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The immune system is highly networked and complex, which is continuously

changing as encountering old and new pathogens. However, reductionism-

based researches do not give a systematic understanding of the molecular

mechanism of the immune response and viral pathogenesis. Here, we present

HUMPPI-2022, a high-quality human protein-protein interaction (PPI) network,

containing > 11,000 protein-coding genes with > 78,000 interactions. The

network topology and functional characteristics analyses of the immune-

related genes (IRGs) reveal that IRGs are mostly located in the center of the

network and link genes of diverse biological processes, which may reflect the

gene pleiotropy phenomenon. Moreover, the virus-human interactions reveal

that pan-viral targets are mostly hubs, located in the center of the network and

enriched in fundamental biological processes, but not for coronavirus. Finally,

gene age effect was analyzed from the view of the host network for IRGs and

virally-targeted genes (VTGs) during evolution, with IRGs gradually became

hubs and integrated into host network through bridging functionally

differentiated modules. Briefly, HUMPPI-2022 serves as a valuable resource

for gaining a better understanding of the composition and evolution of human

immune system, as well as the pathogenesis of viruses.
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Introduction

The interplays among multiple biomolecules (mRNA,

proteins, metabolites, etc.) result in diverse functional and

causal relationships among distinct phenotypes. The

emergence and rapid advances of network biology have

provided unique strategies for systematic analysis of the

relationship between genotype and phenotypes, which has

been widely used in the study of human diseases (1–6). The

highly networked and complex characteristics of the immune

system are the important molecular basis for the host to resist

the invasion of pathogens, recognize and eliminate tumors and

decaying apoptotic cells, and regulate the homeostasis (7–9).

As an important part of the organism, the immune system

does not sustain human homeostasis in isolation, but works

with other systems. Hence, immune response and viral

infection should be studied from the perspective of human

interactome, a comprehensive map of all biological

molecular interactions.

Protein-protein interactions (PPIs) play an important role in

the basic biological processes of living cells, and the knowledge

of the PPI network is critical for uncovering the underlying

molecular mechanisms of distinct phenotypes. With the rapid

development of high throughput methods, such as yeast two-

hybrid assay (10) and affinity-purification mass spectrometry

(AP-MS) (11), genome-wide PPI data for human have been

extensively accumulated (4, 12–15). There are a few attempts to

investigate the immune system from the perspective of

interactome, such as the PPI network of interferon-stimulated

genes (ISGs) (16, 17) and the PPI network of the

immunoglobulin superfamily (IgSF) (18, 19). These studies

have improved the existing knowledge of immune regulatory

networks to some extent, and provided a reliable theoretical

basis for clinical treatment of infectious diseases and tumors.

However, a complete and reliable immune network and its

extended analysis is still missing.

The selective pressure exerted by pathogens is an important

driving force for the evolution of the human immune system

(20–22), and the outcome of disease is determined by

interactions between host factors and pathogens. Over the past

few decades, a large number of virus-host protein interactions

were identified by large-scale PPI experiments and included in a

variety of host-pathogen interaction databases, such as HPIDB

(23) and VirHostNet (24). These datasets and the corresponding

systematic analyses are crucial for understanding the host

response and pathogenesis due to pathogen infection.

However, most efforts focused on only a few viruses, such as

human immunodeficiency virus (HIV) (25), Influenza A virus

(IAV) (26), human papillomavirus (HPV) (27), human

cytomegalovirus (HCMV) (28, 29) and human herpesvirus

(HHV) (30, 31), and emerging viruses, such as severe acute

respiratory syndrome coronavirus 1 (SARS-CoV-1) (32, 33),

Middle East respiratory syndrome coronavirus (MERS-CoV)
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(32) and severe acute respiratory syndrome coronavirus 2

(SARS-CoV-2) (33–35), which caused and are still causing the

damage (36). Most previous studies focused on the analysis of

specific virus-host interaction, but the multiple source of virus-

human protein interactions combined with the network view

could be helpful for understanding the strategies of viruses to use

host cells to complete their own life cycle and at the same time

evade host immune system defenses (37–40).

