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Over 50% of diffuse large B-cell lymphoma (DLBCL) patients are diagnosed at an
advanced stage. Although there are a few therapeutic strategies for DLBCL, most of
them are more effective in limited-stage cancer patients. The prognosis of patients with
advanced-stage DLBCL is usually poor with frequent recurrence and metastasis. In this
study, we aimed to identify gene expression and network differences between limited- and
advanced-stage DLBCL patients, with the goal of identifying potential agents that could be
used to relieve the severity of DLBCL. Specifically, RNA sequencing data of DLBCL
patients at different clinical stages were collected from the cancer genome atlas (TCGA).
Differentially expressed genes were identified using DESeq2, and then, weighted gene
correlation network analysis (WGCNA) and differential module analysis were performed to
find variations between different stages. In addition, important genes were extracted by
key driver analysis, and potential agents for DLBCL were identified according to gene-
expression perturbations and the Crowd Extracted Expression of Differential Signatures
(CREEDS) drug signature database. As a result, 20 up-regulated and 73 down-regulated
genes were identified and 79 gene co-expression modules were found using WGCNA,
among which, the thistle1 module was highly related to the clinical stage of DLBCL. KEGG
pathway and GO enrichment analyses of genes in the thistle1 module indicated that
DLBCL progression was mainly related to the NOD-like receptor signaling pathway,
neutrophil activation, secretory granule membrane, and carboxylic acid binding. A total
of 47 key drivers were identified through key driver analysis with 11 up-regulated key driver
genes and 36 down-regulated key diver genes in advanced-stage DLBCL patients. Five
genes (MMP1, RAB6C, ACCSL, RGS21 and MOCOS) appeared as hub genes, being
closely related to the occurrence and development of DLBCL. Finally, both differentially
expressed genes and key driver genes were subjected to CREEDS analysis, and 10
potential agents were predicted to have the potential for application in advanced-stage
DLBCL patients. In conclusion, we propose a novel pipeline to utilize perturbed
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gene-expression signatures during DLBCL progression for identifying agents, and we
successfully utilized this approach to generate a list of promising compounds.

Keywords: diffuse large B-cell lymphoma, drug repurposing, differentially expressed genes, differential module
analysis, key driver analysis

INTRODUCTION

Diffuse large B-cell lymphoma (DLBCL) is the most commonly
diagnosed non-Hodgkin lymphoma (NHL), representing
approximately 25% of new NHL cases each year in the
United States (Liu and Barta, 2019). In practice, about one half
of DLBCL patients presented with advanced-stage disease (Prakash
et al., 2012), featuring bulky tumor burden and poor patient response
to treatment. According to published data, advanced-stage DLBCL
(stage I/II and stage III/IV) may be both biologically and clinically
different from limited-stage DLBCL cases (stage I and II). For
example, advanced-stage DLBCL patients were more likely to
express higher levels of CD30 (Rodrigues-Fernandes et al., 2021)
and CD25 (Oka et al., 2020), both of which are biomarkers of B-cell
activation. In addition, advanced-stage DLBCL was also shown to be
associated with a higher immune-inflammation index (Wang et al.,
2021) and an increased level of lymphopenia at diagnosis (Shin et al.,
2020), highlighting its deteriorating immune regulation. Green and
Johnson et al. reported there were a few biological factors known to
adversely impact the prognosis of DLBCL patients, including the
cell-of-origin, co-expression of MYC/BCL2 and co-occurrence of
MYC and BCL2/BCL6 rearrangements failed to predict poorer
prognosis in limited stage DLBCL(Green et al., 2012; Johnson
et al., 2012). Ajay, Major et al reported that stage I and II
DLBCL cases had a slightly increased risk of secondary primary
malignancies after DLBCL treatment in long-term follow-up (>20
years) (Major et al., 2020). Comparing with limited stage DLBCL,
advanced-stage DLBCL patients were more likely to benefit from
intensified radiotherapy (Hoiland et al., 2020; Freeman et al., 2021).
Also, the pattern of late disease relapses observed in advanced stage
DLBCL cases was different from that of limited-stage cases, further
corroborating that limited and advanced stage DLBCL were
biologically heterogeneous (Hoiland et al., 2020). All of these
observations prompted us to treat advanced- and limited-stage
DLBCL with different strategies, better tailoring for their specific
biological and clinical characteristics.

