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Introduction
It is well known that some nutrients, nutritional deficiencies or 
abundances and food items may affect sleep (Doherty et al., 
2019). Both small experimental and large observational studies 
have shown benefits of large quantities of carbohydrates and fat, 
some proteins (amino acid tryptophan), group B vitamins, mag-
nesium as well as foods containing tryptophan, melatonin and 
phytonutrients (e.g. cherries, kiwifruit, milk) on various sleep 
outcomes (see reviews, Peuhkuri et al., 2012; Sanlier and 
Sabuncular, 2020; St-Onge et al., 2016). On the other hand, fol-
lowing a shift in nutritional psychiatry’s research scope towards 
food group and dietary pattern analysis (Hu, 2002), recent studies 
have shown that the Mediterranean (MED)-style diets (Godos 
et al., 2019) and diet health/quality (Hepsomali and Groeger, 
2021) were associated with better sleep quality.

MED-style/healthy diets and food groups that are abundant in 
these diets (such as fruits, vegetables, wholegrains and seafood) 
are known to contain significant amounts of fibre, polyphenols 
and omega-3 poly-unsaturated fatty acids. These nutrients have 
anti-inflammatory, neuroprotective and prebiotic properties 
(González et al., 2011; Widmer et al., 2015) and also are associ-
ated with reduced systemic inflammation markers, such as the 
C-reactive protein (CRP) (Ma et al., 2008; Sureda et al., 2018; 
Wisnuwardani et al., 2020). Additionally, systemic chronic 
inflammation (SCI) biomarkers were also found to be associated 
with diet. For instance, it has been shown that leukocyte count 

and neutrophil to lymphocyte ratio (NLR) were inversely associ-
ated with adherence to the MED-style diets (Bonaccio et al., 
2014; Rodríguez-Rodríguez et al., 2020) and higher intake of 
vegetables (Menni et al., 2021). Similarly, lower platelet count 
has also been associated with adherence to the MED-style diets 
(Bonaccio et al., 2014).

There is also growing evidence that SCI is associated with 
sleep. Observational studies showed associations between (i) 
higher levels of CRP and interleukin-6 and shorter sleep duration 
(⩽5 h/night) (Ferrie et al., 2013) and (ii) higher leukocyte counts 
and shorter sleep duration (<8 h/night) (Pérez de Heredia et al., 
2014). Similarly, intervention studies found that long-term sleep 
restriction (5 days of restricted/shortened sleep, 4 h/night: 03.00–
07.00 h) increased total white blood cell, monocytes, neutrophils 
and lymphocytes count (Lasselin et al., 2015) and both acute total 
and short-term partial sleep deprivation increased CRP concen-
trations (Meier-Ewert Hans et al., 2004). In terms of sleep 

Examining the role of systemic chronic 
inflammation in diet and sleep  
relationship

Piril Hepsomali1,2  and John A Groeger3

Abstract
Background: It is well known that systemic chronic inflammation (SCI), which can be modulated by diet, is associated with poor sleep outcomes. 
However, the role of SCI in diet health and sleep quality relationship has not been well established.
Methods: Here, by using the UK Biobank data set, we assessed the association between markers of SCI (leukocyte, platelet, lymphocyte, neutrophil, 
and basophil counts; C-reactive protein levels and neutrophil to lymphocyte ratio (NLR)), habitual intake of food groups, diet health and sleep quality 
in 449,084 participants. We also formally tested the possibility that SCI might mediate the relationship between diet health and sleep quality.
Results: Our results revealed (i) negative associations between SCI and food groups that are abundant in healthy diets (fruit, vegetable and oily 
and non-oily fish) and (ii) positive associations between SCI and food groups that are abundant in unhealthy diets (processed meat). Sleep quality 
was also negatively associated with platelet counts, CRP levels and NLR. Crucially, however, while platelet and neutrophil counts, CRP levels and NLR 
fully mediated the association between diet health and sleep quality, leukocyte, lymphocyte and basophil counts partially mediated the associations 
between diet health and sleep quality.
Conclusion: Reducing SCI via dietary interventions could be an effective primary and/or complementary strategy to increase sleep quality. Further 
interventional trials are warranted to (i) establish the strength of associations, preferably by using validated diet and sleep measures and (ii) examine 
longer term effects of anti-inflammatory diets on sleep-, diet- and inflammation-related health outcomes.