In this study, HUMPPI-2022, a high-quality human PPI

network, was constructed based on data integration from five

primary databases (41–45), and network characteristics for the

human immune system and virus-human interactions were

systematically investigated. Information of the network

signatures for the immune-related processes and virus-human

interactions are helpful for better understanding of the

molecular mechanisms of the host immune response to viral

infection, and ultimately targeted prevention and curation of

infectious diseases.
Materials and methods

Data collection

The human PPIs
The human PPIs were extracted from five primary source

databases: BioGRID (41), DIP (42), IntAct (43), MINT (44) and

MatrixDB (45). For each reported PPI, the interacting proteins

were converted to gene symbol pairs using an ID mapping table

downloaded on May 27, 2020 from Ensembl (http://asia.

ensembl.org) (46). The following interactions were not

included in this study: (1) interactions that did not have an

associated PubMed ID (PMID) or a valid PSI-MI experimental

interaction detection method (47, 48); (2) genetic or protein-

DNA interactions; (3) PPI annotated with “invalid” evidence

terms according to the previous classification method (12, 14).

The starting full dataset comprises 309,733 human protein

interactions validated by at least one experimental method and

reported in at least one article indexed in PubMed [Figure S1,

showed by UpSetR plot (49)].

To get the high-quality PPIs, the dataset was divided into

high-throughput (HT) and low-throughput (LT) subsets based on

the size of the dataset in the publication. If more than 100 PPIs

were reported in that publication, it was classified as HT and

otherwise as LT (50). PPIs only supported by one HT

experimental method were removed. After the above filtration

steps, the resulting PPI network, HUMPPI-2022, contains 78,261

interactions and covers 11,202 protein-coding genes (Table S1).

The human immune-related genes and
immune-related processes

A total of 5,422 IRGs were collected from four databases,

namely ImmPort (https://www.immport.org/home), InnateDB
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(51), Immunome (52) and PathCards (53). IR processes were

collected from ImmPort, InnateDB and PathCards, and a total of

165 processes were generated after deduplication (Table S2).

The virus-human interactions
Interaction data for a variety of viral families were obtained

from pathogen-host interactions databases HPIDB (23),

VirHostNet (24) and from general databases BioGRID (41),

DIP (42), IntAct (43) and MINT (44). Additionally, virus-

human interactions for five coronaviruses, including SARS-

CoV-2, were obtained from four studies (32–35). For each

reported virus-human PPI, the human interacting proteins

were converted to gene symbol pairs using an ID mapping

table downloaded from Ensembl (46). To explore the virus-

human interaction mechanism, different viral strains from same

species were merged, and finally 29 viruses that target more than

200 host genes were showed (Table S5). Furthermore, the genes

were arranged in reverse order based on the number of viruses

targeting them, with the top 1% (genes were targeted by at least

14 viruses) considered as pan-viral targets.

Gene age data
The human gene age data was retrieved from an updated

study (54). In brief, each protein-coding gene was dated and

assigned to a given branch by inferring the absence and presence

of orthologs along the vertebrate phylogenetic tree, based on

UCSC syntenic genomic alignment. Genes without evolutionary

ages were excluded from this analysis. Edge age here was

assigned based on the evolutionary age of the younger gene.

The divergence time of each gene age group was assigned as the

middle time point for each branch and the oldest branch (branch

0) is arbitrarily set as 500 Mya (million years ago).

Other datasets
2,391 essential genes were taken from two previous papers

(55, 56). 468 cancer driver genes were extracted from https://

www.intogen.org (57).

Per-tissue median gene expression level from GTEx data

portal (Release V8, dbGaP Accession phs000424.v8.p2) was

downloaded on 03/02/2021. A gene was considered expressed

in a given tissue if the Transcripts Per Kilobase Million (TPM)

value > 1. Tissue specificity index (t) (58) was used to measure

the specificity of expression profile for a given gene.

The information of subcellular localization of 12,003 human

proteins to 30 cellular structures and substructures were

obtained from Thul et al. (59).
Network topological properties analysis

Degree, clustering coefficient, assortativity and eigenvector

centrality used to measure genes’ importance in HUMPPI-2022
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were computed with Python NetworkX (60). Degree (or

connectivity) is a basic network property, which indicates the

number of neighbors of a node. Node with non-random high

degree is called a hub. Clustering coefficient measures the degree

of interconnectivity in the neighborhood of a node (61).

Assortativity represents the average degree of the nearest

neighbors of a node (62). Eigenvector centrality denotes the

influence of a node in the network topology, which considers the

importance of its neighbors (63).