However, there is limited knowledge regarding the genomic
and transcriptomic differences between limited- and advanced-
stage DLBCL. Two previous large analyses exploring the genetic
landscape of DLBCL were not intended to compare the limited
and advanced stages of the disease (Reddy et al., 2017; Schmitz
et al., 2018). Moreover, at the single gene or single locus level,
advanced- and limited-stage DLBCL may also be different in
terms of their altered gene regulation and regulatory/co-
expression networks, which was confirmed in other clinical
comparisons such as cancer vs normal tissue (Zhang et al.,
2018; Xu et al., 2019) and young vs old (Yang et al., 2015;
Yang et al., 2016b).

Although frontline chemoimmunotherapies have been shown
to cure up to 60% of patients with advanced-stage disease, with a

clear plateau in progression-free survival (PFS) and rare relapses
beyond 5 years (Coiffier et al., 2010), there still is a fraction of
patients who are subject to relapse and have tumors that are
refractory to treatment (Coiffier et al., 2010), highlighting the
heterogeneity of advanced DLBCL. Thus, it is critical to develop
new drugs for improving the treatment of advanced-stage
DLBCL, so that it might be effectively treated by using
existing treatment strategies as limited-stage DLBCL patients
are. However, the development of a novel drug is usually
costly and time-consuming (Liu et al., 2020; Yang et al., 2020)
and highlights the need for effective drug repositioning strategies.
There are many computer-based drug repositioningmethods that
have been used for cancers (Xu et al., 2019; Liu et al., 2020) and
other diseases, such as Coronavirus disease 2019 (COVID-19)
(Tang et al., 2020; Li et al., 2021).

In this study, we propose a new strategy for identifying new
agents that have the potential to specifically target advanced-stage
DLBCL. In general, we retrieved advanced-stage DLBCL-specific
expressed genes by comparing the transcriptome of advanced-
stage disease with that of limited-stage DLBCL. These
differentially expressed genes (DEGs) were then subjected to
weighted gene correlation network analysis (WGCNA) to
discover the co-expression modules that may contribute to the
progression of this disease. Finally, potential personal agents were
obtained from the Crowd Extracted Expression of Differential
Signatures (CREEDS) based on the down-regulation and up-
regulation of genes (see Materials and methods for details). We
aimed to specifically reveal the transcriptomic scenario occurring
in advanced-stage DLBCL and to elucidate the genes that were
most likely contributing to disease progression. Based on this
knowledge, we then identified some potential agents for the
treatment of advanced-stage DLBCL in future clinical practice.

MATERIALS AND METHODS

Data Collection
RNA sequencing data from patients with DLBCL cancer were
collected from the cancer genome atlas (TCGA). Based on the
imaging results, including computed tomography (CT) scans,
magnetic resonance imaging (MRI) or positron emission
tomography (PET) scanning, patients were divided into four
stages (I–IV) according to the Ann Arbor system (Heidelberg,
2020).

Differential Gene Expression Analysis
Between Samples at Different Stages
An expression matrix of 42 patients and their group information
(stage I/II or III/IV) were used as the input for DEG discovery.
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DEGs between samples at stage I/II and stage III/IV were
obtained using DESeq2 (Love et al., 2014) using log2 |fold
change| S 1 and a p value & 0.05.

Survival Analysis
After identifying DEGs, we performed survival analysis on these
genes for all of the patients. Next, Kaplan-Meier (Bland and
Altman, 1998) survival estimation was used for all differentially
expressed genes to identify genes correlated with overall survival.
Kaplan- Meier arranged the survival time in descending order, at
each death node, it estimated the proportion of the observed
values that survived for a certain period of time under the same
circumstances, which could intuitively show the survival and
mortality rates of two or more groups. The R packages survival
and survminer were used for survival analysis and curve plotting,
respectively.

Weighted Gene Correlation Network
Analysis
The WGCNA package in R (Peter and Horvath, 2008) was used
to construct a co-expression network. For this step, we randomly
picked 400 genes from the stage III/IV patients to generate a
topological overlap matrix since the gene number was too large to
perform this analysis using all of the genes. For the constructed
gene network to conform to a scale-free distribution, a soft
threshold was used to select the appropriate β after removing
outliers. Finally, the soft threshold was set to 10. Then, genes were
clustered by hierarchical clustering, and the tree was cut into
different modules using a dynamic cutting algorithm, in which
genes were highly correlated. Furthermore, we calculated the
Pearson correlation coefficient between different modules and
clinical stage and used this Pearson correlation coefficient to
judge the relationship between the module and clinical stage.
Finally, significant modules closely related to the occurrence and
development of DLBCL were identified for follow-up analysis.

