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Evidence suggests dysregulation of the salience network in 
individuals with psychosis, but few studies have examined 
the intersection of stress exposure and affective distress 
with prediction error (PE) signals among youth at clin-
ical high-risk (CHR). Here, 26 individuals at CHR and 19 
healthy volunteers (HVs) completed a monetary incentive 
delay task in conjunction with fMRI. We compared these 
groups on the amplitudes of neural responses to surprising 
outcomes—PEs without respect to their valence—across 
the whole brain and in two regions of interest, the anterior 
insula and amygdala. We then examined relations of these 
signals to the severity of depression, anxiety, and trauma 
histories in the CHR group. Relative to HV, youth at 
CHR presented with aberrant PE-evoked activation of the 
temporoparietal junction and weaker deactivation of the 
precentral gyrus, posterior insula, and associative striatum. 
No between-group differences were observed in the amygdala 
or anterior insula. Among youth at CHR, greater trauma 
histories were correlated with stronger PE-evoked amyg-
dala activation. No associations were found between affec-
tive symptoms and the neural responses to PE. Our results 
suggest that unvalenced PE signals may provide unique in-
formation about the neurobiology of CHR syndromes and 
that early adversity exposure may contribute to neurobio-
logical heterogeneity in this group. Longitudinal studies of 
young people with a range of risk syndromes are needed to 
further disentangle the contributions of distinct aspects of 
salience signaling to the development of psychopathology.

Key words:  clinical high risk/psychosis/salience 
network/prediction error/adversity/affective symptoms

Introduction

Learning to accurately predict the occurrence of re-
warding or aversive outcomes using available informa-
tion is critical for flexible responding to environmental 
stimuli. In the typically-developing brain, mismatches 
between expectations and outcomes, called prediction 
errors (PEs), are signaled by rapid, phasic burst firing of 
dopamine and serotonin neurons projecting to nodes of 
the brain’s reward and salience networks.1,2 Whereas re-
ward networks are centered on the ventral striatum and 
ventromedial prefrontal cortex,3 the salience network 
connects the amygdala, anterior insula (AI), dorsal ante-
rior cingulate cortex (dACC), and temporoparietal junc-
tion.4,5 Prediction error signals within these networks play 
a key role in directing attention, assigning meaning, and 
integrating internal information with external stimuli, 
thereby supporting the development and updating of 
one’s “internal model” of the environment.6 Considerable 
evidence implicates abnormal PE signaling and related 
deficits in learning and decision making in psychotic 
disorders such as schizophrenia.7 These findings support 
the possibility that abnormalities in the acquisition or 
retention of cue-outcome associations—and the neural 
circuits subserving these operations—may be involved 
in the initial formation of symptoms in individuals with 
psychosis.8,9

Although findings of abnormal salience signaling and 
learning are common in the psychosis literature,10 recent 
work from cognitive neuroscience demonstrates that re-
ward PEs may actually embody at least two distinct 
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but interactive components.11 One of these components 
encodes the valence, sign, or direction of the error—pos-
itive following better than expected outcomes, and neg-
ative following worse than expected outcomes—and is 
used to reinforce or extinguish a particular behavior. The 
other component encodes the extent to which the out-
come is surprising or unexpected and is represented as 
the “unsigned” or absolute value of the mismatch. This 
surprise signal, which originates in the amygdala and 
projects to the dACC, insula, and other salience network 
structures, is used to gate the amount of attention paid 
to the valence signal, thereby modulating its strength or 
“associability”.12,13 Together, signed and unsigned PEs are 
believed to interact dynamically across a distributed set 
of neural circuits to steer attention, form associations, 
and integrate external stimuli with internal information.14

The vast majority of evidence supporting abnormal 
PE signaling in psychosis comes from studies probing 
signed PE signaling in adults with established illness. 
These studies report abnormal encoding of rewarding 
or aversive outcomes in key brain structures such as 
the ventral striatum,15 dACC,16 amygdala,17 and in-
sula,18 alongside corresponding deficits in reinforcement 
learning.19,20 Similar abnormalities are observed in those 
with depressive,21 anxiety,22 and stress-related disorders,23 
suggesting that salience network dysfunction may be a 
transdiagnostic contributor to psychopathology24.

Despite evidence of salience network abnormalities 
in those with psychosis, very few studies have examined 
the possibility that unsigned PE signaling may contribute 
to salience network dysfunction, particularly among 
adolescents or young adults who have not developed 
psychosis yet but may be at imminent risk. A small but 
growing body of work suggests multiple subtle reward or 
salience system abnormalities in youth with clinical high-
risk (CHR) syndromes, including disrupted functional 
connectivity of the salience network25,26 and reduced stri-
atal, insula, and medial prefrontal cortex activity during 
reward anticipation or PE signaling.27–29 The results 
of behavioral studies provide corroborating evidence 
of impaired reinforcement learning,28 reduced effort-
cost expenditure,30 and a tendency to assign salience to 
task-irrelevant stimuli.31,32 Importantly, a recent study 
found that unsigned PE signals were detectable in the 
dACC and supported learning among youth at CHR,33 
suggesting that more research is needed to understand 
the contributions of surprise (ie, unvalenced) signaling to 
salience network function in this population.

