. Facilitated
transport membranes (where the use of a carrier increases the membrane selectivities) initially displaced
conventional polymer membranes because of the best separation performances. However, the search
for even better separation coefficients and dynamic stability opened room for introduction of zeolites,
carbon molecular sieve membranes (CMSs) and metal-organic frameworks (MOFs). Although the use
of CMSs, MOFs and zeolites for olefin/paraffin separations was modest until the 2000s, as observed in
Figure 6, these latest technologies have been extensively studied for 15–20 years and seem promising
for paraffin/olefin separation applications. Despite that, it is still necessary to enhance important
properties, such as mechanical resistance, performance stability and production cost, for large-scale
industrial applications to become technically and economically viable in the field of membrane
paraffin/olefin separations.
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Facilitated transport has been the most cited mechanism in the analyzed literature, even after the
advent of new technologies. Figure 6 indicates that most of these studies (44%) proposed the addition
of a carrier agent into a polymer matrix, leading to synergetic effects between the solution-diffusion
process and the chemical interaction between the olefin and the membrane through complexation of
the carrier agent (as illustrated in Figure 7). Table S2 presents the relevant data collected and the main
FT membranes used for olefin/paraffin separations.

FTM was originally introduced by Scholander in 1960, for purification of O2 streams [114], and has
been intensively studied since then [114,115]. FTM enables the selective transportation of molecules
and explores reversible chemical interactions between the target species and the active sites (carriers)
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to accomplish the transport of the target molecule through the membrane matrix, leading to enhanced
membrane permeability and selectivity. Meanwhile, other species that do not react with the active
sites permeate through the membrane only through the usual solution-diffusion mechanism [116–118].
Figure 6 illustrates the effect of the carrier on the transport through the membrane.Membranes 2019, 9, x FOR PEER REVIEW  12 of 37 
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GALIZIA and co-workers (2017) [116] stated that it is possible to achieve superior separation
properties using membranes based on facilitated transport mechanisms for many blends that are
difficult to separate, such as mixtures of paraffins and olefins and of aromatic compounds [120]. Most
FTM separation processes usually make use of silver as the carrier, which can interact specifically with
the olefin. The ability of olefins to form reversible organometallic complexes with some transition metal
cations, such as Ag+ ions, ensures the separation process [1,121]. Based on the olefin complexation
theory, FAIZ and LI (2012) [65] observed that the use of metals for complexation with olefins could lead
to efficient separation of gaseous mixtures of paraffins and olefins. The high stability of metal-olefin
complexes can be explained by interactions between the atomic orbitals of the metallic atom and
the molecular orbitals of the olefin molecules, as postulated by Dewar using the Molecular Orbital
Theory [105]. The bonds formed in the complex are stronger than Van der Waals forces, but still
sufficiently weak to break by temperature increase or pressure reduction [121,122], making the reversible
reaction possible.

In order to increase the reversible reactivity of the transition metal ion with olefins, the anion of
the transition metal plays an important role in determining the intensity and the rate of the interaction
between the carrier and olefins. Due to the lower lattice energy of the transition metal salt, the anion
forms a weak ionic bond or ion pair with the cation and the salt can be easily dissolved in solutions.
Therefore, it is preferable to select a transition metal anion that possesses low lattice energy in respect
to the metal cation [123]. For facilitated transport to occur, the lattice energy of the transition metal salt
must be preferably smaller than 1000 kJ/mol, reducing the tendency of the anion of the transition metal
salt to form a strong ion pair with the cation [123,124].

Based on criteria reported usually in the literature for effective FTM processes, including
electronegativity, lattice energy and intensity of π-complexation between metals and olefins, silver
salt has been largely selected as the most appropriate carrier for facilitated transport of olefins. The
commonest generalized and overall reaction scheme for the transport of olefins across the membrane
is shown in Equation (1) [1,117,118,123]:

Olefin + Ag+
 [Olefin.Ag+] (1)

RAVANCHI (2015) [118] studied the influence of carrier concentration on propylene/propane
separation using hydrophilic poly(vinylidene difluoride) (Ag+/PVDF) flat sheet membranes. The
author concluded that it is important to consider three parameters simultaneously for process design:
trans-membrane pressure, carrier concentration and effect of feed composition on the separation factor.
It is important to highlight that facilitated transport is a combination of two processes: absorption (on
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the feed side) and stripping (on the permeate side). Increasing the pressure favors absorption and
decreasing the pressure favors stripping. Thus, increasing the feed pressure increases the absorbed
olefin on the feed side. Due to the pressure difference between the feed side and the permeate side,
the olefin complex must be degraded on the permeate side. Therefore, increasing the transmembrane
pressure enhances the driving force for separation. Besides, the separation factor and olefin permeability
can be increased when higher concentrations of Ag+ ions (ranging from 5 to 20 wt%) are used. Table 10
presents the membranes and respective selectivities reported to separate olefin/paraffin employing
facilitated transport mechanism.

