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1  | INTRODUC TION

The Wnt/β-catenin signaling pathway (also called the canonical 
Wnt signaling pathway) was originally recognized as an essential 
pathway for embryonic development and adult tissue homeostasis. 
Importantly, aberration of Wnt/β-catenin signaling was later found in 
a wide range of cancers. Recent analysis of genetic alterations using 

more than 9000 tumors revealed oncogenic pathway signatures in 
various tumor types.1 The frequency of activation of the Wnt/β-
catenin signaling pathway varies widely, depending on the tumor 
type and/or subtype, and its high frequency is particularly observed 
in colorectal tumors. In addition to colorectal cancer, high frequen-
cies of Wnt/β-catenin pathway activation were observed in uterine 
corpus endometrial carcinoma carrying microsatellite instability 
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Abstract
Aberrant activation of the Wnt/β-catenin signaling pathway has been observed in a 
wide range of human tumors. Deregulation of the pathway is closely linked to vari-
ous aspects of human carcinogenesis such as cell viability, regulation of cell cycle, 
epithelial-mesenchymal transition, and maintenance of stemness. In addition, recent 
studies have disclosed the involvement of Wnt signaling in immune evasion of tumor 
cells. The accumulation of β-catenin in the nucleus is a common feature of cancer 
cells carrying defects in the pathway, which leads to the continuous activation of 
T-cell factor (TCF)/LEF transcription factors. Consequently, a genetic program is 
switched on, leading to the uncontrolled growth, prolonged survival, and acquisition 
of mesenchymal phenotype. As β-catenin/TCF serves as a signaling hub for the path-
way, β-catenin/TCF-dependent transcriptional activity is a relevant readout of the 
pathway. To date, a wide variety of synthetic TCF/LEF reporters has been developed, 
and high-throughput screening (HTS) using these reporters has made significant con-
tributions to the discovery of Wnt inhibitors. Indeed, HTS led to the identification 
of chemical probes targeting porcupine, a membrane bound O-acyltransferase, and 
CREB-binding protein, a transcriptional coactivator. This review focuses on various 
screening strategies for the discovery of Wnt inhibitors and their mode of action to 
help the creation of new concepts for assay/screening methods.
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(MSI) and DNA polymerase epsilon (POLE) mutation (70%), stomach 
and esophageal cancer carrying MSI and POLE mutation (70%) and 
diffuse large B-cell lymphoma (70%).1 Somatic mutations in various 
components within this pathway, including APC regulator of WNT 
signaling pathway (APC; previous name, adenomatous polyposis 
coli), β-catenin (CTNNB1), transcription factor 7 like 2 (TCF7L2), ring 
finger protein 43 (RNF43), R-spondin (RSPO), and AXIN1, cause its 
aberrant activation. In line with previous reports,2,3 APC mutations 
are observed in approximately 50% of colorectal tumors in 2 curated 
databases of somatic mutations in human cancer (The Catalogue of 
Somatic Mutations in Cancer [https​://cancer.sanger.ac.uk/cosmic] 
and The cBioPortal for Cancer Genomics [https​://www.cbiop​ortal.
org/]). A high frequency of mutations in the CTNNB1 gene has also 
been found in pituitary (41%), soft tissue (36%), and liver tumors 
(21%).

In the Wnt/β-catenin signaling pathway, β-catenin is suppressed 
by a degradation complex consisting of APC, Axin, glycogen syn-
thase kinase-3β, and casein kinase 1α (CK1α). However, dysfunction 
in any of the components of the complex or activating mutations 
in β-catenin itself causes abnormal accumulation of β-catenin in the 
cells. Translocated into the nucleus, β-catenin forms a complex with 
members of the T-cell factor (TCF) family of DNA-binding proteins, 
and consequently leads to transcriptional activation of their target 
genes. These genes, so-called “Wnt target genes”, include protoon-
cogenes, cell cycle regulators, stem cell markers, and negative feed-
back regulators of the Wnt pathway.