To evaluate whether these property values of a given gene list

differed from a randomly selected gene subsets of equivalent size,

as Huttlin et al. (4) did, gene labels were scrambled across the

network and a new average was calculated for the randomized

list of genes. This process was repeated 10,000 times to define the

null distributions for each statistic. Since these distributions were

normally distributed, Gaussian distributions were fitted to each

and used to assign Z scores and P values for each statistic

associated with the true set of given genes.
Detection and analysis of gene modules

Gene module detection
As described by Huttlin et al. (4), the Unsupervised Markov

cluster (MCL) algorithm (64) was used to partition HUMPPI-

2022 into modules of tightly interconnected genes. Based on the

average functional similarity (3) of modules, the -force-

connected option of y and inflation parameter of 2.28 were

chosen (Figure S2A and Table S3).

Module-module association network
In addition to the identification of modules using MCL,

interconnections between modules were also explored. First,

the full set of 78,261 interactions was trimmed to include only

those connecting one module with another, and the set of all

module pairs connected by one or more interactions was

identified. Fisher’s exact test was used to identify pairs of

modules that were enriched for interactions among them,

followed by multiple testing correction (65). The module-

module association network including 1,936 associations at a

1% FDR (Table S3) was got and visualized by Cytoscape

(version 3.8.0) (66).

IRGs enrichment of module
The hypergeometric test was used to evaluate the

enrichment of IRGs, taking into account the size of the

module, the size of HUMPPI-2022, and the fraction of

network genes that were IRGs. Above this, 595 modules

containing two or more IRGs without reaching statistically

significant enrichment after a multiple testing correction (65),

and only 13 modules were found to be enriched with IRGs at a

1% FDR.
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To assess the tendency for modules containing IRGs or

enriched for IRGs to be centrally located in the module-module

association network. The Wilcoxon test was used to compare the

degree distributions of modules enriched and not enriched with

IRGs, and to compare the degree distributions of modules

containing multiple IRGs with modules containing 0 or 1 IRG.

Virally-targeted modules
To understand the association between gene module and

viral perturbation, targeted genes for each virus were then

mapped to each module identified in HUMPPI-2022. A

hypergeometric test was used to evaluate the enrichment of

modules targeted by virus, taking into account the size of

module, the number of virally-targeted genes (VTGs) in the

module, the number of VTGs within the network and the total

network size. This process was repeated for each module and for

each virus. After multiple testing correction (65), those modules

enriched with genes involved with each virus at a 5% FDR were

identified (Table S5). A similar approach was used to identify

specific VTMs for SARS-CoV-2, SARS-CoV-1 and MERS-CoV,

where the number of specific VTGs contained in each module is

considered (Table S5).

Gene ontology, IR process and subcellular
localization enrichment analysis

The gene sets were tested for enrichment of gene ontology

(GO) terms, IR processes and subcellular localization. The over-

representation analysis was based on the hypergeometric

distribution and performed using the enricher function of

clusterProfiler package in R with default parameters (67). The

GO terms were obtained from the c5 category of Molecular

Signature Database (MSigDB v7.4) (68). Significant GO terms, IR

processes and subcellular localization (adjusted p-value < 0.01) were

identified and for multiple significant terms with Jaccard similarity

≥ 0.99, we selected the term with the lowest adjusted p-value. The

Wilcoxon test was used to compare the degree distributions of

modules enriched and not enriched with IR process.

The significant functional domains in HUMPPI-2022 were

determined and visualized by the SAFE method (69) in

Cytoscape (version 3.8.0) (66). GO terms for each gene were

also extracted from the c5 category of MSigDB v7.4 (68). SAFE

analysis was run with the default option except layout = edge-

weighted spring embedded layout, neighborhoodRadius = 200,

and neighborhoodRadiusType = absolute.
Statistical analysis

R (version 4.1.2) was used for the statistical analysis, and the

R package ggplot2 was used to generate most of the figures. The

regression correlation and the corresponding significant test

were calculated and added by R package ggpmisc.
Frontiers in Immunology 04
Results