Table 10. Characteristic FTM parameters for different carriers in membrane paraffin/olefin separations
of gaseous streams.

Separated Gases Type of
Material Name of the Material Carrier Selectivity or Sep Factor Ref.

ethylene/ethane FT/Hybrid not specified Ag NS [125]
ethylene/ethane FT/Hybrid not specified Ag+ SF 65 ethylene/ethane [126]
ethylene/ethane FT/Hybrid Chitosan/Ag (Imtex) Ag+ SF 100 ethylene/ethane [127]
ethylene/ethane FT/Hybrid 5A zeolite Ag+ S 27.4 ethylene [128]
ethylene/ethane FT/Hybrid Fe2(dobdc) Ag+ S 13.6 ethylene [128]
ethylene/ethane FT/Liquid Fluoropore FP-010/AgNO3 (Sumitomo) Ag+ SF 460 ethylene/ethane [90]
ethylene/ethane FT/Liquid polysulfone Ag+ SF 420 ethylene/ethane [129]
ethylene/ethane FT/Liquid PEO/PBT/AgNO3 Ag+ SF 165 ethylene/ethane [130]
ethylene/ethane FT/Liquid EPDM-SPEEK Ag+ SF 2700 ethylene/ethane [131]
ethylene/ethane FT/Liquid [4-mebupy]BF4 Ag+ S 3 ethylene [132]
ethylene/ethane FT/Liquid Cu SILM supported PVDF Cu S 11.8 [133]
ethylene/ethane FT/Liquid PIL/40IL-Ag+ 1.25 M Ag+ S 7.24 etylene [134]
ethylene/ethane FT/Liquid ZnCl2/[BMIM][Cl] Zn IL S 178 [135]
ethylene/ethane FT/Liquid CuCl/ChCl-EG-based SLMs Cu S 12.5 [136]
ethylene/ethane FT/Liquid CuCl/DESs-SLMs IL SF 20 ethylene/ethane [135]
ethylene/ethane FT/Liquid DESs-SLMs Ag+ S 50 -100 ethylene [111]
ethylene/ethane FT/Polymer Nafion N-117 Ag+ SF 540 ethylene/ethane [137]
ethylene/ethane FT/Polymer AgBF4/PVP Ag+ SF 2.3 ethylene/ethane [138]
ethylene/ethane FT/Polymer AgBF4/PEO Ag+ SF 240 ethylene/ethane [139]
ethylene/ethane FT/Polymer Pebax®4011 and Pebax®2533 (Atofina) Ag+ NS [140]
ethylene/ethane FT/Polymer AgNO3/polyethersulfone (Daicel) Ag+ SF 1100 ethylene/ethane [141]
ethylene/ethane FT/Polymer PA 1 2-PTMO/AgBF4 Ag+ SF 20 ethylene/ethane [142]
ethylene/Ethane FT/Polymer POZ/AgBF4 Ag+ SF 5 ethylene/ethane [143]
ethylene/ethane FT/Polymer EPDM Ag+ SF 72.5 ethylene/ethene [136]
ethylene/ethane FT/Polymer AgNO3/polyethersulfone (Daicel) Ag+ SF 374 ethylene/ethane [144]
ethylene/ethane FT/Polymer PebaxTM 2533/AgBF4 Ag+ NS [145]
ethylene/ethane FT/Polymer 3c Ag+ SF 115 ethylene/ethane [146]
ethylene/ethane FT/Polymer SiO2 Poly(sodium acrylate) Ag+ Ag+ SF 94 ethylene/ethane [147]
ethylene/ethane FT/Polymer Pebax®2533/AgBF4 (Arkema) Ag+ SF 55 ethylene/ethane [115]
ethylene/ethane FT/Polymer 28% PVDF/72% triacetin/AgNO3 Ag+ NS [129]
ethylene/ethane FT/Polymer Psf/AgNO3 Ag+ NS [148]
ethylene/ethane FT/Polymer PSf/PTMSP Ag+ NS [149]
ethylene/ethane FT/Polymer AgBF4-PVMK membrane Ag+ ethylene/ethane [150]
ethylene/ethane FT/Polymer PEO-AgBF4 Ag+ NS [151]

propylene/propane FT/Hybrid Ag/SBA-15 Ag+ S 10 propylene [152]
propylene/propane FT/Hybrid Ag/c-Al2O3 Ag+ S 1.2 propane [153]

propylene/propane FT/Hybrid POZ/AgNO3/SiO2 (fumed silica
nanoparticles) (1:1:0.1) Ag+ S 90.0 propylene/propane [154]

propylene/propane FT/Hybrid POZ/AgNO3/BMIM+NO3
− Ag+ S 32.0 propylene/propane [155]

propylene/propane FT/Hybrid POZ/AgNO3/BMIM+BF4
− Ag+ S 31.8 propylene/propane [155]

propylene/propane FT/Hybrid POZ/AgNO3/BMIM+CF3SO3
− Ag+ S 33.2 propylene/propane [155]

propylene/propane FT/Hybrid PVP/Nano Au (Seahan) Au S 22 propylene [96]
propylene/propane FT/Hybrid POZ Ag+ SF 20–22.5 propylene/propane [156]
propylene/propane FT/Hybrid PVDF-HFP/BMImBF4