To date, there have been a number of proof-of-concept studies 
targeting the Wnt pathway for the treatment of cancer. Using Apc 
shRNA transgenic mice, Dow et al4 showed that restoration of Apc 
could reestablish the control of crypt homeostasis in colorectal hy-
perproliferative polyps and cancer. The capacity for proliferation 
and self-renewal of CML cells carrying activated β-catenin was 
attenuated by the ectopic expression of Axin.5 β-Catenin knock-
down by RNAi significantly suppressed anchorage-independent 
growth and proliferation of liver cancer cells.6 In addition, there 
is a growing body of evidence suggesting that Wnt/β-catenin sig-
naling plays an essential role in the immune system. In metastatic 
melanoma, activation of the Wnt/β-catenin signaling pathway cor-
relates with T cell exclusion.7 Consistent with this view, multiom-
ics analysis revealed that colorectal tumors with biallelic loss of 
the APC gene or nuclear accumulation of β-catenin protein were 
negatively correlated with tumor-infiltrating lymphocytes.8 These 
reports suggested that activated Wnt signaling mediates cancer 
immune evasion and resistance to immunotherapies. Thus, block-
ing the Wnt pathway is an attractive approach to improve cancer 
immunotherapy. These data have prompted a search for chemi-
cal probes targeting this pathway (hereafter referred to as Wnt 
inhibitors). High-throughput screening (HTS) using a wide variety 
of assays has made significant contributions to the discovery of 
Wnt inhibitors. Indeed, HTS successfully identified small molecule 
compounds targeting porcupine and CREB-binding protein (CBP), 
and these compounds have already entered clinical trials. The es-
tablishment of a well-designed HTS system is crucial to identify 

Wnt inhibitor. Here, we comprehensively review Wnt inhibitors, 
and discuss the strategies involved in their identification.

2  | DE VELOPMENT OF REPORTER A SSAYS 
OF THE WNT/β- C ATENIN SIGNALING 
PATHWAY

β-Catenin has been suggested to bind DNA mainly through the 
TCF/lymphoid enhancer-binding factor (LEF) transcription factors 
in mammals9 and Drosophila.10 The first observational evidence 
linking TCF/LEF directly to Wnt signaling resulted from yeast 2 hy-
brid screening using TCF111 or β-catenin12 as bait. Another group 
also reported a physical interaction between β-catenin and LEF1.13 
In addition, these studies disclosed a responsible domain for the 
interaction, known as a β-catenin binding domain, in the amino 
terminus of the TCF/LEF protein. Deletion of the β-catenin bind-
ing domain produces a dominant negative form (dnTCF), which can 
outcompete with WT TCF/LEF for binding to the target sites.14 As 
dnTCF7L2 abrogated the recruitment of β-catenin to the target 
chromatin regions in LS174T cells, TCF/LEF factors play a major role 
in the recruitment of β-catenin, at least in colorectal cancer cells.9 
However, in the absence of TCF/LEF factors, β-catenin is recruited 
through other transcription factors in HEK293T cells.15 As TCF/LEF 
transcription factors act as major end-point mediators of this path-
way, their DNA binding motif (Figure 1A) has been used as a faithful 
reporter for monitoring the Wnt/β-catenin signaling activity.

The TCF/LEF reporter plasmid originally incorporated 7 cop-
ies of approximately 30 bp of the CD3E enhancer region upstream 
of a minimal thymidine kinase promoter, and the chlorampheni-
col acetyltransferase gene (CAT) as a reporter (pMW567). As neg-
ative control, a mutant plasmid was prepared in which the WT 
TCF/LEF-binding motif AACAAAG was replaced by CCGCGGT 
(pMW56Sac7).16 TOPFlash, another synthetic TCF/LEF reporter 
plasmid containing tandemly repeated TCF motifs upstream of 
a minimal c-fos promoter and the versatile luciferase gene as a 
reporter, and FOPFlash, the negative control plasmid, were con-
structed (Figure 1B).17,18 As c-fos is a transcriptional target of 
Wnt/β-catenin signaling19 and might affect the β-catenin-depen-
dent transactivation,20 thymidine kinase promoter-driven reporter 
plasmids have been used for this purpose. SuperTOPFlash, a plas-
mid with an increased number of TCF motifs, is currently avail-
able.21 Although use of the transgenic TCF reporters to detect 
Wnt/β-catenin signaling in vivo remains controversial,22 cell-based 
assays with TOPFlash or SuperTOPFlash are useful strategies for 
monitoring the activity of the Wnt signal and the evaluation of 
chemicals that could affect the activity.

