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Abstract: The cytokines interleukin 13 and 4 share a common heterodimeric receptor and are
important modulators of peripheral allergic reactions. Produced primarily by T-helper type
2 lymphocytes, they are typically considered as anti-inflammatory cytokines because they can
downregulate the synthesis of T-helper type 1 pro-inflammatory cytokines. Their presence and role in
the brain is only beginning to be investigated and the data collected so far shows that these molecules
can be produced by microglial cells and possibly by neurons. Attention has so far been given to the
possible role of these molecules in neurodegeneration. Both neuroprotective or neurotoxic effects have
been proposed based on evidence that interleukin 13 and 4 can reduce inflammation by promoting the
M2 microglia phenotype and contributing to the death of microglia M1 phenotype, or by potentiating
the effects of oxidative stress on neurons during neuro-inflammation. Remarkably, the heterodimeric
subunit IL-13Rα1 of their common receptor was recently demonstrated in dopaminergic neurons of
the ventral tegmental area and the substantia nigra pars compacta, suggesting the possibility that both
cytokines may affect the activity of these neurons regulating reward, mood, and motor coordination.
In mice and man, the gene encoding for IL-13Rα1 is expressed on the X chromosome within the
PARK12 region of susceptibility to Parkinson’s disease (PD). This, together with finding that IL-13Rα1
contributes to loss of dopaminergic neurons during inflammation, indicates the possibility that these
cytokines may contribute to the etiology or the progression of PD.

Keywords: Interleukin 13; Interleukin 4; neuron; microglia; Parkinson; brain; neurodegeneration;
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1. Introduction

In this review we summarize the current body of knowledge on the role of IL-13 in the central
nervous system. Although the study of this subject is in its infancy and only a limited amount
of work has been done at this stage, it is likely that this will change in the near future. In fact,
one of the interesting aspects of investigating the biology of IL-13 in the central nervous system
(CNS) is that its canonical receptor, alpha type I (IL-13Rα1), appears to be expressed not only in
glial cells during pathological conditions, but also in specific subsets of neurons in the healthy brain.
Specifically, IL-13Rα1 has, so far, been found on dopaminergic neurons of the Substantia Nigra pars
compacta (SNc) and the Ventral Tegmental Area (VTA) [1]. This finding indicates that its ligands,
IL-13 and IL-4, could be important regulators of dopaminergic function and cell survival, and may
provide a direct link between the immune system and the neurobiology of reward, addiction, or
motor coordination.

2. What We Know about IL-13 Comes from Studies of Its Biology in the Immune System

The cytokines Interleukin 13 (IL-13) and interleukin-4 (IL-4) are two secreted proteins recognized
for their role in promoting T-helper type 2 (Th2) lymphocyte-mediated allergic inflammation and
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atopy in the periphery [2–17]. IL-13 and IL-4 also have the ability to downregulate the synthesis of
T-helper type 1 (Th1) lymphocyte pro-inflammatory cytokines: for this reason they are normally listed
as anti-inflammatory interleukins [8–10,15,18–20]. Both cytokines are produced by Th2, as well as
by other cell types, including eosinophils and basophils [2,5,6,9,11–13] and IL-13 production is also
stimulated in mast cells by lipopolysaccharides (LPS) [21–24].

IL-13 and IL-4 are often investigated together because they partially share a common receptor
type: the IL-13 receptor alpha 1 chain (IL-13Rα1). IL-13Rα1 heterodimerizes with the IL-4R alpha chain
(IL-4Rα) forming a complex capable of binding IL-13 or IL-4 (Figure 1) [25–32]. To date, this complex
is the only known signal transducer for IL-13, while IL-4 can also signal through an IL-4Rα/gamma
chain complex. A high-affinity IL-13-binding protein (IL-13Rα2) also exists and is a specific inhibitor
of IL-13 signaling, likely by functioning as a decoy receptor [28,33–36]. IL-13Rα2 is not found in the
healthy brain and, so far, has only been shown to be expressed in the CNS on glioblastoma cells [37]
making it one of the major targets of immunotherapy. Work on IL-13Rα2 in the CNS and its role as
a therapeutic target will not be discussed here and is covered by recent excellent reviews [38].
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tyrosine residue located in the Janus Kinase (JAK) activation segment [31,39] which promotes the 
kinase activity required for the phosphorylation of downstream substrates in its signaling cascades 
[39,40]. IL-13 activates two intracellular signaling cascades: the JAK-STAT and the insulin receptor 
substrate (IRS)-phosphatidylinositol 3′-kinase pathways [26,28,31]. While the 
IRS-phosphatidylinositol 3′-kinase pathway leads to cell proliferation, the JAK-STAT pathway 
induces the transcription of genes that contain the Stat6-responsive enhancer element N6-GAS 
located in their promoter [41–43]. Upon activation of IL-13Rα1, Stat1, 3, and 6 are phosphorylated 
and form a homodimer that migrates to the nucleus and binds to N6-GAS to drive transcription 
[31,42,44,45]. Reactive oxygen species (ROS) also play a role in the IL-13/IL-4 cellular transduction 

Figure 1. Schematic representation of the heterodimeric receptor for IL-13 and IL-4 and its signaling.
Interleukins 13 (IL-13) and 4 (IL-4) can bind to the same heterodimeric receptor composed of the IL-13
Receptor alpha 1 (IL-13Rα1) and the Interleukin 4 Receptor alpha (IL-4Rα). Binding of the receptor
activates the Janus kinase (JAK) and leads to phosphorylation of members of the Signal Transducer
and Activator of Transcription (STAT) family. The tyrosine-protein kinase 2 (TYK2) is a member of the
JAK family. See the text for more details.