−Ag+ Ag+ S 700 propane [157]
propylene/propane FT/Hybrid AgNO3/Al2O3 Ag+ NS [158]
propylene/propane FT/Hybrid MICRODYN MD020 TP 2N Ag+ NS [159]
propylene/propane FT/Hybrid TiO2-PEO-AgBF4 Ag+ S 19 propylene/propane [160]
propylene/propane FT/Hybrid Permylene (Imtex) Ag+ NS [161]
propylene/propane FT/Hybrid PHMEP-g-PEGBEM/AgBF4/MgO-NS Ag+ SF 12.9 propylene/ propane [162]
propylene/propane FT/Liquid POZ/AgNO3/BMIM+BF4

− Ag+ SF 31.8 propylene/propane [163]
propylene/propane FT/Liquid POZ/AgNO3/BMIM+NO3

− Ag+ SF 32 propylene/propane [163]
propylene/propane FT/Liquid zirconia/AgNO3 Ag+ SF 20 propylene/propane [164]
propylene/propane FT/Liquid TEG/AgBF4 Ag+ SF 60 propylene/propane [165]
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Table 10. Cont.

Separated Gases Type of
Material Name of the Material Carrier Selectivity or Sep Factor Ref.

propylene/propane FT/Liquid AgBF4 Ag+ S 4.5 propylene [166]
propylene/propane FT/Liquid PVDF/AgNO3 Ag+ SF 474 propylene/propane [167]
propylene/propane FT/Liquid BMIM+BF4

−/Ag Ag+ SF 17 propylene/propane [168]
propylene/propane FT/Liquid Ag-BMImBF4 Ag+ NS [169]
propylene/propane FT/Liquid AgNO3/PVDF (Millipore) Ag+ NS [170]
propylene/propane FT/Liquid BMIM+BF4

− Cu SF 5.2 propylene/propane [93]
propylene/propane FT/Liquid PVDF/AgNO3 Ag+ SF 480 propylene/propane [171]
propylene/propane FT/Liquid PVDF/AgNO3 Ag+ SF 490 propylene/propane [172]
propylene/propane FT/Liquid [Ag(propene)x][Tf2N] Ag+ SF 3 propane/propene [173]
propylene/propane FT/Liquid RTILs Ag+ SF 100 propylene/propane [174]
propylene/propane FT/Liquid PVDF/AgNO3 Ag+ SF 270 propylene/propane [175]
propylene/propane FT/Liquid BMImBF4 Ag+ SF 20 propylene/propane [176]
propylene/propane FT/Liquid MOIM+NO3

− IL SF 2.8 propylene/propane [99]
propylene/propane FT/Liquid BMIM+BF4

− IL SF 2.3 propylene/propane [99]
propylene/propane FT/Liquid AgNO3 in hollow fiber membrane Ag+ 75% propylene removal [177]
propylene/propane FT/Liquid (Emim,Ag)[BF4]−PICPM+PF6

− Ag+ SF 7 propylene/propane [178]
propylene/propane FT/Liquid (Emim,Ag)[Tf2N]−PICPM+Tf2N− Ag+ SF 7 propylene/propane [178]
propylene/propane FT/Liquid (Emim,Ag)[Tf2N]-12HSA Ag+ SF 7 propylene/propane [178]
propylene/propane FT/Liquid MOIM+BF4