Interpretation of salience network abnormalities in 
individuals at CHR is complicated by the transdiagnostic 
nature of reward system impairment and the observa-
tion that most such individuals present with cooccurring 
symptoms of depression and anxiety.34,35 Little atten-
tion has been paid to the intersection between affective 
symptoms and salience or reward network dysfunction 
in youth at CHR, despite the possibility that at least 

some of the observed impairments are attributable to 
these dimensions of illness36,37 and considerable evidence 
in support of an affective pathway to first episode psy-
chosis.38 The few studies addressing the relation between 
salience network abnormalities and affective disturbances 
in CHR youth have reported that depressive or anxiety 
symptom severity was uniquely associated with reduced 
neural differentiation of rewarded vs unrewarded,39 
expected vs unexpected,28 and aversive vs neutral or 
pleasant outcomes40,41 within the salience or reward net-
work. Importantly, youth with psychosis risk symptoms 
have also been found to show elevated amygdala activity 
during emotion processing,42,43 a key observation given 
the amygdala’s central role in aversive and associative 
learning,44 its functional impairment in anxiety and de-
pressive disorders,45 and the fact that the unsigned error 
signal is thought to originate in this structure.12 Thus, 
abnormal surprise signaling may contribute to multiple 
important symptom dimensions outside the classical psy-
chotic symptoms in individuals at CHR.

Finally, if  salience network dysfunction contributes 
to depressive, anxiety, and psychosis outcomes in young 
people, an important question is whether such dysfunc-
tion is also associated with environmental risk factors 
that are shared across these disorders. A relation between 
known risk factors for psychiatric disorders and nonspe-
cific salience network impairment may suggest a pathway 
through which symptoms develop, elucidating both eti-
ological and neurodevelopmental aspects of illness and 
highlighting targets for intervention. Childhood trauma 
exposure represents a promising area of inquiry in this 
context. Early-life adversity is among the most potent 
risk factors for affective and psychotic disorders46,47 and 
impacts multiple aspects of salience processing, including 
the signaling of signed48,49 and unsigned PEs50 and the 
ability to learn from previously rewarded outcomes.51 
Importantly, the amygdala and insula are among the 
structures most commonly implicated in studies of 
trauma-related brain changes.52 Thus, it is possible that 
prior trauma exposure plays a key role in determining 
the nature of neural salience system activity in youth 
at CHR.

This study examined the intersection between affec-
tive symptoms, trauma exposure, and PE signaling of 
the salience network in youth at CHR for psychosis. In 
a cross-sectional design, help-seeking young people at 
CHR completed clinical interviews and symptom surveys 
plus a monetary reward task that elicited PEs in conjunc-
tion with fMRI. We focused our analyses on the amygdala 
and AI, given evidence of their involvement in salience 
signaling, stress response, and psychotic and affective 
psychopathology, but supplemented with whole-brain 
analyses given the known relevance of additional regions 
such as the temporoparietal junction and other insular 
subfields.4,5,14,53 In addition, we paid special attention to 
effects of violent trauma exposures on salience signaling, 
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given that such exposures are likely to have especially 
pathogenic effects on the development of this brain net-
work.52,54,55 We operationalized unvalenced surprising 
outcomes in two complementary ways: parametrically, 
quantified as the magnitude of the unsigned PE, or degree 
of mismatch between expectation and outcome irrespec-
tive of its direction; and nonparametrically, as the binary 
presence (vs absence) of a mismatch between the ex-
pected and unexpected outcome. We refer to these related 
definitions collectively as PEs or surprising outcomes. We 
hypothesized that relative to healthy volunteers (HVs), 
individuals at CHR would present with altered salience 
signaling—stronger activation or weaker deactivation—
within the salience network, and that altered signals 
evoked by unexpected outcomes would be associated with 
the severity of depressive symptoms, anxiety symptoms, 
and trauma history.

Methods

Participants

This study took place within the Maryland Early 
Intervention Program, an early psychosis identifica-
tion, treatment, and research collaboration between the 
University of Maryland School of Medicine and the 
University of Maryland, Baltimore County. Individuals 
at CHR (n = 26) were referred from community providers. 
Healthy volunteers (n = 19) were recruited from the greater 
Baltimore community using flyers and advertisements. 
The sample includes all participants described in a prior 
report from the same protocol (described below) plus 
four new participants at CHR. Inclusion criteria were 
having an age of 12–25 years, being willing and able to 
provide written consent or assent, and having no contra-
indication to the MRI environment. HVs must have been 
receiving no mental health services and have no current 
psychiatric disorder or history of psychosis, major de-
pressive disorder, bipolar disorder, or psychiatric med-
ication use. The study was approved by the overseeing 
Institutional Review Boards.