The landscape of human protein
interactome

In order to get a comprehensive while relatively high

confident dataset, PPIs with high confidence, either reported

by multiple high-throughput methods or supported by a single

low-throughput approach, from five primary databases were

integrated into HUMPPI-2022 which contains 78,261

interactions from 11,202 protein-coding genes (Figure 1A and

Table S1, check Methods for more details). HUMPPI-2022

covers more genes and interactions compared to up-to-date

datasets based on high-throughput approaches (4, 12–14) and

literature-curation strategy (70) (Figure 1B). Overall, about

28.73% (21,701/78,261) of interactions were confirmed by

multiple high-throughput approaches and the others each

supported by a low-throughput method. HUMPPI-2022 shows

an approximately scale-free topological structure (71) with a

degree exponent of 1.65 (Figure 1C). HUMPPI-2022 covers

81.02% of the essential genes, 82.39% of the cancer driver

genes, 68.68% of IRGs and 77.45% VTGs (see Methods for

data source details). Functionally related genes, such as genes in

the same complexes and pathways, often closely interact with

each other and form tightly connected modules in the PPI

network (72). MCL algorithm (64) was applied to HUMPPI-

2022 and 2,788 genes modules were identified. 1,225 modules

with no less than 3 genes were used for further analysis (Figure

S2B and Table S3). Furthermore, 19 significant functional

domains were identified in the network based on SAFE (69),

and each domain was associated with a unique list of enriched

GO terms (Figure 1D).
The importance of IRGs in the network

5422 IRGs from four databases as a union set were collected

(Figure 2A) and 68.68% of them (3,724/5,422) are included in

HUMPPI-2022. From the perspective of network view, IRGs are

special compared to the overall proteome in several network

properties (Figures 2B–E; P < 0.05). The mean degree and mean

eigenvector centrality for the IRGs are significantly higher than the

mean value for all the genes in HUMPPI-2022 (Figures 2B, C,

24.115 vs 13.962 and 7.118 × 10-3 vs 4.006 × 10-3, respectively),

while the mean clustering coefficient and mean assortativity are

significantly lower (Figures 2D, E, 0.153 vs 0.160 and 74.787 vs

80.481, respectively). A higher mean degree and mean

eigenvector centrality indicate that the IRGs tend to have more

interactions with other genes and may play more important roles

in the network. And a lower mean clustering coefficient and

mean assortativity suggest IRGs may not preferentially interact

with each other. Furthermore, the mean number of enriched
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distinct GO terms for neighborhoods of the IRGs are

significantly higher (Figure 2F, 30.861 vs 14.957, P < 10-100),

which means IRGs tend to link various biological processes and

may be pleiotropic.

Next, enrichment of IRGs in modules and preference of

IRGs in the network were tested. 74.22% of IRGs in the

network (2,764/3,724) reside within one of the 905 modules

with no less than 3 genes (totally 1225 modules with no less

than 3 genes, Figure S2B). Among these modules, only 1.06%

(13) are enriched with IRGs (Figures 2G, H). 595 modules

(48.57% among 1225) contained two or more IRGs without

reaching statistically significant enrichment (Figures 2G, H).

Functional enrichment analysis reveals that modules enriched

for IRGs are all involve in IR processes (Table S4), such as

pattern recognition receptor signaling pathway (module #31),

response to chemokine (module #36), antigen processing and

presentation (module #88), cytokine mediated signaling
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pathway (module #209), and complement pathway (module

#270). In addition to the 13 IRGs-enriched modules, another

199 modules were also found to be enriched with IR processes

(Table S4), and all those modules enriched with IR processes

show higher connectivity in the module-module association

network (Figures 2G, I, J).
Network view of virus-human interaction

Understanding the physical interaction between viral and

host genes from the perspective of network view could facilitate

our understanding for the pathogenesis of viruses. In order to get

into this problem, 23,832 unique interactions that involve 7,649

human genes and 226 viruses from six databases were collected.

In this study, 29 viruses which target more than 200 host genes

were showed below (Figure S3B and Table S5).
FIGURE 1

The construction of human protein-protein interaction network. (A) Acquisition of high-quality literature-curated PPIs and module statistics. HT,
High-Throughput; LT, Low-Throughput. (B) Comparisons with interaction networks derived from HT approaches and literature-curation
method with respect to number of protein-coding gene and interaction counts. Circle area is proportional to interaction counts, while shading
denotes the experimental strategy. AP-MS, affinity-purification mass spectrometry; Y2H, yeast two-hybrid assay. (C) Power-law degree
distribution of HUMPPI-2022. (D) The functional domains in HUMPPI-2022. All region-specific GO terms were combined into 19 domains based
on the similarity of their enrichment landscapes. Different colors represent different functional domains.
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An efficient way for viruses to hijack host is targeting the