Functional and Pathway Enrichment
Analyses
KEGG pathway (Ogata et al., 1999) analysis and Gene Ontology
(GO) analysis (Botstein et al., 2000), including biological process
(BP), cellular composition (CC) and molecular function (MF),
were performed on the genes in the module identified by
WGCNA to understand the biological significance of the
progression of DLBCL. The R package clusterProfiler (Yu
et al., 2012) was used in the process of enrichment analysis to
analyze the functions of the genes from these modules.

Key Driver Analysis
For key driver analysis, we used up- or down-regulated genes
separately as inputs to identify key drivers. Key driver analysis
(Yang et al., 2016a) (KDA) was used to identify hub genes, and
protein actions v11.0 was used as a reference protein–protein
interaction network (Szklarczyk et al., 2021). Parameters were set
as follows: nlayerExpansion was set to 1, nlayerSearch was set to 6
and enrichedNodesPercentCut was set to −1. A p value_whole&

0.05 was used to filter out key drivers. The hub genes were of great
significance in terms of the occurrence and development of
DLBCL.

Drug Discovery
CREEDS includes single gene perturbation signatures, as well as
disease and drug perturbation signatures, and it can be used to
identify the relationship between gene, disease and drug (Gillies
et al., 2016). CREEDS is composed of single-drug perturbation-
induced gene expression signatures. Utilizing this database,
agents that can reverse the behavior of up/down-regulated
genes can be discovered, and the best matched agents are
reported. We used this tool for drug discovery for advanced-
stage DLBCL. In this work, we combined differentially expressed
genes and key driver genes as a new gene set to discover new
agents related to advanced-stage DLBCL.

RESULTS

A Brief Study Design of Drug Repurposing
For the purpose of specifically developing new agents that could be
utilized in combination with R- CHOP backbones to treat
advanced stage DLBCL patients, we proposed a new method of
drug repurposing based on gene expression and network
perturbation (Figure 1). In order to identify key factors for
DLBCL progression, WGCNA and DEG, differential module
(DM) and key driver (KD) analyses were performed. Then, the
key factors of DLBCL progression and drug perturbation signature

FIGURE 1 | A brief study design for drug repurposing, including these
major steps: 1) Download and organize the RNA-seq data and clinical
information of DLBCL from TCGA; 2) Got key factors of DLBCL progression
through DEG analysis, key driver analysis and WGCNA analysis; 3)
Potential drug prediction through CREEDs; 4) Literature confirmation.
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were used to predict potential agents for the treatment of advanced
stage DLBCL. Finally, some previous studies were reviewed to
demonstrate the effectiveness of the newly identified agents.

Patient Characteristics
The clinical characteristics of DLBCL cancer patients collected from
TCGA are presented in Table 1, including 25 patients at clinical
stage I/II and 17 patients at clinical stage III/IV. It was more likely to
occur in elder patients and involve extranodal sites or organs.
Patients of advanced stage disease also tended to have B
symptoms. No gender preference was observed in this group of
patients and all patients received no treatment before resection of
tumors.

Identification of DEGs and Survival Analysis
After collecting data from TCGA, DEGs were obtained using
DESeq2, by comparing the transcriptome of advanced stage
DLBCL with limited stage DLBCL. Of the 93 DEGs that were
identified with a log2 |fold change| S 1 and a p value& 0.05, 20
genes were up-regulated and 73 genes were down-regulated in
advanced DLBCL. The top 10 genes that were differently

expressed between advanced and limited stage DLBCL are
shown in Figure 2A.

We aimed to evaluate whether this set of differentially expressed
genes could define a group of patients with poorer prognosis. We
dichotomized 42 DLBCL cases into either the high expression
group or the low expression group as per the mean expression level
of each DEG. In addition, the Kaplan-Meier survival estimation
method was used to evaluate all DEGs to study the relationship
between gene expression and overall survival. Through this
Kaplan-Meier survival estimation analysis, we found that DAB1
was negatively correlated with overall survival, while other DEGs
were not correlated with overall survival.

Weighted Gene Correlation Network
Analysis and Differential Model Analysis
WGCNA, based on a scale-free network to analyze genes
according to their expression patterns, was used to cluster
highly related genes into one module. As can be seen from
Figure 3A, the soft threshold value was set at 10 to build this
scale-free network. Next, 79 gene modules were identified by

TABLE 1 | Summary of general clinical information of DLBCL cases in TCGA.