Instruments

Clinical Measures. All clinical interviews were conducted 
by trained masters or doctoral-level staff  and reviewed by 
an interdisciplinary team of early psychosis experts. CHR 
status was determined using the Structured Interview for 
Psychosis-risk Syndromes (SIPS).56 To meet SIPS criteria, 
within the past year participants must have experienced 
(1) attenuated psychotic symptoms; (2) brief  intermittent 
psychotic symptoms (ie, ≤24 h); or (3) a significant decline 
in global functioning (measured following standard SIPS 
protocol with the Global Assessment of Functioning) 
in the context of schizotypal personality disorder or a 
family history of psychosis (Supplementary Methods for 
detail).

Diagnostic and Statistical Manual (DSM) diagnoses 
were determined using the Kiddie Schedule for Affective 
Disorders and Schizophrenia (KSADS)57 or the 
Structured Clinical Interview for the DSM, 5th Edition 
(SCID).58 These interviews were also used to iden-
tify lifetime exposure to potentially traumatic events. 
Participants were asked whether they had experienced 
any of several events that would meet the PTSD crite-
rion A (trauma exposure). Binary scores for each trauma 
type were recorded and summed to create an index of 
overall lifetime trauma exposure, consistent with prior 
research.59 We further classified exposures as violent or 
nonviolent so that we could examine the effects of these 
trauma dimensions separately. This classification scheme 
emulates our prior work60 and is displayed in table  1. 
Here, we focused on violent and total trauma exposures, 
as the nonviolent dimension represents a more heteroge-
neous set of exposure types and we did not have specific 
hypotheses about the effects of this dimension on brain 
functioning. Additional information about the use of the 
KSADS and SCID in the broader study protocol is pro-
vided in the Supplement.

Anxiety and depressive symptom severity was meas-
ured using the respective subscales of the Behavioral 
Assessment System for Children, Second Edition (BASC-
2).61 The BASC-2 is a self-report form capturing a variety 
of emotional and behavioral indicators of functioning 
among youth. Items are summed within subscales and 
converted to T scores with a mean of 50 and standard 
deviation of 10. See the Supplement for additional psy-
chometric information about the BASC-2 subscales.
Experimental Behavioral Paradigm. To elicit neural PE 
signals, we used a modified version of the Monetary 
Incentive Delay task62 (MID; figure  1). In this task, 
participants saw a cue that indicated they could win 
money (gain trial), lose money (loss trial), or neither win 
nor lose money (neutral trial). Participants’ response 
times to the response prompt partly determined the 
outcomes: If  participants responded within an accept-
able time window on gain trials, they would win the cued 
amount (either $8 or $15); otherwise, they would win a 
nominal amount ($1). If  participants responded within 

Table 1. Classification Scheme for Trauma Exposures Coded 
During the Clinical Interview

Violent Trauma Nonviolent Trauma 

Witnessing domestic violence Being in a car accident
Witnessing another violent crime Being in another serious 

accident
Being the victim of a violent crime Being in a fire
Being physically abused by a care-
giver

Being in a natural disaster

Being sexually assaulted Hearing traumatic news
Another violent trauma exposure Another nonviolent 

trauma exposure

http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schizbullopen/sgac039#supplementary-data
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an acceptable time window on loss trials, they would lose 
a nominal amount ($1); otherwise, they would lose the 
cued amount (either $5 or $9). Importantly, the response 
window was adjusted to ensure a success rate of approx-
imately 66%, thus eliciting surprising outcomes (ie, PEs) 
on about 34% of trials. Outcomes were displayed for 
1650 ms. The task included 56 gain trials, 56 loss trials, 
and 28 neutral trials, together taking approximately 
19 min.

MRI Data Acquisition and Analysis

We acquired whole-brain functional EPI images (for 
measurement of T2*-weighted blood-oxygen-level-
dependent [BOLD] effects) in tandem with task perfor-
mance using 3-T Siemens scanners (Erlangen, Germany). 
Twenty-eight participants were scanned with a Trio 
magnetom (32-channel head coil) and 17 were scanned 
with a PRISMA Fit (64-channel head coil) following a 
scanner upgrade at our research center. All other aspects 
of the scanning protocol, including the imaging sequence, 
stimulus software and presentation, and data processing 
pipeline remained consistent. We acquired functional 
images using the following parameters: 81 2-mm axial 
slices; 128 × 128 matrix; FOV = 22 × 22 cm; TR = 2 s. 
In the MID task, 480 images were acquired spanning 
4 runs. For anatomical reference, we acquired a whole-
brain T1-weighted structural image (MPRAGE; 1-mm3 
isotropic voxels; TR = 2.2 seconds; TE = 4ms; FA = 20°).