−/Cu Cu SF 2 propylene/propane [179]
propylene/propane FT/Liquid PVDF/AgNO3 Ag+ SF 473.86 propylene/propane [118]
propylene/propane FT/Liquid NMP Ag+ S 4.5 propylene [180]
propylene/propane FT/Polymer PVA/AgSbF6 Ag+ S 125 propylene [181]
propylene/propane FT/Polymer PVDFHFP/BMImBF4/AgBF4 Ag+ NS [182]
propylene/propane FT/Polymer PE-g-AA-Ag+ Cu SF 21 propylene/propane [60]
propylene/propane FT/Polymer PPO Ag+ SF 5.33 propylene/propane [183]
propylene/propane FT/Polymer Cu/PVP Cu SF 10 propylene/propane [184]
propylene/propane FT/Polymer AgNO3/PEG/Psf Ag+ SF 250 propylene/propane [185]
propylene/propane FT/Polymer AgBF4-PVP Ag+ SF 140 propylene/propane [124]
propylene/propane FT/Polymer POZ Ag+ SF 280 proylene/propane [186]
propylene/propane FT/Polymer PEO Ag+ NS [187]
propylene/propane FT/Polymer AgBF4-PVP Ag+ SF 140 propylene/propane [188]
propylene/propane FT/Polymer AgBF4-POZ Ag+ SF 130 propylene/propane [188]
propylene/propane FT/Polymer PVP/AgBF4 Ag+ NS [189]
propylene/propane FT/Polymer PVP/AgBF4 Ag+ SF 60 propylene/propane [190]
propylene/propane FT/Polymer PVP/AgNO3/Ppy Ag+ NS [191]
propylene/propane FT/Polymer POZ Ag+ SF 5 propylene/propane [192]
propylene/propane FT/Polymer PEP/AgBF4 Ag+ SF 55 propylene/propane [94]
propylene/propane FT/Polymer PDMS/AgBF4 Ag+ SF 200 propylene/propane [193]
propylene/propane FT/Polymer PHMV Ag+ S 336 propylene [194]
propylene/propane FT/Polymer POZ Ag+ SF 65 propylene/propane [195]
propylene/propane FT/Polymer PVP/silver salts Ag+ NS [196]
propylene/propane FT/Polymer POZ/AgBF4 Ag+ SF 45 propylene/propane [197]
propylene/propane FT/Polymer 6FDA–4MPD/DABA Ag+ S 10 propylene/propane [198]
propylene/propane FT/Polymer BMIM+BF4 Ag+ SF 17 propylene/propane [95]
propylene/propane FT/Polymer SBS/0.5Ag Ag+ S 80 propylene/propane [199]
propylene/propane FT/Polymer Ag–sugar/BMIM+BF4

− (0.05/1) Ag+ SF 12.9 propylene/propane [200]
propylene/propane FT/Polymer PVC-g-P4VP Ag+ S 6 propylene [201]
propylene/propane FT/Polymer PEI/Pebax2533/AgBF4 Ag+ SF 1000 propylene/propane [202]
propylene/propane FT/Polymer PU/AgCF3SO3 (BASF ) Ag+ S 10 propylene [203]
propylene/propane FT/Polymer PTFE (Mencor) Ag+ 60% propylene [121]
propylene/propane FT/Polymer PP/AgBF4 Ag+ NS [204]

propylene/propane FT/Polymer polymer membranes with inorganic
nanoparticles uniformly dispersed Zn SF 18.08 propylene/propane [205]

propylene/propane FT/Polymer Pebax®1657/AgBF4 (Atofina) Ag+ SF 20.4 propylene/propane [206]
propylene/propane FT/Polymer poly(vinylalcohol)/AgBF4/Al(NO3)3 Ag+ SF 17 propylene/propane [98]
propylene/propane FT/Polymer (PVA)/AgBF4/Al(NO3)3 Ag+ NS [98]
propylene/propane FT/Polymer PVP/AgBF4/Al(NO3)3/Ag2O Ag+ SF 21.7 propylene/propane [100]
propylene/propane FT/Polymer CAF (CMS) Ag+ SF 50 propylene/propane [207]
propylene/propane FT/Polymer SBS/Cu@MIL-101(Cr) MMM Cu S 2 propylene [208]
propylene/propane FT/Polymer PE-g-AA-Ag+ Ag+ S 5 propane [209]
propylene/propane FT/Polymer PE-g-AA-Cu+ Cu+ S 2.2 propane [209]
propylene/propane FT/Polymer PE-g-AA-Cu2+ Cu2+ S 1.7 propane [209]
propylene/propane FT/Polymer PEO-AgBF4 Ag+ NS [151]

The separation factor (SF) of the gas pairs may be defined as the quotient between the molar ratios of the components
in the permeate side divided by the quotient between the molar ratios of the components in the feed side. The
ideal selectivity (S) is calculated as the ratio between the permeances of the individual components. NS stands for
not specified.
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When compared to FT, the use of other technologies (Figure 8) is relatively less frequent,
including the use of adsorbents [72,73,105,210–212], liquid membranes [41,48] and hybrid
membranes [17,29,213,214], which were grouped as “Others” and concentrate 10% of the papers.
The relatively large number of alternative membrane technologies indicate that researchers and
technicians are still searching for an efficient and viable membrane system for separation of gaseous
paraffin/olefin mixtures.

In 1996, it was reported that carbonized membranes produced with different materials might
present higher permeabilities and selectivities than the non-carbonized precursor polymers [81].
Table 11 presents selectivities, permeabilities and operating conditions reported for gas separations
using CMS membranes. When the numbers presented in Table 11. Reference values reported for gas
separations with help of CMS membranes are compared to each other, it becomes possible to observe
the high variability of the reported results, which makes difficult the definition of operation conditions
and performance indexes for these systems.