Intriguingly, identification of genes negatively regulated by the 
β-catenin/TCF complex led to the development of a new reporter 
plasmid (Figure 1B).23 This plasmid contains 8 copies of the pro-
moter region of histidine ammonia-lyase (HAL) upstream of the lucif-
erase gene. Unlike TOPFlash, the HAL reporter activity is inversely 
correlated with Wnt/β-catenin signaling activity (Figure 1C). The 

https://cancer.sanger.ac.uk/cosmic
https://www.cbioportal.org/
https://www.cbioportal.org/
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combination of HAL reporter and TOPFlash plasmids could serve as 
an effective screening system for the discovery of new Wnt inhibitors.

3  | APPLIC ATION OF REPORTER A SSAY 
FOR HTS

Reporter assays using synthetic promoters containing multiple 
copies of a responsive element have been applied for HTS of small 
molecules and natural compounds affecting transcription and/or 
cellular signaling pathways. Because sensitivity, specificity, robust-
ness, technical simplicity, and cost effectiveness are required for 
HTS, various strategies have been devised to meet the conditions. 

The Z′-factor has been widely accepted for quality control of the 
HTS assay.24 An acceptable assay for HTS usually requires a Z′-value 
more than 0.5. Reportedly, the Z′-factor of a luciferase assay using 
HEK293 cells stably expressing TCF reporter and LiCl for the activa-
tion of the reporter was as high as 0.89.25 Regarding the luciferase 
assay using fly cell-optimized TCF reporter and Drosophila imaginal 
disc-derived clone 8 cells, the Z′-factor was 0.77.26 In the reciprocal 
assay, the Z′-factors for TOPFlash and the HAL promoter luciferase 
assays were 0.69 and 0.79, respectively.23

Bioluminescent assays have been used in HTS as a major strategy, 
due to their high sensitivity, broad linearity, and robustness to chemi-
cals.27 Firefly luciferase (Photinus pyralis) and Renilla luciferase (Renilla 
reniformis) are commonly used as reporter genes. Firefly luciferase is 

F I G U R E  1   A, Position frequency matrix of the T-cell factor (TCF) motif was obtained from the JASPAR database (http://jaspar.gener​
eg.net). B, TOPFlash consists of tandemly repeated TCF motifs (Wnt response elements [WREs]) upstream of a minimal promoter that 
drives luciferase gene expression. FOPFlash has mutated motifs (mWREs) and is used to normalize the TOPFlash activity. HAL reporter was 
developed as a luciferase reporter driven by 8 copies of the promoter of histidine ammonia-lyase (HAL). Transcription factor (TF) that regulates 
the activity of HAL promoter is under investigation. C, These reporter plasmids were designed for monitoring the activity of Wnt/β-catenin 
pathway in cultured cells. When the pathway is inhibited, TOPFlash and HAL reporter activities are decreased and increased, respectively

http://jaspar.genereg.net
http://jaspar.genereg.net
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an enzyme of 61 kDa that catalyzes oxidation of a substrate (luciferin) 
in the presence of ATP and O2. This chemical reaction results in an 
emission of a yellow-green light with a spectral maximum of 560 nm.27 
Renilla luciferase, a 36 kDa enzyme, is often used as an internal control 
in the dual luciferase format. Genetically engineered luciferase genes 
have improved assay sensitivity by increasing intensity of the lumines-
cent signal and enhanced response dynamics by reducing expression 
lifetime. NanoLuc luciferase has emerged as a potential alternative to 
firefly/Renilla luciferase for reporter gene assay because it showed an 
approximately 100-fold greater activity than that of firefly or Renilla 
luciferase.28 Importantly, since NanoLuc is a relatively small protein 
(19 kDa) it could have less effect on nonspecific chemical binding.