Single-Subject Analyses. All MRI data were preprocessed 
using the AFNI software package,63 including 
coregistration of the EPI and anatomical images, warping 
the images to Talairach space, and smoothing them 
with an 8-mm FWHM kernel. Images were warped to 
Talairach space using the 452 International Consortium 
for Brain Mapping template, upsampling the images to 
1.5-mm isotropic voxels. Emulating prior work,64 volumes 
with >0.5-mm displacement in any plane were excluded 
from analysis, participants with >20% displacement were 
excluded altogether. No participants were excluded on 
this basis.

To model BOLD MRI signals acquired during the 
MID task, we constructed parametric regressors based 
on the timestamps of  outcome events. For the MID, 
expected value was estimated to be (2/3) * the op-
timal outcome + (1/3) * the suboptimal outcome. This 
was because the experiment was calibrated such that 
participants responded within the acceptable response 
windows on 2/3 of  trials. Thus, for the lose-$9 condition, 
the expected value was estimated to be −$3.67, and, for 
the lose-$5 condition, the expected value was estimated 
to be −$2.33 (because participants lost only $1 when 
they responded within the acceptable time window). For 
the win-$8 condition, the expected value was estimated 
to be $5.67, and, for the win-$15 condition, the expected 
value was estimated to be $10.33 (because participants 
gained only $1 when they failed to respond within the 
acceptable time window). On neutral trials, the expected 

Fig. 1. Schematic depiction of the MID task. Participants were presented with a cue indicating whether they would receive money (gain), 
lose money (loss), or experience a neutral outcome (not shown). Responding within an acceptable time window allowed participants to 
win money on gain trials and avoid losing money on loss trials, but this window was adjusted to ensure 1/3 of responses were too slow, 
resulting in prediction errors. MID, monetary incentive delay.
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value was zero, regardless of the response. Prediction 
errors were computed by subtracting the expected value 
from the actual outcome, and PE magnitudes were “mar-
ried” to the timestamps of feedback events. To represent 
the magnitudes of unsigned PEs over time, in regressor 
functions for single-subject voxel-wise time series (general 
linear models/GLMs), feedback timestamps were mar-
ried to amplitudes representing the absolute value of PEs.

We also constructed binary, or nonparametric, 
regressors based on the timestamps of outcome events. As 
participants received the cued outcome on two-thirds of 
trials, outcomes matching cued amounts were considered 
“expected”; outcomes not matching cued amounts were 
considered “unexpected”. For these GLMs, expected, 
unexpected, and neutral outcomes were represented 
as separate binary regressors. Regressor functions for 
single-subject voxel-wise time series included head-
motion vectors (L-R, A-P, I-S, pitch, roll, yaw) as nui-
sance regressors.

Statistical Analyses

Whole-brain Analyses of Event-related Neural Activations 
and Contrasts (ROIs). Effects of expected value magni-
tude, reward PE valence and magnitude, and outcome 
valence and magnitude in ventral striatum, ventrome-
dial prefrontal cortex, and dACC were reported pre-
viously.28 Here, we report on whole-brain analyses of 
parameter estimates (beta coefficients) evoked by para-
metric unsigned PE regressors (a one-sample t-test and 
an independent-samples t-test, with diagnostic group as 
a factor, using the AFNI 3dttest++ function63). We also 
report on supplemental whole-brain analyses of beta 
coefficients for unexpected (ie, [unexpected – neutral]) 
outcomes and [unexpected – expected] contrasts, for 
which we used a voxel-wise threshold of P = .001 and a 
cluster-size threshold of 385 voxels.
Analyses of Event-related Neural Activations and 
Contrasts in Regions-of-interest (ROIs). We report effects 
of unsigned PE magnitude in four ROIs: left and right 
amygdala and left and right AI (Figure S1). Variables 
represented the average of all voxels within an ROI. For 
the amygdala, we used the volume as specified by the 
AFNI Talairach Daemon (center-of-mass coordinates: 
24, 5, −15 and −23, 5, −15). The anterior insula ROIs 
consisted of 10-mm radius spheres, centered on coordi-
nates previously used by our group (center-of-mass coor-
dinates: 32, 18, 2 and −33, 19, 3).16