Binding of IL-13 to its cognate functional receptor allows the trans-phosphorylation of a specific
tyrosine residue located in the Janus Kinase (JAK) activation segment [31,39] which promotes the kinase
activity required for the phosphorylation of downstream substrates in its signaling cascades [39,40].
IL-13 activates two intracellular signaling cascades: the JAK-STAT and the insulin receptor substrate
(IRS)-phosphatidylinositol 31-kinase pathways [26,28,31]. While the IRS-phosphatidylinositol 31-kinase
pathway leads to cell proliferation, the JAK-STAT pathway induces the transcription of genes
that contain the Stat6-responsive enhancer element N6-GAS located in their promoter [41–43].
Upon activation of IL-13Rα1, Stat1, 3, and 6 are phosphorylated and form a homodimer that migrates
to the nucleus and binds to N6-GAS to drive transcription [31,42,44,45]. Reactive oxygen species
(ROS) also play a role in the IL-13/IL-4 cellular transduction signaling. In intestinal epithelial
cells upon IL-13Rα1 activation both the JAK-STAT pathway and Mitogen Activated Protein Kinase
(MAPK) stimulate nicotinamide adenine dinucleotide phosphate oxydase to produce intracellular
ROS that, in a positive feedback loop, facilitate the phosphorylation of STAT6 and ERK [46].
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Moreover, IL-13/IL-4-driven ROS production has been recently shown in alternatively-activated
monocytes/macrophages through activation of monoamino oxydase A (MAO-A) [44].

3. Expression of IL-13 and IL-4 in the CNS

As mentioned above, IL-13 and IL-4 were demonstrated to be produced peripherally. To date,
there is no evidence that these two proteins, both with molecular weights in the range of 15 kDa, can
cross the blood-brain barrier. However, experimental work shows, instead, their local production in
the CNS. Expression of IL-13 in the rodent brain was described in microglia, where its production
was enhanced by peripheral injection of LPS or the neurotoxin 1-metil-4-fenil-1,2,3,6-tetraidropiridina
(MPTP) [47–51].

Evidence also exists that both IL-13 and IL-4 can be produced by neuronal cells of the hippocampus
and the cortex in experimental models of ischemic insult [52,53]. In this context it has speculated
that the production of IL-4 and IL-13, inducing alternative activation of microglia—known as the M2
state—can exert a protective effect against neuronal damage [53–55]. Neuronal production of IL-4 has
been described lately in the noradrenergic neurons of the locus coeruleus, in which its release appears
to be sensitive to behavioral stress [56]. Preliminary work in our laboratory also showed that IL-13 can
be produced in neurons [57].

4. What Is the Role of IL-13 and IL-4 in the CNS?

Few studies have tested the effects of IL-13 and IL-4 in the CNS. Most of these have investigated
a possible action on neuronal survival with some studies finding that IL-13 and/or IL-4 potentiate
the effects of LPS and Interferon gamma (IFN-y), increasing oxidative damage and contributing to
neuronal death [47–50,58–61]. On the other hand, other studies indicated that IL-13 and/or IL-4 could
be neuroprotective either by directly reducing inflammation or by inducing the death of microglia cells
that are considered to be cellular mediators of neuronal damage [47–50,59–65]. Notably, both IL-13
and IL-4 can potentiate LPS-induced sickness behavior when co-injected centrally with LPS, whereas
only IL-4, and not IL-13, attenuates LPS-induced sickness behavior when administered several hours
before LPS [47,66]. Recently, our laboratory collected evidence that IL-13 and IL-4 are not toxic when
administered alone but can greatly increase the susceptibility of neurons to oxidative damage and
contribute to their demise if they express IL-13Rα1 [1].

5. IL-13 and IL-4 in Multiple Sclerosis

Multiple sclerosis (MS) is an autoimmune disorder affecting the CNS with a relapsing-remitting
time course. IL-13 seems to exert a protective role in this context, as it is believed that in the
development of the disease, a crucial role is played by the imbalance between pro-inflammatory
cytokines (IL-1β; TNF; INF-γ; IL-17) and anti-inflammatory cytokines (IL-4, IL-5, IL-10 and
IL-13) [67,68]. IL-13 polymorphisms are associated with autoimmune diseases and also increase
susceptibility to MS [69].