Table 11. Reference values reported for gas separations with help of CMS membranes.

Separated Gases Name of the Material Selectivity or Sep
Factor

Permeability or
Permeance

Temp
(K)

Pressure
(bar) Ref.

ethylene/ethane
Carbonized

BPDA-pp’ODA
Polyimide

SF 5 ethylene/ethane P 1 ethylene (×10−8

mol m−2 s−1 Pa−1)
373 1.013 [81]

ethylene/ethane Matrimid®5218
(Huntsman) S 12 ethane P 14.4 (barrer) 308 NS [215]

ethylene/ethane Matrimid®5218
(Huntsman) S 12 ethylene/ethane P 14–15 ethylene

(barrer) 308 3.447 [216]

ethylene/ethane Matrimid SF 60 ethylene/ethane
P 4.8 × 10−7 ethylene;
P 1.6 × 10−9 ethane
(mol·Pa−1

·m−2
·s−1)

NS NS [217]

ethylene/ethane 6FDA/BPDA-DAM SF >20 P 10 ethylene GPU 308 20.265 [218]
ethylene/ethane PIM-6FDA-OH SF 17.5 ethylene/ethane P 10 ethylene (barrer) 308 20.265 [219]

ethylene/ethane Matrimid and
6FDA/BPDA-DAM NS NS 308 8.04 [220]

ethylene/ethane 6FDA/BPDA-DAM S 3.9 ethylene/ethane P 15.9 ethylene; P 4.0
ethane (GPU) 298 5.15 [221]

propylene/propane 6FDA/BPDA–DDBT S 22 propylene P 26 GPU propylene 373 1.013 [84]

propylene/propane NTDA-BAHFDS S 42 propane P 26 GPU
propylene/propane 308 1.013 [86]

propylene/propane AlPO-14 NS NS NS NS [222]

propylene/propane 6FDA/BPDA-DAM S 20.5
propylene/propane

P 17.5 propylene; P
0.85 propane (GPU) 298 5.15 [221]

propylene/propane CMS/g-Al2O3 SF 36
propylene/propane P 9 GPU propylene 298 1.3–4 [223]

propylene/propane 6FDA S 50–60 propylene
P 8

propylene/propane
[×10−9 mol/(m2 s Pa)]

393 6.89 [224]

propylene/propane

CMS membranes
synthesized on

mesoporous
g-alumina support

SF 31
propylene/propane

P 1.0 [× 10−8 mol m−2

s−1 Pa−1]
298 3.1 [63]

propylene/propane BPDA-DDBT/DABA SF 13
propylene/propane P 50 GPU propane 373 1.013 [82]

The uses of zeolite and MOF membranes for separation of gaseous paraffin/olefin streams are
presented in Table 12. The separation mechanism of the molecules is based mainly on the molecular
sizes and shapes (geometrical selectivity) [52]. The studies have shown superior selectivity in MOF
membranes. Special attention must be given to the membrane MIL-100(Fe), prepared in lab-scale
with BET surface area of 2558 m2

·g−1, which provided selectivities of 111 and 70 at 1 kPa and room
temperature for ethylene/ethane and propylene/propane separations, respectively [225].
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Table 12. Reference values reported for gas separations using zeolite and MOF membranes.

Separated Gases Name of the Material Selectivity or Sep
Factor

Permeability or
Permeance

Temp
(K)

Pressure
(bar) Ref.

ethylene/ethane
CuCl-modified

tubular γ-Al2O3
membrane

SF 1.4 ethylene/ethane NS 333 2.026 [226]

ethylene/ethane CuCl/NaX NS NS 358 2 [227]
ethylene/ethane Na-ETS-10 S 5 ethylene NS 298 1.013 [228]
ethylene/ethane AgA and AgX NS NS 303 1.013 [229]
ethylene/ethane ZIF-4 and ZIF-zni NS NS 293 NS [230]

ethylene/ethane ZIF-4 SF 1.71 ethane/ethylene NS 293 up to
12 [231]

ethylene/ethane Ag-X S 15.9 ethylene P 9.04 1 303 NS [232]
ethylene/ethane 6FDA-DAM:DABA SF 9 ethylene/ethane P 90 ethylene (barrer) 308 3.44 [233]
ethylene/ethane ZIF-7 NS NS NS 0 [77]
ethylene/ethane ZIF-8 S 2.8 ethylene P 1.5 ethylene 1 298 1 [78]
ethylene/ethane Cu3BTC2 SF 7.1 ethylene/ethane P 17 1 423 5 [234]
ethylene/ethane Cu3BTC2 SF 7.1 ethylene/ethane P 171 423 5 [234]
ethylene/ethane IRMOF-8 S 1.43 Ethane/Ethylene NS 318 8 [235]
ethylene/ethane MIL-101 SF 16.5 ethylene/ethane NS 303 1 [236]
ethylene/ethane MIL-100 111 ethylene/ethane NS 298 0.01 [225]
ethylene/ethane M–MOF-74 SF 10 ethylyne/ethane NS 318 1 [237]
ethylene/ethane Mg2(dhtp) S 1.4 ethylene/ethane NS 293 0.015 [238]
ethylene/ethane Co2(dhtp) S 1.7 ethylene/ethane NS 293 0.015 [238]
ethylene/ethane ZIF-8 S 0.48 ethylene/ethane NS 293 0.015 [238]
ethylene/ethane Fe2(dobdc) NS NS 318 NS [101]
ethylene/ethane CuBTC NS NS 303; 373 0.01–5 [239]