To determine whether youth at CHR display altered 
PE signals in the amygdala and insula relative to HVs, 
and to compare the CHR and HV groups on demo-
graphic factors, we used t-tests or chi square analyses as 
appropriate. To examine whether PE signals were asso-
ciated with the severity of affective symptoms and ad-
versity, we performed Spearman correlations (given the 
appearance of two bivariate outliers) between measures 

of anxiety, depression, and trauma exposure and each of 
the primary neuroimaging variables. We supplemented 
trauma-ROI analyses by performing Mann–Whitney 
U tests on subgroups of youth at CHR with high or 
low trauma exposure. As only 5 participants denied all 
queried trauma types, we used a median split for the total 
trauma variable (0–1 vs ≥2 exposure types) which allowed 
for more acceptable subgroup sizes (9 CHR individuals 
with ≥2 exposures and 14 with ≤1). For violent trauma, 
participants were classified according to the presence 
(n = 7) vs absence (n = 16) of exposure. In supplemen-
tary analyses, we considered effects of age, comorbid di-
agnosis, medication use, and scanner on BOLD signals 
of interest.

Results

Demographics and Clinical Presentation

Table 2 and table S1 display the demographic and clin-
ical characteristics of the participants in the sample. The 
CHR and HV groups were comparable on demographic 
variables. As expected, youth at CHR presented with 
high rates of cooccurring DSM disorders, particularly 
depressive and anxiety disorders, and correspondingly 
high levels of affective symptom severity. The behavioral 
results of the MID were reported previously28 and are 
not considered here. Briefly, participants in both groups 
made more in-time responses to cues predicting gains 
or losses than to cues predicting neutral outcomes, and 
higher rates of in-time responses to cues predicting gains 
than losses.

Whole-Brain Analyses of BOLD Responses to 
Prediction Errors

In the entire sample, unsigned PEs activated AI (bilater-
ally) and dorsomedial prefrontal cortex, and deactivated 
large parts of the striatum (bilaterally). Unsigned PEs 
evoked deactivations of the right temporoparietal junc-
tion in HVs, but activations in youth at CHR, and this dif-
ference was statistically significant (table 3; figure 2A–D).

Binary unexpected outcomes also activated the 
dorsomedial prefrontal cortex/dACC and bilateral AI 
and deactivated the temporoparietal junction (table 
S2A). Similarly, examination of [unexpected – expected] 
contrasts in parameter estimates revealed greater ac-
tivation of left AI and dorsomedial prefrontal cortex, 
and greater deactivation of the bilateral striatum, 
by unexpected outcomes (figure S3A–-C, table S2B). 
Between-group comparisons of signal responses to un-
expected outcomes suggested that relative to HV, youth 
at CHR presented with significantly less deactivation 
evoked by unexpected outcomes in the precentral gyrus. 
Exploratory independent samples whole-brain t-tests 
revealed between-group differences in the bilateral as-
sociative striatum for unexpected outcomes, and in the 

http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schizbullopen/sgac039#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schizbullopen/sgac039#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schizbullopen/sgac039#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schizbullopen/sgac039#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schizbullopen/sgac039#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schizbullopen/sgac039#supplementary-data
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bilateral posterior insula for [unexpected – expected] 
contrasts (not corrected for multiple comparisons across 
the whole brain; figure S3D, table S2A, B).

ROI Analyses of BOLD Responses to Prediction Errors

None of  the between-group comparisons of  unsigned 
PE responses in a priori amygdala or AI ROIs were sta-
tistically significant (despite modest effect sizes; table 
S3), and none of  the symptom variables were signifi-
cantly related to unsigned responses in either structure. 
However, greater unsigned signal activations in the right 
amygdala were associated with a more severe history of 
exposure to violent traumas (ρ  =  .436, P  =  .038) and 
greater unsigned signal activations in the left amyg-
dala were associated with more severe history of  total 
trauma exposure (ρ =  .433, P =  .039) among youth at 
CHR. The results of  Mann–Whitney U tests supported 
the correlational results in that CHR youth with ≥2 
trauma exposures of  any kind presented with signifi-
cantly stronger left unsigned amygdala activation than 
those with ≤1 exposure, with a large effect (z = −2.394, 

P = .016, η 2 = .261). Similarly, those exposed to violent 
trauma showed greater right unsigned amygdala activa-
tion, with a large effect size approaching statistical sig-
nificance (z = −1.871, P = .065, η 2 = .159; figure 3). No 
significant relations between trauma exposure and un-
signed PE signal in the AI were observed.

None of the between-group comparisons of parameter 
estimates from analyses with binary regressors in a priori 
ROIs were significant (table S4), and no correlations 
were observed between these regressors and affective 
symptoms or trauma histories in youth at CHR.