Keywords
Diet, sleep, blood cells, C-reactive protein, inflammation

1School of Psychology, University of Roehampton, London, UK
2Unilever R&D, Colworth Science Park, Bedford, UK
3 Department of Psychology, School of Social Sciences, Nottingham 
Trent University, Nottingham, UK

Corresponding author:
Piril Hepsomali, School of Psychology, University of Roehampton, 
Whitelands College, Holybourne Avenue, London SW15 4JD, UK. 
Email: p.hepsomali@roehampton.ac.uk

1112932 JOP0010.1177/02698811221112932Journal of PsychopharmacologyHepsomali and Groeger
research-article2022

Original Paper

https://uk.sagepub.com/en-gb/journals-permissions
https://journals.sagepub.com/home/jop
mailto:p.hepsomali@roehampton.ac.uk


1078 Journal of Psychopharmacology 36(9)

quality, although there is some observational evidence showing 
associations between higher CRP levels and lower sleep quality 
(Lee et al., 2020; Liu et al., 2014), research is limited for other 
SCI markers albeit suggestive of a similar relationship (e.g. 
Nishitani and Sakakibara, 2007; Obayashi et al., 2016).

Sleep-SCI relationship is bidirectional (Besedovsky et al., 
2019) and both poor sleep and high levels of SCI are linked to 
various health outcomes including diabetes (Grandner et al., 
2016; Tsalamandris et al., 2019), obesity (Ellulu et al., 2017; 
Marshall et al., 2008) and even mortality (Cappuccio et al., 2010; 
Proctor et al., 2015). These same health outcomes are, of course, 
affected by diet quality (Ley et al., 2016; Neelakantan et al., 
2018; Wolongevicz et al., 2010).

Understanding the interplay between diet, SCI and sleep 
would enable us to establish priorities for anti-inflammatory die-
tary guidelines that may help self-management and/or treatment 
of sleep challenges and to prevent the development and/or pro-
gression of diet, SCI and sleep-related long-term health out-
comes. Therefore, in the current study, by utilising the large UK 
Biobank (UKB) data set, we examined the roles of (i) dietary 
intake in predicting SCI biomarkers, (ii) SCI biomarkers in pre-
dicting sleep quality and (iii) SCI biomarkers in diet–sleep 
relationship.

Method
This study (a part of the UKB project 61818) utilised the UKB 
data set (Sudlow et al., 2015). For the UKB study, ethical 
approval was granted by the Northwest Multi-Centre Ethics com-
mittee (ref: 11/NW/0382). This study was performed in accord-
ance with these guidelines and regulations, under the UKB ethics 
governance and framework (https://www.ukbiobank.ac.uk/
ethics/).

Study population

Detailed study design and methods of the UKB study have been 
reported elsewhere (Sudlow et al., 2015). Briefly, the UKB study 
recruited more than 500,000 adults with the age of 40–69 years 
between 2006 and 2010. At their initial visit, participants pro-
vided a written informed consent and completed a touch screen 
questionnaire that assessed various sociodemographic, lifestyle 
and health behaviour variables, including food intake, sleep and 
also provided biological samples such as blood biomarkers (see 
the Supplemental Methods for detailed information about the 
recruitment procedure).

Measures

In the current study, we used responses from the UKB’s food 
frequency, sleep and psychological factors and mental health 
questionnaires at baseline to create various scores including 
healthy diet, mental health symptomatology and problematic 
sleep index (see the Supplemental Methods for detailed descrip-
tions). Data fields of interest and the methods for calculating 
healthy diet and mental health symptomatology scores are avail-
able elsewhere (Hepsomali and Groeger, 2021). The Problematic 
sleep index (Groeger and Hepsomali, under review) is a com-
positive measure of self-reported sleep problems, such as sleep 

duration abnormal for a participant’s age, delayed sleep onset, 
difficulty waking, overnight wakefulness, snoring and so on, 
where higher scores indicate fewer problems and hence better 
sleep. Similar to our previous study (Hepsomali and Groeger, 
2021), we also utilised total food group intake scores (vegetable, 
fruit, oily fish, non-oily fish, unprocessed red meat and processed 
meat). Finally, various blood assay results including leukocyte 
(109 cells/L; Data Field: 30000), platelet (109 cells/L; Data Field: 
30080), lymphocyte (109 cells/L; Data Field: 30120), neutrophil 
(109 cells/L; Data Field: 30140) and basophil (109 cells/L; Data 
Field: 30160) counts as well as levels of CRP (mg/L; Data Field: 
30710) were included in the study. We also calculated NLR.

Statistical analyses

All analyses were performed in IBM SPSS Statistics 26.0.0.0. 
Questionnaire response options, ‘do not know’ or ‘prefer not to 
answer’, were handled as missing values.

First, bivariate Pearson correlations (two-tailed, with adjusted 
p-value for multiple testing using the Benjamini–Hochberg 
method) between all measures were examined to evaluate the 
presence of anticipated relationships between diet, sleep and SCI 
biomarkers.