ethylene/ethane ZIF-71 SF 1.84
propane/propylene NS 293 1 [240]

propylene/propane Mg2(dhtp) S 1.7 propylene/propane NS 293 0.015 [238]
propylene/propane Co2(dhtp) S 2.9 propylene/propane NS 293 0.015 [238]
propylene/propane ZIF-8 S 0.7 propylene/propane NS 293 0.015 [238]
propylene/propane Fe2(dobdc) NS NS 318 NS [101]
propylene/propane CuBTC NS NS 303; 373 0.01 - 5 [239]
propylene/propane ZIF-8 NS NS NS 1 [241]

propylene/propane Basolite®C300
(BASF) NS NS 323–373 5 [79]

propylene/propane
6FDA-Durene/

DABAco-polyimides
ZIF-8

SF 27.38
propylene/propane NS 308 10.13 [242]

propylene/propane NbOFFIVE-1-Ni
(KAUST-7) NS NS 298 1 [243]

propylene/propane ZIF-9 SF 1.39 ethane/ethylene NS 293 1 [240]
propylene/propane Zr-fum-fcu-MOF NS NS 328 NS [80]
propylene/propane MIL-100 70 propylene/propane NS 298 0.01 [225]

1 [×10−8 mol m−2 s−1 Pa−1].
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As also observed in the published papers, the considerations regarding the membranes type
in the deposited patents, as observed in Figure 9, show that polymers and polymers combined to
metal carriers represent around 60% of the used materials. Also, other types of membranes were
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observed. CMSs, MOFs and zeolites depict almost 25% of the read patents. Facilitated transport and
solution-diffusion are the most separation mechanisms, nearly 80%. Silver represents 82% of all the
carriers used, however, gold and copper have been exploited [244]. As can be noticed, silver dominates
the studies as also observed for the paper bibliometric analysis.
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However, zeolites [245], carbon molecular sieve [246] and metal-organic framework [247]
membranes began to appear as interesting alternatives to overcome the separation limit traditionally
observed for polymeric membranes.

The analyses of patents that regard olefin/paraffin separations apparently indicate that the
development of new stable, highly permeable and highly selective facilitated transport membranes
constitutes a critical issue for the future success of the technology, as commercial players are still
searching for improvements that will make FTMs more attractive and viable [248–253]. It is also
important to highlight that most feed streams reported in published patents contain simple mixtures
of pure gases, so that the membrane performances have rarely been validated with real gas mixtures,
meaning that deactivation of FTMs have probably been underestimated in most documents. Finally,
actual industrial applications have not been properly documented in available patents, illustrating the
scalability problems of the technology. Despite that, given the possible benefits obtained by overcoming
the disadvantages usually associated with the conventional gas separation methods, it is certain that
additional studies and investments will be performed to make the technology more viable and ready
for commercial application.

3.7. The Carrier Agents

Figure 10 presents the relative frequency of carriers reported in the literature. As one can observe,
silver concentrates almost 90% of the papers published in the field of FTM. It must be noted that neutral
Ag-nanoparticles have also been used as carriers in FTM processes. As reported in some documents,
neutral Ag-nanoparticles are chemically stable, present excellent long-term performances and can
lead to high selectivities and permeabilities [249]. Particularly, Campos et al (2018) [59] presented a
critical analysis regarding the current state of development, the possible applications and the unstable
nature of FTM carriers, proposing alternatives to overcome the problems that hamper the growth
of the technology. These authors called attention to the fact that poisoning sources and membrane
deactivation factors had not been properly analyzed in the published material.
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3.8. The Poisonous Agents and the Lifetime

It is important to emphasize that very few works analyzed the influence of contaminants [59] and
the long-term performances of the separation modules [254], as shown in Figure 11. As a matter of fact,
the presence of contaminants can exert strong negative effects on the performances of commercial scale
membrane separation processes [59], which indicates that published papers regard the characterization
of ideal separations and neglect the complexity of gaseous mixtures processed industrially. The
poisonous agents identified in this work were acetylene and sulfur [125,207], reduction [90] and silver
deposition [158], ketone [255], membrane dehydration [161], olefins and hydrogen [207].
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FTM processes.