Effects of Age, Comorbidity, Medication, and Scanner 
on BOLD Signals of Interest

Results of  supplementary analyses considering the 
effects of  age, comorbidity, medication, and scanner 
are presented in the Supplementary Results and ta-
bles S4–S12. Participants with CHR and cooccurring 
PTSD showed reduced AI activation responses to 
PE relative to those without PTSD, and participants 
taking antidepressants showed a negative AI response 
to PE whereas those not taking antidepressants 
showed a positive one. Youth at CHR scanned fol-
lowing the scanner upgrade presented with greater 
differentiation of  unexpected and expected outcomes 
in the right AI relative to those scanned before the 

Table 3. Results of Whole-Brain t-Tests on Parametric Regressors 
Representing Unsigned Prediction Errors Across the Full Sample 
and Between Groups

R/L Brain Area Peak x Peak y Peak z #Voxels 

Full sample
L Dorsal Anterior 

Cingulate Cortex
0 36 45 100

R Anterior Insula 48 24 −4 2134
R Dorsomedial Pre-

frontal Cortex
0 24 69 1297

L Anterior Insula −53 23 4 1378
L Ventral Striatum −23 11 −1 2365
R Ventral Striatum 20 9 −4 1427
R Anterior Tem-

poral Cortex
54 8 −34 964

L Dorsal Caudate −20 8 28 160
R Dorsal Caudate 17 −23 30 421
L Primary Motor 

Cortex
−27 −27 58 279

L Primary Sensory 
Cortex

−17 −32 69 189

R Superior Tem-
poral Sulcus

59 −41 −5 222

R Temporoparietal 
Junction

38 −36 22 191

Clinical High risk vs Healthy Volunteer
R Temporoparietal 

Junction
38 −36 22 191

Note: Bold font indicates regional activation, standard font 
indicates regional deactivation.

Table 2. Demographic and Clinical Characteristics of the Sample

 
CHR 

(n = 26) HV (n = 19) 
Test 

Statistic  

 Mean or Frequency (SD 
or %)

(t, χ 2, 
or z)

P

Age 17.60 (3.2) 18.03 (4.44) 0.37 .710
Female 16 (57.1) 7 (36.8) 2.68 .10
Family income
 <20k 5 (26.3) 5 (26.3) 0.11 .746
 20k–59.9k 4 (21.1) 5 (26.3)   
 60k–99.9k 3 (15.8) 3 (15.8)   
 ≥100k 7 (36.8) 6 (31.6)   
Race   0.05 .831
  Black or African 

American
9 (34.6) 6 (31.6)   

 White 9 (34.6) 11 (57.9)   
 Asian 6 (23.1) 0 (0)   
 ≥1 race 2 (7.7) 2 (10.5)   
DSM diagnoses   –  
 Mood disorder 19 (73.1) –   
  Anxiety  

disorder
24 (92.3) –   

 PTSD 8 (32) –   
 ADHD 10 (40) –   
 Substance use 
disorder

2 (8) –   

Medication
 Antipsychotic 6 (24) –   
 Antidepressant 8 (32) –   
 Stimulant 8 (32) –   
BASC-2 scales
  Depressive 

symptoms
53.32 (15.21) 43.78 (5.58) −2.87 .007

  Anxiety 
symptoms

53.48 (13.71) 44.67 (9.15) −2.53 .016

Violent traumas 0.52 (0.99) 0.47 (0.77) −0.17 .86
Total traumas 1.6 (1.73) 0.79 (0.79) −1.90 .063

http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schizbullopen/sgac039#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schizbullopen/sgac039#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schizbullopen/sgac039#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schizbullopen/sgac039#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schizbullopen/sgac039#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schizbullopen/sgac039#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schizbullopen/sgac039#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schizbullopen/sgac039#supplementary-data
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upgrade but did not differ in the severity of  affective 
symptoms or trauma exposure. There were no other 
associations between PE-evoked BOLD activity in 
ROIs and age, psychiatric comorbidity, medication 
use, or scanner.

Discussion

This study aimed to assess the intersection between ad-
versity exposure, affective distress, and neural salience 
signals evoked by PEs among individuals at CHR for 
psychosis. We observed that relative to HV, individuals 
at CHR exhibited aberrant activation responses to sur-
prising outcomes in the temporoparietal junction and 
reduced deactivation responses to such outcomes in the 
precentral gyrus, posterior insula, and associative stri-
atum. Further, amygdala responses to unsigned PEs were 
associated with histories of adversity: CHR youth with 
greater violent trauma exposure presented with stronger 
activation responses to unsigned PEs in the right amyg-
dala, and those with greater total trauma exposure 
presented with stronger activation responses to unsigned 
PEs in the left amygdala. Contrary to our hypotheses, 
we observed no significant between-group differences in 
neural responses to surprising outcomes in the amygdala 
or anterior insula, and no significant correlations between 
these signals and affective symptoms. These findings add 
to the growing understanding of salience network func-
tion in people at CHR and to knowledge of this network’s 
association with clinical presentation and adversity expo-
sure among those at risk.