Limited stage Advanced stage χ2 P

Gender Male 9 10 0.006 0.938
Female 16 7

Age ≥60 6 10 5.203 0.023
<60 19 7

Extranodal disease Yes 8 11 4.369 0.037
No 17 6

B symptoms Yes 1 9 13.36 0.000
No 24 8

FIGURE 2 | Analysis of differentially expressed genes. (A) Heat map of the top 10 differentially expressed genes. The x-axis represents different samples from
TCGA, blue indicates samples at limited stage (stage I/II) and red indicates samples at advanced stage (stage III/IV). The y-axis represents differentially expressed genes.
(B) Survival curve of the association between the expression levels of DAB1 and survival time after diagnosis with DLBCL.
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hierarchical clustering and dynamic branch cutting, and each
module was assigned a unique color identifier (Supplementary
Figure S4). We then selected a portion of these genes to construct
a topological overlapping heat map, shown in Figure 3B.
Through differential module analysis, we found that the
thistle1 module was most relevant to advance stage of DLBCL
in this dataset (Figure 3C).

Functional and Pathway Enrichment
Analysis of the thistle1 Module
In order to understand the causes of DLBCL deterioration from
the biological level, we analysed the genes in the thistle1 module

using KEGG pathway and GO enrichment analysis. KEGG
pathway analysis results indicated that the development of
DLBCL was very strongly correlated to the NOD-like receptor
signalling pathway, osteoclast differentiation, leishmaniasis,
Staphylococcus aureus infection and viral protein interaction
with cytokine and cytokine receptor (Figure 4A).
Furthermore, GO enrichment was performed based on three
aspects: BP, CC and MF. In the BP analysis, we found that the
genes in the thistle1 module were mainly related to neutrophil
activation, positive regulation of response to external stimulus
and response to interferon−gamma (Figure 4B). In addition, in
the CC analysis, the genes in the thistle1 module were related to
secretory granule membrane, endocytic vesicle and apical part of

FIGURE 3 | Weighted co-expression and key module identification associated with clinical DLBCL stage. (A) Determination of soft threshold in WGCNA. (B)
Topological overlappingWGCNA heat map. (C) The relationship betweenmodules and clinical traits. Pearson correlation coefficient was used to calculate the correlation
degree between each module and trait.
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FIGURE 4 | Pathway and functional enrichment analysis of genes in the thistle1 module. (A) KEGG pathway analysis. (B)GO enrichment for biological process. (C)
GO enrichment for cellular composition. (D) GO enrichment for molecular function. The x-axes are the ratio of genes, and the y-axes are the GO terms.

FIGURE 5 | Network of key DLBCL drivers and hub genes. Red, key drivers from up-regulated gene set in advanced-stage samples. Blue, key drivers from down-
regulated gene set in advanced-stage samples. Yellow, hub genes.
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cell (Figure 4C). Moreover, the genes in the thistle1 module were
mainly enriched in 7 MFs, including carboxylic acid binding,
organic acid binding, cysteine−type endopeptidase activity,
manganese ion binding, ligand−gated cation channel activity,
immunoglobulin G (IgG) binding and immunoglobulin binding
(Figure 4D).

Hub Genes Identified Through Key Driver
Analysis
A total of 47 key drivers were identified through key driver
analysis, with 11 up-regulated key driver genes and 36 down-
regulated key diver genes being diagnostic of advanced-stage
DLBCL relative to limited-stage DLBCL. Then, five hub genes
were identified from key drivers as shown in Figure 5, which were
most related to the occurrence and development of DLBCL.
MMP1 (Rosas et al., 2008), also known as matrix
metalloproteinase-1, encodes a protein of 469 amino acid
residues and is a kind of photolytic enzyme closely related to
tumor genesis, invasion and metastasis. Rab6c (Young et al.,
2010) is a member of the RAS family. Its mutation can affect the
balance of Ras-GTP and cause malignant transformation of cells.
Gene ontology annotations for 1-Aminocyclopropane-1-
Carboxylate Synthase Homolog (Inactive) Like (ACCSL) (Chen
and Karampinos, 2020) include pyridoxal phosphate binding.
Dysregulation of gene levels of molybdenum cofactor sulfurase
(MOCOS) (Kurzawski et al., 2012) can lead to cell disorders.
Studies have demonstrated that this gene can be used as a key
detection gene for kidney genetic diseases. RGS21 (Von
Buchholtz et al., 2004), a new member of the regulator of G

protein signaling (RGS) protein family. It can inhibit signal
transduction by increasing GTPase activity.