A study in humans with MS found that high levels of IL-13 in the cerebral spinal fluid (CSF) might
exert a neuroprotective effect by enhancing Gamma Aminobuthirric Acid (GABA) over glutamate
transmission [64]. Interestingly, an earlier report describes IL-4 having the same neural effect
of increasing the GABA-induced inward current in neurons in a dose-dependent and reversible
manner [70]. Moreover, the copolymer glatiramer acetate, an immunomodulatory drug currently
used to treat MS, has shown to significantly increase the TH2- lymphocyte production of IL-13 in
patients [71].

Consistently, using the mouse experimental model of MS, experimental autoimmune
encephalomyelitis (EAE), Cash and colleagues showed that IL-13 exerts its anti-inflammatory action
by inactivating macrophages and reducing oxidative stress [72]. In the same model, an increase in
circulating and spleen IL-13 prevented axonal injury [73] alone or in synergy with IL-4 [74], whereas
IL-13 reduction was associated with loss of protection [75].
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Sex difference can play a role in affecting the role of IL-13 in the MS model. While autoimmune
diseases, including MS, are more common in women [76], the incidence and severity of EAE in mice,
null for IL-13, was lower in females compared to males, suggesting the possibility that the contribution
of IL-13 to EAE/MS may be gender specific [77]. To this end, it is interesting to note that the expression
of IL-13 mRNA can be decreased by estrogen in a mouse model of inflammatory intestine disease [78]
and that the gene encoding for IL-13Rα1 is located on the X chromosome in both humans and mice.

Together, these studies suggest that IL-13 may have a neuroprotective role in MS. Although this
may be different in other neurodegenerative diseases that, unlike MS, are not characterized by
a severely-compromised blood-brain barrier, and are not primarily mediated by peripheral immune
cells, IL-13 and IL-4 also showed protection in a mouse model of Alzheimer’s disease (AD).
Specifically, intracerebral injection of a mixture of IL-13 and IL-4 reduced amyloid deposition and
improved spatial learning and memory in an AD transgenic mouse model when applied to young
mice but did not show protective effects when administered in adult animals [79].

6. Parkinson’s Disease

The IL-13 system may have a specific role in the pathogenesis and/or the progression of
Parkinson’s disease (PD). Data mining using the Online Mendelian Inheritance in Man (OMIM)
database [80] showed that IL-13Rα1 lies within the PARK12 region of susceptibility to PD.
Although PARK12 comprises a large portion of DNA, it is located on the X chromosome, an observation
that may be of interest in that PD has a higher incidence in men than in women. Even more intriguing
was the finding that expression of IL-13Rα1 in the brain appeared to be specific to the dopaminergic
neurons of the VTA and of the SNc, the region affected by PD. Double-immunostaining studies also
revealed that approximately 80% of the SNc neurons expressing the dopaminergic marker tyrosine
hydroxylase also expressed IL-13Rα1 [1].

The possible contribution of IL-13Rα1 to neuronal fate was measured using a pro-inflammatory
experimental mouse model of PD. Animals received periodic peripheral intraperitoneal injections of
bacterial LPS over a period of six months, a regimen previously demonstrated to induce central loss
of dopaminergic SNc neurons [81]. Comparative analysis showed that mice lacking IL-13Rα1 were
protected from neuronal loss when compared to their wild-type littermates, suggesting a neurotoxic
action of its ligands, IL-13 and/or IL-4. In vitro experiments using a dopaminergic cell line showed,
however, that neither IL-13 nor IL-4 had cytotoxic effects when administered alone. However, both
cytokines increased the toxicity of non-toxic doses of oxidants in a dose-dependent manner.

Thus, activation of IL-13Rα1 may be one of the mechanisms whereby the vulnerability of
dopaminergic neurons is increased during inflammation, when both cytokines and ROS are produced.
On the other hand, the lack of neurotoxicity of IL-13 or IL-4 in the absence of ROS suggests that
these cytokines may be capable of regulating neuronal function by affecting the neurobiology of those
neurons that participate in reward, addiction, and motor control.

Investigating these phenomena is likely to provide important information on the mechanisms of
how IL-13 and IL-4 and, more generally, the immune system, may be capable of influencing behavior
or can contribute to neurodegeneration.

7. Conclusions

Although in its infancy, the investigation of the central role of the interleukins 13 and 4 has is
an exciting area of research. What makes it so attractive is that these two cytokines can be produced
locally in the CNS and are active on both microglia and neuronal cells. Of special interest is the fact
that they act through a common heterodimeric receptor that is expressed in dopaminergic neurons.
Although these two Th2 cytokines are considered anti-inflammatory, studies conducted so far show
that they can have cytotoxic effects on both glia and neurons. Interestingly these actions are not due to
an intrinsic toxicity of IL-13 and IL-4 but rather to their ability to increase the cellular susceptibility to
oxidative stress. This suggest that under pathological conditions, such as neuroinflammation when
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reactive oxygen species are produced, IL-13 and IL-4 can participate to tissue damage and thus to
Parkinson’s disease or other neurodegenerative disorders. Instead, under physiological conditions,
these two cytokines can contribute to the regulation of neuronal function via direct action through
neuronal IL-13Rα1. Thus, they have the requisites of being potential neuromodulators.
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