4  | CELL-BA SED REPORTER A SSAY FOR 
SCREENING COMPOUNDS IN LIBR ARIES

To date, cell-based HTS with TCF/LEF reporter plasmids have been 
frequently utilized for the identification of Wnt inhibitors. One 
of the greatest advantages in using secreted alkaline phosphate 

(SEAP) as a reporter is that there is no need to lyse the cells to 
measure its levels, because it is secreted directly into the culture 
medium. For example, screening of a library of 11 600 compounds 
using a SEAP reporter driven by Wnt response elements (WREs) 
identified FH535 and FH615 that suppressed Wnt/β-catenin sign-
aling.29 However, we might struggle with a high background in the 
assay because mammalian cells have endogenous alkaline phos-
phatase activity.

An alternative approach is the use of fluorescent proteins as a 
reporter. Waaler et al30 prepared HEK293 cells stably expressing 
GFP reporter under the control of a synthetic TCF-responsive pro-
moter. They screened 37  000 compounds using the reporter cells 
after activation with Wnt3a-conditioned medium and identified 77 
compounds as primary hits by image analysis. Subsequent analysis 
identified 2 potent inhibitors, namely JW67 and JW74. Fluorescence-
based reporter gene assays are cost effective because the addition of 
substrate is not required for its activity. However, these assays tend 
to have higher backgrounds, leading to the low signal-to-background 
ratio. Details about the property of biological reporters are described 
elsewhere.31

F I G U R E  2   Pharmacological manipulation of the activity of Wnt/β-catenin signaling pathway. High-throughput screening identified 
chemical probes that target tankyrase (TNKS), porcupine (Porcn), casein kinase 1α (CK1α), β-catenin-TCF interaction, transcriptional 
co-activators of TCF, and β-catenin degradation (see Table 1 for more details and references). β-TrCP, β-transducin repeat containing E3 
ubiquitin protein ligase; APC, APC regulator of WNT signaling pathway (adenomatous polyposis coli); CBP, CREB-binding protein; CK1, 
casein kinase-1; Dvl, Dishevelled segment polarity protein; GSK-3, glycogen synthase kinase-3; LEF, lymphoid enhancer binding factor; LRP, 
LDL receptor related protein; TCF7L2, transcription factor 7 like 2; TNKS, tankyrase
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5  | WNT INHIBITORS DISCOVERED BY 
HTS

Over the past 2 decades, a wide range of HTS systems have been 
developed and applied for the screening of Wnt inhibitors. The in-
hibitors found in HTS are divided into 6 groups according to their 
mode of action: (i) inhibition of tankyrase (TNKS); (ii) inhibition of 
porcupine; (iii) activation of CK1α; (iv) inhibition of the β-catenin-TCF 
interaction; (v) inhibition of transcriptional co-activators; and (vi) in-
duction of β-catenin degradation (Figure 2). Their chemical struc-
tures, assay methods, compound libraries, and four physicochemical 
parameters of the Lipinski's rule of five (RO5)32 are listed in Table 1. 
The RO5 is a rule of thumb to evaluate drug-likeness, and defines 4 
parameter ranges (molecular weight, 500 or less; calculated octanol/
water partition coefficient value, 5 or less; H-bond donors, 5 or less; 
and H-bond acceptors, 10 or less).