Agent Screening
Potential personal agents associated with DLBCL were identified
according to the differences between differential genes and drug
signaling. Approximately 10 potential agents were selected
according to their drug perturbation-induced gene expression
signatures, and detailed information on these agents is presented
in Table 2, including the type, drug/small molecule, possible
effect and evidence for activity. The top five agents could reverse
the expression of down-regulated genes, and the remaining
agents could reverse the expression of up-regulated genes. In
other words, after treatment with these drugs, gene expression
levels may return to normal. The top five agents that may reverse
down-regulated gene expression are formaldehyde, ethanol,
dibutyl phthalate, paclitaxel, and prednisolone. Ethanol
(EtOH) is similar to pharmacological mTOR inhibitors and
has been shown to inhibit the mTOR signaling pathway.
Mazan et al. studied the influence of EtOH on the mTOR
signaling pathway and explored the translational group
analysis of downstream effects of EtOH in DLBCL, and the
results showed that EtOH partially inhibited mTOR signaling
and protein translation (Mazan-Mamczarz et al., 2015). In a
previous study, newly diagnosed DLBCL patients treated with
rituximab, cyclophosphamide, doxorubicin, vincristine, and
prednisolone (R-CHOP) were evaluated for their clinical
characteristics, therapeutic efficacy and patient survival, and
DLBCL patients treated with R-CHOP had better survival
than other patients (Hong et al., 2011). Ohe et al. also

TABLE 2 | Potential DLBCL treatment agents.

Gene
type

Drug/Small
molecule

Possible effect Evidence

Down Formaldehyde A metabolite of vitamin A that plays important roles in cell growth, differentiation and
organogenesis acts as an inhibitor of the transcription factor Nrf2 through the activation
of retinoic acid receptor alpha

DOI:10.14423/SMJ.0000000000000545

Down Ethanol Similar to pharmacological mTOR inhibitors, which can inhibit the mTOR signaling
pathway

DOI: 10.1186/s12964-015-0091-0

Down Dibutyl phthalate Is expected to cause severe side effects to the central nervous system of animals and
humans

DOI:10.1016/S0145-2126 (96)00033-1

Down Paclitaxel A synthetic macrocyclic ketone analog of the marine sponge natural product
halichondrin B, which leads to the inhibition of microtubule growth in the absence of
effects on microtubule shortening at microtubule plus ends

Unknown

Down Prednisolone Belongs to the adrenal corticotropic hormone and adrenal corticotropic hormone class
and has strong anti-inflammatory effects

DOI:10.3109/10428194.2011.588761
DOI:10.5045/kjh. 2012.47.4.293

Up Oxaliplatin It selectively inhibits the synthesis of deoxyribonucleic acid (DNA). The guanine and
cytosine contents correlate with the degree of oxaliplatin-induced cross-linking

DOI: 10.1016/S2352-3026 (18)30054-1

Up Eribulin Is a microtubule inhibitor indicated for the treatment of patients with metastatic breast
cancer who have previously received at least two chemotherapeutic regimens for the
treatment of metastatic disease. Also being investigated for use in the treatment of
advanced solid tumors

DOI: 10.1007/s00280-012-1976-x. Epub
2012 Sep 26

Up NC1153 Specifically inhibits JAK3 via NC1153-induced apoptosis of certain leukemia/lymphoma
cell lines

DOI: 10.1016/j.febslet. 2010.02.071

Up EPZ-6438 Selectively inhibits intracellular histone H3 lysine 27 (H3K27) methylation in a
concentration- and time-dependent manner in both EZH2 wild-type and mutant
lymphoma cells

DOI: 10.1158/1535-7163.MCT-13-0773

Up R547 A potent CDK inhibitor with a potent anti-proliferative effect at pharmacologically
relevant doses

DOI: 10.1158/1535-7163.MCT-09-0083
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reported a case of DLBCL successfully treated with prednisolone
(Ohe et al., 2012). The top five agents that may reverse up-
regulated gene expression are oxaliplatin, eribulin, NC1153, EPZ-
6438 and R547. Oxaliplatin selectively inhibits the synthesis of
deoxyribonucleic acid (DNA). Shen et al. studied the efficacy,
safety and feasibility of the combination of rituximab,
gemcitabine, and oxaliplatin (R-GemOx) as a first-line
treatment in elderly patients with DLBCL. They found that
R-GemOx might be a therapeutic option for the management
of DLBCL (Shen et al., 2018).