hubs of host network (37, 38). In order to test this, VTGs were

mapped to the HUMPPI-2022. In comparison with general

human genes, the VTGs have higher degree and centrality
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(Figure 3A). 65 genes (see Methods) that were targeted by at

least 14 viruses were identified, and further analysis indicates

that those pan-targeted genes are with even higher degree and

centrality (Figure 3B; Wilcoxon rank sum test, P < 2.220 × 10-16),
A B

D E F

G H I

J

C

FIGURE 2

Immune-related genes (IRGs) in PPI network. (A) The statistics of IRGs from four databases. (B-E) Network properties (degree, eigenvector
centrality, clustering coefficient, and assortativity, respectively) of IRGs. (F) Number of enriched GO terms for neighborhoods of IRGs.
(G) Network of 1,225 modules identified through MCL clustering of HUMPPI-2022. Nodes represent distinct modules and the size reflect the
gene number in each. Nodes are connected with significant link (see Methods). Green nodes mean modules containing two or more IRGs and
not enriched with IRGs; Blue nodes mean modules that are enriched with IRGs (1% FDR); and modules containing less than two IRGs are
colored in grey. Nodes with red border represent modules enriched to IR (immune-related) process. (H) Relative fractions of 1,225 modules that
contain specified numbers of IRGs. (I) Comparison of network connectivity (degree) for modules that contain specified numbers of IRGs.
(J) Comparison of network connectivity for modules that enriched to IR and non-IR process.
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and enriched in fundamental functions (Figure 3C and Table S6)

and essential genes (Figure S3C; hypergeometric test, P = 1.914 ×

10-22).

For a special case, functions and network topological

properties for the host genes targeted by coronavirus were

explored. Compared with genes targeted by multiple viruses,

the 131 SARS-CoV-2 specific targets (totally 1,036 SARS-CoV-2

targets in the network) are different in following ways: they are

not hubs and not in a central position in the network

(Figure 3D); they are only enriched in one biological process,

namely nucleotide phosphorylation (Figure S4 and Table S6);

they are not enriched in any IR processes even they were

significantly enriched in IRGs (Figure 3D and Table S6); they

are not enriched in any cellular structures (Table S6); only 7.63%

(10/131) reside within one of the 5 SARS-CoV-2 VTMs (totally

23 SARS-CoV-2 VTMs, Figure S5A and Table S5), and only

module #43 is enriched with SARS-CoV-2 specific

targets (Figure S5B and Table S5; hypergeometric test,

P = 8.825 × 10-6); they are less likely to locate in functional

domains than pan-targeted genes (including Pan and

Pan_excl_CoV) and genes targeted by different families of

viruses (Figure 3E and Table S5; Wilcoxon rank sum test, P <

0.01). These phenomena can be also found in SARS-CoV-1 and

MERS-CoV (Figures 3D, E).
Evolutionary perspective of IRG and VTG

Along the evolution, new genes were generated and were

integrated into the network to gradually take their function roles.

In order to look into the age effect of genes, role of new genes was

explored from the view of network and under the consideration

of their relationship with IRGs and VTGs. First of all, ages for

each node and edge were labelled in HUMPPI-2022. These age

labels were determined by genes that originated in every period

of evolution along the well-resolved phylogeny of vertebrates

(Figure S6), retrieved from an updated dataset (54). Genes were

categorized into virally targeted IRGs (IRG&VTGs), immune-

related genes but not VTGs (IRGs), Virally-targeted genes but

not IRGs (VTGs) and other genes (Others), and the connectivity

and centrality of them were calculated, which shows that

IRG&VTGs have more links and are more centrally located in

the network than non-IRG&VTGs (Figure S7; Wilcoxon rank

sum test, P < 0.001), and in a time-dependent manner

(Figures 4A, B; > 140 Mya, Wilcoxon rank sum test, P < 0.01).

Additionally, compared to non-immune-related genes, we found

that immune-related genes (including IRGs and IRG&VTGs)

gradually evolved broader expression patterns (Figure 4C; > 140

Mya, Wilcoxon rank sum test, P < 0.001).