6  | TANK YR A SE INHIBITORS

Using a cell-based SuperTOPFlash assay, Chen et al33 screened a 
~200  000 synthetic chemical library to identify Wnt inhibitors. 
Secondary tests were carried out to select specific Wnt inhibi-
tors from the first hit compounds, such as dose-dependent test 
(cytotoxicity), firefly/Gaussia luciferase assays (firefly luciferase 
inhibitor/exocytosis), and Notch/Hedgehog reporter assays (stem 
cell-associated signal transduction pathways). This screening strat-
egy identified 5 inhibitors of Wnt response (IWR) compounds that 
abrogated destruction of Axin proteins. Axin is an essential scaffold 
protein required for assembly of the β-catenin destruction complex. 
Degradation of Axin is controlled through its poly-ADP-ribosylation 
(PARsylation) by TNKS.34 Subsequently, IWR compounds turned out 
to be TNKS inhibitors (Figure 3A). Soon after, Huang et al34 discov-
ered another Axin stabilizer, XAV939 (Figure 3B), that directly binds 
TNKS and inhibits its PARsylation activity. An additional phenotype-
based assay using zebrafish fin corroborated the inhibitory effect 
of Wnt activity by IWR and XAV939. Other TNKS inhibitors such as 
JW74,30 WIKI4,35 and K-75636 have also been found by cell-based 
HTS.

7  | PORCUPINE INHIBITORS

One of the possible therapeutic strategies for targeting Wnt-
driven cancers is to block the production of Wnt ligands. Porcupine 
(PORCN), a membrane-bound O-acyltransferase, was found to cat-
alyze the palmitoylation of Wnt ligands, which is an essential step 
in the processing of Wnt into active ligands.37 IWP-2, one of the 
inhibitors of Wnt production (IWPs), directly binds to PORCN, and 
inhibits the function of PORCN.33 Another potent PORCN inhibi-
tor, LGK974, was discovered by the screening of ~2 400 000 com-
pounds using a TCF/LEF reporter assay, where Wnt3a-secreting 
cells were cocultured with mouse Leydig TM3 cells expressing 

SuperTOPFlash for the activation of the Wnt pathway.38 An in vivo 
study reported that LGK974 diminished/eradicated tumors carry-
ing RSPO fusions from the intestinal mucosa without effects on 
normal intestinal crypts.39 In addition, LGK974 prevented prolif-
eration and induced differentiation of RNF43-mutant pancreatic 
adenocarcinoma in xenograft models.40 Currently, a phase I clinical 
trial (Clinicaltrials.gov ID NCT01351103) of LGK974 for patients 
with malignancies of histological origin carrying genetic alterations 
upstream in the Wnt signaling pathway (eg, RNF43 mutation or 
RSPO fusion) is underway.

8  | C A SEIN KINA SE-1α  AC TIVATOR

To explore chemical probes that inhibit the turnover of Axin and 
promote the degradation of β-catenin, Thorne et al41 developed an 
assay system using extract of Xenopus eggs expressing β-catenin-
firefly luciferase and Axin-Renilla luciferase fusion proteins mixed 
with a soluble form of LRP6 for the activation of the Wnt signal-
ing. This assay was designed to analyze the reciprocal stability of 
β-catenin and Axin, thus Wnt inhibitors should decrease firefly lu-
ciferase (β-catenin) and increase Renilla luciferase (Axin). As Xenopus 
egg extracts are transcriptionally and translationally inactive, hit 
compounds are expected to modulate Wnt signaling through post-
translational events. In addition, compounds that target energy 
metabolism (reduce both reporter activities) and general protein 
degradation (increase both reporter activities) would be avoided 
from the first hits. By the screening of an FDA-approved drug li-
brary, they identified pyrvinium pamoate, a CK1α activator, previ-
ously used in the treatment of pinworm infection. However, this 
effect was not confirmed by other studies.42 Details about cytotoxic 
effects and molecular targets of pyrvinium pamoate are described 
elsewhere (http://www.oncm.org/v03p0​001.htm).