DISCUSSION

DLBCL remains a highly heterogenous disease, with the frontline
R-CHOP modality achieving only a 40–60% complete response
(CR) rate in unselected patients. The prognosis of patients with
DLBCL with refractory tumors or relapse remains dismal. As a
result, designing more sophisticated personal treatment
modalities has the potential to improve the outcomes in high-
risk DLBCL patients. Although a wealth of studies has focused on
targeted therapies based on the molecular classification of
DLBCL, the clinical stage of DLBCL remains an important
factor for choosing an appropriate treatment regime. DLBCL
patients with advanced- and limited-stage disease have different
responses to standard chemoimmunotherapies, due to the
different genomic profiles of advanced-stage disease relative to
limited-stage disease (Miao et al., 2019). In this study, we propose
a new approach to gain insights into the intrinsic heterogeneity of
DLBCL, which focused on comparing the transcriptomic profile
of advanced- and limited-stage DLBCL and distilling the disease
to a few distinctly expressed genes and hub genes that might
contribute to disease progression. In general, 20 genes were up-
regulated and 73 genes were down-regulated in advanced-stage
samples compared to limited-stage samples. We also found that
DAB1 was negatively correlated with overall survival through
survival analysis of all identified DEGs (Figure 2B, p � 0.045).
Due to the limitations of differential expression analysis, it is
impossible to group genes with the same function together.
Therefore, we carried out weighted gene co-expression
network analysis and analysis on different modules. During
these analyses, 79 similar gene expression modules were found
using WGCNA, among which, the thistle1 module was highly
related to disease stage. KEGG pathway and GO enrichment
analyses of the genes in the thistle1 module indicated that
DLBCL progression was mainly related to the NOD-like
receptor signaling pathway, neutrophil activation, secretory
granule membrane and carboxylic acid binding. There is
evidence that tumors and their mesenchymal cells produce
many cytokines and chemokines to stimulate the
differentiation of N2 neutrophils (Valerius et al., 1993; Souto
et al., 2014). However, neutrophils can cause DNA damage
through reactive oxygen species and related products of
myeloperoxidase (MPO), and N2 cells secrete VEGF, TNF
and other cytokines to promote tumor angiogenesis and, at
the same time, synthesize and secrete MMP and NE to the
tumor stroma to participate in the tumor reconstruction of

the extracellular matrix to promote tumor growth and
metastasis (Zvi et al., 2009; Mishalian et al., 2013; Zhou et al.,
2016). During key driver analysis, 47 key drivers were identified
and five hub genes were extracted from these key drivers,
including MMP1. MMP1 (Rosas et al., 2008) can alter the
microenvironment of cells. When MMP1 is out of balance, it
accelerates the degradation of the matrix barrier and promotes
the formation and growth of tumors by releasing matrix-related
growth factors. Studies have shown thatMMP1 is associated with
lung squamous cell carcinoma, colon cancer and
adenocarcinoma.

Based on gene expression and network perturbations, 10
potential agents for the treatment of DLBCL were obtained.
For instance, NC1153 can inhibit JAK3 specifically and induce
the apoptosis of certain leukemia/lymphoma cell lines. Using
Affymetrix microarray profiling following NC1153 treatment,
Nagy et al. reported that JAK3-dependent survival modulating
pathways (p53, TGF-beta, TNFR and ER stress) were altered in
Kit225 cells (Nagy et al., 2010). EPZ-6438 selectively inhibited
intracellular H3K27 methylation in a concentration- and time-
dependent manner in both EZH2 wild-type and mutant
lymphoma cells. Inhibition of H3K27 trimethylation
(H3K27Me3) leads to selective cell killing of human
lymphoma cell lines bearing EZH2 catalytic domain point
mutations (Knutson et al., 2014).

In summary, we proposed a novel pipeline to utilize perturbed
gene-expression signatures during DLBCL progression for
identifying agents, and we successfully utilized this approach
to generate a list of promising compounds. Whether this can be
used clinically needs further research. We will continue to follow
the latest developments of these agents in the treatment of
DLBCL and explore its pharmaco-mechanisms under the aid
of stage-of-art technologies in the future.
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