An increasing number of studies suggests mild 
impairments of the salience and reward networks in youth 
at CHR,28,39,65 but the extent to which unvalenced signals 
participate in these abnormalities has been understudied. 
Here, we found that unsigned PEs were encoded in sev-
eral salience network structures, consistent with a re-
cent study in which unsigned errors were represented in 
the dACC and supported learning among individuals at 
CHR.33 We extend these findings by showing that youth 
at CHR present with aberrant activation responses to 

Fig. 2. A–C. Clusters showing significant BOLD signal modulations 
by the magnitudes of unsigned prediction errors. A. Activations 
in dorsomedial prefrontal cortex and left and right anterior insula 
visible in brain image cut at y = 24. B. Activation in dorsomedial 
prefrontal cortex visible in brain image cut at x = 0. C. Deactivations 
in dorsal and ventral striatum visible in brain image cut at y = 10. 
D. Clusters showing significant between-group differences in BOLD 
signal modulations by the magnitudes of unsigned prediction errors. 
Between-group difference in temporo-parietal junction visible in 
brain image cut at x = 39. BOLD, blood–oxygen level dependent.

Fig. 3. Bar graphs depicting relations of PE signals with trauma exposure in youth at CHR for psychosis. Error bars represent standard 
errors. A. Greater left amygdala activation to unsigned PE among participants with lifetime exposure to two or more trauma types. 
B. Greater right amygdala activation to unsigned PE among CHR participants with lifetime exposure to violent trauma. BOLD, blood–
oxygen level dependent; CHR, clinical high-risk; PE, prediction error.
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parametric unsigned PEs in the temporoparietal junc-
tion and reduced signal suppression in response to bi-
nary unexpected outcomes in the precentral gyrus, 
posterior insula, and associative striatum. Of note, the 
temporoparietal junction is considered a node of the sa-
lience network given consistent evidence that it responds 
to a range of novel stimuli (ie, auditory, visual, tactile),5 
covaries in resting activity with other salience network 
structures,66 and includes subregions that encode a va-
riety of PEs, particularly unsigned PEs.14,53 The norma-
tive response of the temporoparietal junction to PE in 
this study was deactivation (as opposed to activation), 
consistent with findings from prior studies suggesting 
that greater suppression of this area in response to 
increasing attentional demands (cognitive load and sur-
prise) supports filtering of cognitive and perceptual in-
formation in healthy individuals.67 Thus, our observation 
of aberrant PE-evoked activation of the temporoparietal 
junction in CHR youth may reflect impaired filtering of 
internal or external information, consistent with the hy-
pothesis that enhance salience signaling may be involved 
in the initial formation of psychotic symptoms.8

Despite our findings of altered encoding of surprising 
outcomes in several salience/reward network structures 
in youth at CHR, we observed no significant between-
group differences in PE signaling in the AI or amygdala, 
our a priori ROIs. These findings are consistent with 
prior studies reporting a similar degree of unsigned PE 
encoding in the amygdala across HV and individuals 
with early-stage or chronic psychosis.33,68 Animal research 
suggests that unsigned PEs originate in the amygdala and 
propagate to other salience network structures, where 
they modulate the degree of relevance signaled by signed 
error representations.12 Given these basic findings along-
side evidence of widespread functional dysconnectivity in 
psychosis,69 it is possible that unsigned PEs are more or 
less properly generated within the amygdala in psychosis 
but transport abnormally to other nodes of the salience 
or reward networks, such as the insula and striatum.68 
Additional work is needed to address this speculation, 
such as studies integrating structural or functional con-
nectivity analyses with event-related salience paradigms. 
It should also be noted that despite nonsignificant 
CHR-HV differences in our ROI responses to PE, effect 
size estimates were modest in magnitude, suggesting that 
certain unobserved subgroups of individuals at CHR 
(eg, those with later transition to psychosis) may present 
with altered unsigned PE signaling in the amygdala or 
AI despite the appearance of overall similarity to HV at 
baseline. Larger samples and longitudinal research will 
be essential for investigating this possibility.

A novel contribution of this research was its focus 
on the relation of adversity exposure to PE signaling in 
youth at CHR for psychosis. Exposure to serious stressors 
in childhood can dramatically alter neurodevelopment, 
and the amygdala in particular can be sensitized to 

unexpected events.52 Given more recent evidence that 
stress exposure alters neurobehavioral measures of sali-
ence processing,48,49,51 the study of unsigned PE signals 
in young people at CHR represents a valuable oppor-
tunity to shed light on the potential pathways through 
which preventable contributors to psychopathology may 
give rise to symptoms. Our finding that participants with 
greater trauma histories presented with stronger encoding 
of unsigned PEs in the amygdala extends prior work by 
suggesting that early life stress may sensitize the amyg-
dala to surprise, irrespective of its valence. Given that un-
signed signals are particularly valuable when uncertainty 
is high, we speculate that trauma may sensitize the amyg-
dala to surprise by increasing the sensitivity, vigilance, 
or amount of attention paid to subtle, unanticipated 
outcomes, potentially bringing about (eg) fear, rumina-
tion, suspiciousness, or referential thinking. Although 
replication of these findings is needed, our finding of an 
association between trauma histories and the magnitude 
of unsigned PE signaling in the amygdala in CHR youth 
supports the idea that adverse life experiences may influ-
ence later psychopathology in part through their effects 
on the salience network.