9  | INHIBITORS OF INTER AC TION 
BET WEEN β- C ATENIN AND TCF

Activating mutations in β-catenin are frequently observed in several 
types of cancer, such as hepatocellular carcinoma,43 where CTNNB1 
mutations disrupt the phosphorylation and degradation of the 
β-catenin protein. In this case, inhibition of the upstream components 
is unable to induce the degradation of β-catenin. Thus, inhibition of the 
interaction of TCF/LEF with β-catenin or the coactivators is a rational 
and straightforward approach. To identify small molecules that disrupt 
the interaction, Lepourcelet et al44 developed ELISA-based HTS using 
β-catenin and GST-fused TCF7L2 recombinant proteins. Consequently, 
they obtained 6 hits including PKF115-584 and CGP049090 from a 
library of 7000 natural compounds. Two other groups indepen-
dently adopted AlphaScreen (Amplified Luminescent Proximity 
Homogeneous Assay), a method for detecting intramolecular binding, 
for the discovery of inhibitors of the β-catenin-TCF interaction, and 
discovered LF3 and ZINC02092116.45,46

http://www.oncm.org/v03p0001.htm
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Cell-based approaches have also discovered small molecule 
compounds iCRT, NC043, and niclosamide that target the β-caten-
in-TCF interaction.26,47,48 For example, niclosamide was identified 
by HTS with 1280 pharmacologically active compounds in HCT116 
cells expressing luciferase reporter driven by the promoter of the 
S1004A4 gene, a transcriptional target of the Wnt/β-catenin path-
way.47 Gonsalves et al identified iCRT3, iCRT4, and iCRT14 by 
screening 14 977 compounds using fly cell-optimized TCF reporter 
and Drosophila imaginal disc-derived clone 8 cells that had silenced 
dAxin expression for the activation of the reporter.26 According to 
crystallographic analysis, the TCF7L2-binding region on β-catenin 
overlaps with the binding regions for APC and E-cadherin49,50; this 
might become a potential obstacle to develop selective Wnt inhib-
itor. Nevertheless, further characterization of iCRTs revealed that 
these compounds inhibited β-catenin-TCF interaction, whereas 
they had little or no effect on β-catenin-E-cadherin or β-caten-
in-α-catenin interaction.26 In contrast, PKF222-815, PKF115-584, 
and CGP049090 blocked the interaction of β-catenin with TCF7L2, 
and unfavorably blocked its interaction with APC.44 Increasing the 
specificity of inhibitors targeting the interaction of β-catenin and 
TCF remains a major challenge.

10  | INHIBITORS OF TR ANSCRIPTIONAL 
COAC TIVATORS OF β- C ATENIN

Targeting the coactivators of β-catenin-dependent transcription 
is another strategy for the suppression of aberrant Wnt signal-
ing. Molecular studies have identified a number of coactivators 
that interact with β-catenin (Wnt homepage, http://web.stanf​
ord.edu/group/​nusse​lab/cgi-bin/wnt/prote​in_inter​actions).51-53 
High-throughput screening using TOPFlash assay in APC-mutated 
SW480 colorectal cancer cells identified ICG-001 that targets 
CBP, an interacting protein of β-catenin.54 Intriguingly, treatment 
with ICG-001 suppressed β-catenin/TCF-mediated transcription 
of survivin in HCT116 cells, suggesting that CBP inhibitor can 

block Wnt/β-catenin signaling. In this regard, B-cell lymphoma 9 
(BCL9) and BCL9-like (B9L) might also be targets of the nuclear 
coactivator. Carnosic acid that blocked the binding of β-catenin to 
BCL9 resulted in the inhibition of β-catenin-dependent transcrip-
tion in colorectal cancer cells.55