Given the observation that new genes experienced a gradual

integration process into PPI network, their roles from the

perspective of links (or interactions) and view of functional

modules was also explored. To do so, the percentage of
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interactions with different phylogenetic age within modules in

HUMPPI-2022 were investigated. Results shows that genes

gradually established links between modules (Figure 4D),

indicating that new PPIs contributed to the formation of

modules, and more interactions appeared between modules

over time and possibly related to the collaboration of

biological processes. Furthermore, to explore whether virus

targets an intra-module or inter-module edge, edges were

classified as viral ly-targeted immune-related edges

(IRE&VTEs), immune-related edges (IREs), virally-targeted

edges (VTEs) and other edges (Others) (Figure 4E) and

compared to each other. Percentage distributions of intra-

module edges for each category of edges show that IRE&VTEs

originated 400 Mya tend to connect modules more (Figure 4F;

hypergeometric test, P < 0.001).
Discussion

The immune system is highly efficient and relies on the

many genes working together to defend pathogens. Theoretical

advances in network science and paralleling advances in high-

throughput methods have provided a framework to interpret

complex phenotypes of human. A high-quality human PPI

network makes it possible to learn the immune responses and

virus-host interactions from the angle of systems biology. Here,

we constructed HUMPPI-2022, a systematic human protein

interactome map with more than 70,000 PPIs of high

biophysical quality (Figure 1 and Table S1). In contrast to

previous studies that focused on limited viruses (37, 73) or

isolated states of host factors (74), the network we constructed,

combined with IRGs and VTGs, not only makes it possible to

understand the molecular mechanism of the immune response

and viral pathogenesis, but also provides a unique angle to study

the evolutionary pattern of the immune system.

First of all, network topologies for IRGs were analyzed, with

most IRGs as hubs and located in the center of the network

(Figures 2B, C). Interestingly, the lower graph assortativity and a

greater number of neighborhoods enriched GO terms of the

IRGs (Figures 2E, F) indicate that the IRGs would interact with

other types of genes. According to the statistics of the number of

IRGs contained in modules, it was found that only 1.06% of

modules enriched with IRGs (Figure 2H), which further proved

that IRGs were involved in diverse biological processes. Since the

network centrality (75) and tissue expression patterns at mRNA

expression level (76) can reflect the acquirement of pleiotropic

functions, here we found immune-related genes, including IRGs

and IRG&VTGs, gradually evolved into a broader expression

patterns (Figure 4C), indicating that immune-related genes

gradually acquired pleiotropic functions.

The pan-viral targets are enriched in functions known to be

fundamental in biological processes during viral infection, such

as protein localization, apoptotic process and regulation of gene
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A B

D E
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FIGURE 3

Topological and functional characteristics of virally-targeted human genes. (A) Degree (upper) and eigenvector centrality (bottom) of VTGs. The
red dots and the corresponding boxes represent the observed values and the simulated distributions using the bootstrapping method,
respectively. DENV-2, Dengue virus 2; EBOV, Ebola virus; EBV, Epstein-Barr virus; HAdV, Human adenovirus C; HCMV, Human cytomegalovirus;
HCV, Hepatitis C virus; HHV-1, Human herpesvirus 1; HIV-1, Human immunodeficiency virus 1; HPV-5, HPV-6b, HPV-8, HPV-9, HPV-11, HPV-
16, HPV-18, HPV-31 and HPV-33, Human papillomavirus 5, 6b, 8, 9, 11, 16, 18, 31 and 33; HRSV, Human respiratory syncytial virus; H1N1, H3N2
and H5N1, Influenza A H1N1, H3N2 and H5N1 virus; KSHV, Kaposi’s sarcoma-associated herpesvirus; LCMV, Lymphocytic choriomeningitis virus;
MV, Measles virus; MERS-CoV, Middle East respiratory syndrome coronavirus; SARS-CoV-1, severe acute respiratory syndrome coronavirus 1;
SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; VACV, Vaccinia virus; ZIKV, Zika virus. (B) Degree (left) and eigenvector centrality
(right) distributions of specific- and pan-viral targets. (C) Functional enrichment analysis of pan-viral targets. (D) Number (left), degree (middle)
and eigenvector centrality (right) of three coronaviruses targeted host genes. The red dots and the corresponding boxes represent the observed
values and the simulated distributions using the bootstrapping method, respectively. Pan, pan-viral genes targeted by at least one coronavirus;
Pan_excl_CoV, pan-viral genes not targeted by coronavirus; CoV & Others, host genes targeted by at least one coronavirus and at least one
other virus; CoV-pan, host genes only targeted by all three coronaviruses; SARS-CoV-2 & SARS-CoV-1, SARS-CoV-2 & MERS-CoV and SARS-
CoV-1 & MERS-CoV, three coronaviral pairs of targeted host genes; SARS-CoV-2, SARS-CoV-1 and MERS-CoV, specifically targeted host genes
for each coronavirus. (E) Functional domain number of three coronaviruses targeted host genes. ***P-value < 0.001, **P-value < 0.01,
*P-value < 0.05, ns, not significantly different.
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expression (Figure 3C). However, these pan-viral targets are