Our study’s focus on the intersection between affec-
tive symptoms and PE signaling in youth at CHR was 
motivated in part by the observations that depressive and 
anxiety disorders are characterized by similar salience and 
reward circuit abnormalities as those seen in the CHR 
population70,71 and that most individuals at CHR present 
with cooccurring disorders of depression and/or anxiety.35 
In our sample, 73% of CHR participants were diagnosed 
with a depressive disorder, 92% with an anxiety disorder, 
and 32% with a trauma-related disorder. Given the com-
plex admixture of psychiatric symptoms presenting in the 
help-seeking CHR population and the fact that most do 
not develop a formal psychotic disorder (but do experi-
ence persistent or incident symptoms of other kinds72,73), 
dissociating the neural or environmental contributors to 
distinct dimensions of psychopathology in this group is 
needed to refine our understanding of global illness de-
velopment and refine targets for treatment. Interestingly, 
affective symptomatology was unrelated to PE signaling 
in the salience network in the present study; however, 
supplementary analyses suggested that CHR youth with 
cooccurring PTSD may show altered neural responses 
to PE relative to those without cooccurring PTSD. Prior 
studies reporting associations between affective symptoms 
and neurobehavioral representations of salience or re-
ward processing in CHR have typically focused on signed 
PEs,28,39 although one study of adults with schizophrenia 
found that behavioral responses to unsigned errors were 
associated with negative symptoms,68 and another study 
of veterans with PTSD found that amygdala responses 
to unsigned PEs were associated with the severity of 
PTSD symptoms.50 More studies are needed to investi-
gate the relative contributions of affective and psychotic 
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dimensions of psychopathology to neural and behavioral 
aspects of salience signaling in the high-risk stages of 
psychosis.

Our results should be considered in light of several 
study limitations. First, despite their theoretical relevance 
to salience signaling in psychosis, our findings of altered 
responses to PE in the temporoparietal junction and 
precentral gyrus were not prespecified areas of interest, 
and findings of altered posterior insula and associative 
striatum signaling in CHR did not survive whole-brain 
correction; replication of these results will therefore be 
especially important. Second, several participants were 
taking medications that impact on the dopaminergic 
and/or serotonergic systems involved in salience-related 
neural functioning. Although a focus on help-seeking 
participants increases pretest risk enrichment in CHR re-
search74 and intensive treatment histories are the norm 
in this population,75 studies of unmedicated participants 
and/or larger samples capable of parsing participants by 
medication status are needed to determine the possible 
effects of these medications on findings like ours. Third, 
although our imaging protocol (eg, sequences, task pres-
entation, data processing pipeline) remained consistent 
across the study, not all participants were scanned on 
the same machine due to a scanner upgrade during the 
study period. Despite showing similar levels of symp-
tomatology and trauma histories, youth at CHR scanned 
following the upgrade showed evidence of greater [unex-
pected – expected] BOLD contrasts in the right AI rela-
tive to those scanned before the upgrade, which should be 
considered in the context of our findings.

Fourth, our study lacked a clinical comparison group. 
Given that our analyses intentionally focused on puta-
tively transdiagnostic phenomena (ie, salience, affective, 
and stress-related measures), a clinical comparison group 
presenting with affective illness but without identifiable 
psychosis risk would be key in teasing apart common and 
specific abnormalities of psychosis, depression, or anx-
iety. Future studies incorporating such comparators are 
vital to promoting a more comprehensive and develop-
mental understanding of psychopathology.36,37

In summary, our findings provide support for a role 
of salience network dysfunction in the CHR stage of 
psychosis and highlight the importance of considering 
unvalenced PE signals in neurobiological studies of this 
population. Encoding of these errors may be intact within 
the amygdala and AI but abnormal in other areas of the 
salience and reward networks, although more studies are 
needed to increase confidence in these findings. Severe 
stressors experienced prior to identification may poten-
tiate changes in how a young person’s brain responds 
to salient or unexpected outcomes. The nature of these 
changes is relevant to our understanding of psychotic 
disorders, but also depressive, anxiety, and stress-related 
disorders, highlighting the overlap of these syndromes 
and the need for more research aiming to elucidate their 

differences and similarities at early clinical stages, when 
intervention is most promising.

Supplementary Data

Supplementary data are available at Schizophrenia 
Bulletin Open online.
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