11  | SMALL MOLECULES THAT PROMOTE 
β- C ATENIN DEGR ADATION

Enzymes such as ubiquitin ligases are associated with β-catenin deg-
radation, and can be an attractive target of small molecule compound. 
Park et al screened 960 bioactive compounds using TOPFlash lucif-
erase assay, and discovered hexachlorophene that promotes β-catenin 
degradation through induction of SIAH-1, an E3 ubiquitin ligase.56 
Recently, another E3 ubiquitin ligase, SHPRH that controls β-catenin 
stability, was also found to be targeted by a small molecule compound. 
Screening of an FDA-approved drug library using SuperTOPFlash lu-
ciferase assay led to the discovery of axitinib, a known inhibitor of 
multireceptor tyrosine kinases, especially vascular endothelial growth 
factor receptors,57 that stabilize SHPRH protein, thereby increasing 
the degradation of β-catenin.58 Another screening of 800 compounds 
using TOPFlash assay identified CGK062 that promotes protein ki-
nase Cα-mediated phosphorylation of β-catenin at Ser33/Ser37.59 
De Robertis et al60 identified SEN461 using TCF/LEF reporter with 
an increased number of WRE and DBTRG.05MG human glioma cells. 
Although SEN461 enhanced the degradation of β-catenin through the 
stabilization of Axin, it showed limited effect on auto-PARsylation and 
stabilization of TNKS compared with a TNKS inhibitor, XAV939, sug-
gesting that TNKS are not the pharmacological target of SEN461. In 
addition, the HTS using a cell-based TOPFlash assay identified a set 
of small molecules including MSAB61 and KY1220.62 It was reported 
that MSAB and KY1220 physically interact with the Armadillo repeat 
region of β-catenin and the regulator of G-protein signaling domain of 
Axin, respectively. These interactions might promote the formation of 
β-catenin destruction complex.

F I G U R E  3   Crystal structures of 
tankyrase-1 (TNKS1) in complex with 
2 small molecule compounds, IWR1 
(A) and XAV939 (B). Data taken from 
RCSB Protein Data Bank (IWR1, PDB 
ID:4OA7 and XAV939, PDB ID:3UH4) 
and visualized using PyMOL molecular 
graphics software (https​://pymol.org/2/). 
TNKS1, IWR1, and XAV939 are colored by 
gray, magenta, and green, respectively

http://web.stanford.edu/group/nusselab/cgi-bin/wnt/protein_interactions
http://web.stanford.edu/group/nusselab/cgi-bin/wnt/protein_interactions
https://pymol.org/2/
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12  | SMALL MOLECULES THAT AFFEC T 
β- C ATENIN FUNC TION OR E XPRESSION

Development of novel screening strategies has discovered different 
types of Wnt inhibitors. Nishiya et al63 explored compounds that sup-
press the chemically induced eyeless phenotype in zebrafish embryos. 
This phenotypic screening resulted in the discovery of GGTI-286, and 
they found that GGTI-286 reduces nuclear translocation of β-catenin 
through the inhibition of geranylgeranyltransferase (GGTase). It has 
been reported that GGTase catalyzes the addition of the geranylgera-
nyl group to Rac1 protein that is required for its membrane association 
and biological activity.64 Rac1 activates JNK2 that in turn phospho-
rylates β-catenin at Ser191 and regulates its nuclear translocation,65 
suggesting that the reduced nuclear translocation of β-catenin by 
GGTI-286 might be associated with its interference with Rac1 protein. 
A reciprocal reporter assay using TOPFlash coupled with HAL reporter 
led to a decrease in the number of false positives, and identified bre-
feldin A (BFA), a fungal metabolite, that suppresses the expression of 
β-catenin.23 Although BFA was reported to inhibit protein secretion 
by blocking transport from the endoplasmic reticulum to the Golgi,66 
the precise mechanism(s) underlying the reduction in β-catenin by BFA 
needs further investigation.

13  | CONCLUSIONS

The discovery of Wnt inhibitors should provide potential benefits 
for cancer therapy. Although systematic unbiased screenings of the 
pathway have helped the identification of Wnt inhibitors, much of 
the underlying mechanisms remain to be elucidated. The target iden-
tification of small molecules from unbiased HTS is a challenge to be 
resolved.
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