Table 13 and Figure 11 present the membrane lifetimes reported in several papers, showing
very short lifetimes in most cases. Although it is true that most published material regard lab-scale
operations, this certainly is an indication of frequent process interruptions, changes of membrane
modules and regeneration of separation units, rendering the process operation less efficient and
more expensive [17]. Among the analyzed studies, the silver based CAF (amorphous fluoropolymer)
membrane developed by Compact Membrane Systems (CMS) seemed to present superior performances
in terms of operation lifetimes and selectivities for propylene/propane separations (although, according
to the authors, similar results could be obtained with ethylene/ethane separations) [207]. This study
reported selectivities of 50 and permeabilities of 200 GPU of propylene over a period of 300 d in
lab-scale operations. Besides, the membrane was shown to be stable in presence of hydrogen sulfide,
acetylene and hydrogen, although membrane humidification was needed to improve the process
performance and stability.
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Table 13. Lifetimes of membranes used for separation of gaseous paraffin/olefin mixtures in FTM processes.

Separated Gases Name of the Material Carrier Temp (K) Pressure (bar) Lifetime Ref.

1-butene/n-butane ILMs in PVDF substrates Ag+ NS 0.14 at least 600 h [256]
ethylene/ethane Fluoropore FP-010/AgNO3 Ag+ 298 1.01 at least 100 h [90]
ethylene/ethane EPDM-SPEEK Ag+ 298 3 at least 1680 h [131]
ethylene/ethane ZnCl2/[BMIM][Cl] Cu 298 1.1 150 h [257]
ethylene/ethane AgBF4/PEO Ag+ 296 1.72 at least 16 h [139]
ethylene/ethane AgNO3/polyethersulfone Ag+ 298 0.09 1440 h [141]
ethylene/ethane PA 12-PTMO/AgBF4 Ag+ 295 3.44 72 h [142]
ethylene/ethane EPDM Ag+ 298 3 over 3360 h [136]
ethylene/ethane AgNO3/polyethersulfone Ag+ 298 2 504 h [144]
ethylene/ethane SiO2 Poly(sodium acrylate) Ag+ Ag+ 373 2 at least 5 h [147]
ethylene/ethane Pebax®2533/AgBF4 Ag+ 296 3.44 7 days [115]
ethylene/ethane Psf/AgNO3 Ag+ NS 1 1440 h [148]
ethylene/ethane PEO-AgBF4 Ag+ 296 7.9 at least 20 h [151]

i-butene/i-butane (PTMSP-g-AA-Ag+) Ag+ 298 NS at least 1008 h [258]
isoprene/n-pentane SPEEK-AgNO3 Ag+ 333 101.325 100 h [259]

pentene/pentane Select Ag+ 298 1.013 48 h [260]
propylene/propane POZ/AgNO3/SiO2 Ag+ 293 2.75 160 h [154]
propylene/propane PVP/Nano Au Au 298 1.013 2 days [96]
propylene/propane POZ Ag+ 293 2.75 14 days [156]
propylene/propane PVDF-HFP/BMImBF4

–Ag+ Ag+ 293–323 0.5 - 3 10 days [157]
propylene/propane AgNO3/Al2O3 Ag+ 298 1 at least 4320 h [158]
propylene/propane TiO2-PEO-AgBF4 Ag+ 298 1 less than 196 h [160]
propylene/propane Permylene Ag+ 298 5.56 over 1000 h [161]
propylene/propane POZ/P154AgNO3/BMIM+NO3

− Ag+ NS NS 150 h [163]
propylene/propane TEG/AgBF4 Ag+ 293–298 1.013 1440–2160 h [165]
propylene/propane PVDF/AgNO3 Ag+ 298 1.2 2880 h [167]
propylene/propane BMIM+BF4

−/Ag Ag+ NS 2.75 at least 100 h [168]
propylene/propane AgNO3/PVDF Ag+ 298 1.2 3–4 weeks [170]
propylene/propane PVDF/AgNO3 Ag+ 298 1.2 3–4 weeks [175]
propylene/propane PVDF/AgNO3 Ag+ NS NS 2880 h [118]
propylene/propane NMP Ag+ 293 1.2–2.2 60 h [180]
propylene/propane Cu/PVP Cu 298 1.38 168 h [184]
propylene/propane AgBF4-PVP Ag+ NS NS at least 100 h [124]
propylene/propane POZ Ag+ 296 1.38 50 h [186]
propylene/propane AgBF4-PVP Ag+ NS NS at least 100 h [188]
propylene/propane AgBF4-POZ Ag+ NS NS at least 100 h [188]
propylene/propane PVP/AgBF4 Ag+ NS 2.76 720 h [190]
propylene/propane PEP/AgBF4 Ag+ 293 2.758 150 h [94]
propylene/propane PDMS/AgBF4 Ag+ NS 1.38 at least 5.8 h [193]
propylene/propane PTFE Ag+ 298 1.2 2 months [121]
propylene/propane poly(vinylalcohol)/AgBF4/Al(NO3)3 Ag+ NS 3 145 h [98]
propylene/propane CAF (CMS) Ag+ 298 5.15 over 9 months [207]
propylene/propane PEO-AgBF4 Ag+ 296 7.9 at least 20 h [151]
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3.9. The Layouts and Operation Conditions