hardly enriched in immune-related functions. And specific

targets of SARS-CoV-2 were not enriched in any IR processes

even they were significantly enriched in IRGs and not enriched

in any cellular structures (Figure 3D and Table S6). This finding

suggests that viruses target immune components in diverse ways,

possibly is a result of different adaptive strategies to the selective

pressures from the host. Pavel et al. (77) assumed that the

physically interacting proteins are host first responders to

SARS-CoV-2 infection, and differentially expressed genes

enriched in immune system related pathways are downstream

effectors of host response. In this study, we also explored the

influence of pathogens on host pathways at the module level, and

found seven VTMs are involved in IR processes (Figure S5A),

such as SARS-CoV-2 non-structural protein 16 (NSP16)

targeting module #43 (Figure S5B), which is the only module

enriched with SARS-CoV-2 specific targets and related to NF-kB
signaling pathway. With the development of high-throughput

technology and computational tool, a complete human

interactome will provide us with a powerful way to interpret

the infectious immune network in a perspective of gene modules.
Frontiers in Immunology 09
The emergence of new genes is one of the most important

factors in genomic evolution and genetic differences between

species (78). The origin of new genes is a highly dynamic

process. A previous study found that new genes “born” at a

specific evolutionary node and continuously integrated into

the original gene network at a rapid rate and gradually

occupied a central position in the network, suggesting they

may be related to speciation or adaptation evolution (76).

Here, we found that IRG&VTGs occupied the core position of

the network with the fastest rate in evolution (Figures 4A, B),

indicating that the immune system may evolve and become

essential in the arms race with pathogens. On the other hand,

new genes tend to form functional modules with similar

functional genes in the early stage (Figure 4D). As time

goes by, genes will gradually interact with other modules,

and eventually form a module associated network of

cooperation among different functions (Figure 4D). Viruses

tend to influence links between modules (Figure 4F),

so we hypothesize that viruses achieve immune evasion

by disrupting the cooperation between functionally

important modules.
A B

D E F

C

FIGURE 4

Evolutionary pattern of genes and edges related to their divergence times. (A–C) Distribution of PPI network degree, eigenvector centrality and
tissue expression specificity for four categories of genes from different phylogenetic branches. Virally-targeted immune-related genes
(IRG&VTGs), immune-related genes (IRGs), Virally-targeted genes (VTGs) and other genes (Others) are highlighted in red, cyan, yellow and grey,
respectively. (D) Evolutionary pattern of edges related to their divergence times. (E) Schematic diagram of four categories of edges. Virally-
targeted immune-related edges (IRE&VTEs), immune-related edges (IREs), virally-targeted edges (VTEs) and other edges (Others) are highlighted
in red, cyan, yellow and grey, respectively. (F) Evolutionary pattern of four categories of edges related to their divergence times. IRE&VTEs, IREs,
VTEs and Others are highlighted in red, cyan, yellow and grey, respectively. The divergence time of each gene age group is assigned as the
middle time point for each branch. The oldest branch (branch 0) is arbitrarily set as 500 Mya. *** P-value < 0.001, ** P-value < 0.01.
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Although HUMPPI-2022 help to expand our knowledge of

human immune system and viral targets, our understanding of

the interactome remains incomplete. First of all, more high-

quality interaction data are needed to improve the

comprehensive map. Secondly, the interactome map is a

highly dynamic process, with nodes and their links changing

in different tissues (79), cell lines (15) and periods of viral

infection, which greatly increase the difficulty of the

construction and analysis of the interaction network. The

identification of spatiotemporal dynamics of interactions not

only expands the interactome, but also helps us to better

understand the relationship between genotype and

phenotype. Thirdly, only the viral targeting on PPI network

was analyzed, while the complex phenotypes reflect changes at

different network layers (gene co-expression network, PPI

network, metabolic network, transcriptional regulatory

network, etc.). So, the combination of multiple context-

specific network will be useful to fully understand the

immune response and virus-host interaction, and helpful for

developing precise prevention and treatment strategies in

the future.
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