Figure 12 shows the equipment layouts used to perform membrane separations in different
publications. The commonest membrane layouts employed in the analyzed articles were flat sheets
(52% of the total number of papers), although it is important to note that the layout was not specified
in 29% of the papers. Given the fact that most of these papers conducted separation tests in lab-scale
units, the number of flat sheets is probably larger than the shown value. Only 14% of the documents
employed hollow fiber membranes, while just 1% of the papers reported the use of spiral wound
membranes. These numbers reinforce the fact that the vast majority of the investigations made use
of small lab-scale setups for characterization of membrane performances and did not analyze the
performances of larger commercial scale units. Therefore, once more it can be observed that the
published material suggests that the degree of technological maturity of these processes is small and
that research is concentrated on development and characterization of membrane materials, not on
the implementation of actual commercial separation equipment. Moreover, the use of soft operating
conditions (mainly 1 bar of pressure and ambient temperature) in most published documents indicates
the lab scale characterization, as reported Figures 13 and 14.
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4. Conclusions

The present study surveyed the research on paraffin/olefin separations using membranes during
the 1960–2019 period. Relevant information related to annual publication distribution, journals, main
countries and institutions was analyzed. The first document analyzed was published in 1961 and the
researches until 2010 were very limited. The journal that published more documents was Journal of
Membrane Science, followed by Industrial and Engineering Chemistry Research and Separation and
Purification Technology, publishing together almost 50% of the analyzed papers. The USA was the
most productive country followed by South Korea and Iran. The second position attained by South
Korea must be highlighted, since the Korea Institute of Science and Technology ranked in first among
the top five most productive institutions.

The use of membranes for paraffin/olefin separation has not been successful for commercial
applications yet. Zeolites, CMS and MOFs are new types of materials that have been studied more
deeply since 2010 in order to overcome stability, selectivity and permeability issues encountered in
other types of membranes. However, studies are still in lab scale. Facilitated transport separation using
Ag as carrier was clearly the most relevant application and much research effort has been devoted to
this topic.

Ethylene/ethane separations have been investigated to less extension than propylene/propane
separations. Nonetheless, the separation of a great diversity of mixtures of organic compounds has
been proposed. Flat sheet membranes dominate most studies and operating conditions are typical
of lab-scale operations, suggesting that the use of membranes for paraffin/olefin separations still
constitutes an immature field that has not been established industrially. This lack of technological
maturity can be supported by many aspects. First, despite the fact that this issue has been discussed
since the 1960s, the number of papers related to this theme is relatively small and the rate of publications
in this field has not increased much since then. Besides, the types of materials reported for manufacture
of the membranes is huge, indicating that consensus regarding the materials that are best suited for the
analyzed applications has yet to be reached. Additionally, most membranes used for paraffin/olefin
separations present short lifetimes, usually shorter than 2 weeks. This scenario possibly explains why
reported membrane areas, flows, temperatures and feed pressures were obtained in laboratory scale
and using ideal gas mixtures.

In spite of the current scenario, one cannot deny the many significant improvements achieved in
this field. For instance, development of porous membranes with well-defined pore size distributions,
including CMSs, zeolites, PIMs and MOFs, can overcome the inherent separation limits of dense polymer
membranes. Also, some studies showed that conventional membranes based on solution–diffusion
mechanisms are inefficient to produce high-purity olefin streams and that facilitated transport
membranes (particularly the ones that contain silver-based carriers) constitute promising candidates to
achieve high selectivity and permeability. Finally, based in the bibliometric analysis presented in the
present study, it seems plausible to affirm that membranes that include the use of silver as a carrier
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(facilitated transport membranes and MOFs) seem to constitute the most promising technologies so far.
However, these membranes are very sensitive and may be deactivated in the presence of H2S, sulfur,
acetylene, olefins and by the reduction of the metal used as the olefin carrier, which demands additional
and detailed studies about the effects of poisoning and membrane operation on the performance and
stability of membrane separation units.

Supplementary Materials: The file of Supplementary Materials [261–328] are available online at http://www.
mdpi.com/2077-0375/9/12/157/s1, Table S1. Distribution of membranes used for gas separations involving paraffins
and/or olefins (background rated category), excluding the separation between paraffins and olefins; Table S2.
Distribution of membranes and conditions used for paraffin/olefin separations; Table S3. Papers analyzed in the
bibliometric study.
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