Second, to quantify the associations between healthy diet 
score and SCI biomarkers, separate linear regression analyses 
were performed. In the unadjusted models, the associations 
between food group intake (vegetable, fruit, oily fish, non-oily 
fish, unprocessed red meat and processed meat) and biomarkers 
of SCI were analysed. In the adjusted models, age, sex, body 
mass index (BMI), total number of mental health symptoms 
reported, Townsend Deprivation Index scores (as a marker of 
socioeconomic status (SES)) and overall health ratings were 
added as covariates in the linear models described above.

Third, we also performed separate unadjusted and adjusted 
(age, sex, BMI, mental health symptomatology, SES and overall 
health ratings) linear regression analyses to examine the role of 
biomarkers of SCI on problematic sleep index.

Finally, in separate covariate adjusted (age, sex, BMI, mental 
health symptomatology, SES and overall health ratings) media-
tion models, we examined whether SCI biomarkers mediate the 
relationship between healthy diet score and the problematic sleep 
index with Process macro (http://processmacro.org/index.html) 
in SPSS (Hayes, 2017) using 5000 bootstrap resamples and 95% 
confidence intervals. Standardised coefficients are reported 
throughout.

Results
Baseline characteristics of 449,084 participants according to leu-
kocyte, platelet, lymphocyte, neutrophil and basophil counts; 
CRP levels and NLR are presented in the Supplemental Results 
Table 1.

Associations between diet, sleep and SCI 
biomarkers

As seen in Table 1, problematic sleep index scores showed 
negative significant associations with all SCI biomarkers (i.e. 
less SCI is associated with less problematic sleep). Similarly, 
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healthy diet score was negatively associated with all SCI bio-
markers except the platelet count. Moreover, problematic sleep 
index and healthy diet score was positively correlated. Using a 
split-half approach, consistent with the results from the total 
data set, all but one correlation (healthy diet and platelet count) 
was found to be statistically significant in each half; thus, both 
halves of the data set produce similar results (see Supplemental 
Results Table 2).

Food group intake predicts SCI biomarkers

Results from the regression models are presented in Table 2.

Unadjusted models. Lower fruit and oily fish but higher unpro-
cessed and processed meat intakes were associated with higher 
leukocyte (F(6, 455,522) = 591.59, p ⩽ 0.001, R2(adjusted) = 0.008, 
Cohen’s f2 = 0.008) and basophil (F(6, 454,673) = 55.36, p ⩽ 0.001, 
R2(adjusted) = 0.001, Cohen’s f2 = 0.0007) counts. While lower 
intakes of all food groups were associated with higher platelet 
count (F(6, 455,524) = 427.77, p ⩽ 0.001, R2(adjusted) = 0.006, 
Cohen’s f2 = 0.005), only lower intakes of vegetables, fruits and 
oily fish but higher intakes of unprocessed red and processed meat 
were associated with higher neutrophil count (F(6, 
456941) = 905.19, p ⩽ 0.001, R2(adjusted) = 0.012, Cohen’s 
f2 = 0.012) and CRP levels (F(6, 448,637) = 273.44, p ⩽ 0.001, 
R2(adjusted) = 0.004, Cohen’s f2 = 0.004). Higher lymphocyte 
count, on the other hand, was associated with lower intakes of 
fruits and oily fish, but with higher intakes of vegetables, unpro-
cessed red meat and non-oily fish (F(6, 454 673) = 15.71, 
p ⩽ 0.001, R2(adjusted) = 0.0001, Cohen’s f2 = 0.0001). Higher 
NLR was associated with lower intakes of vegetables, fruits, 
unprocessed read meat, oily and non-oily fish, but with higher 
amounts of processed meat (F(6, 448,637) = 328.31, p ⩽ 0.001, 
R2(adjusted) = 0.004, Cohen’s f2 = 0.004).

Adjusted models. Lower intakes of fruits, vegetables, oily and 
non-oily fish but higher intakes of unprocessed red and processed 
meat were associated with higher neutrophil counts (F(12, 
456,941) = 1740.06, p ⩽ 0.001, R2(adjusted) = 0.044, Cohen’s 
f2 = 0.046), leukocyte counts (F(12, 455,522) = 1641.51, p ⩽ 0.001, 
R2(adjusted) = 0.042, Cohen’s f2 = 0.043) and CRP levels (F(12, 
448,637) = 3190.12, p ⩽ 0.001, R2(adjusted) = 0.079, Cohen’s 
f2 = 0.085). There was also an association between lower intakes of 
non-oily fish and higher CRP. The same pattern of results was also 
observed for platelet and basophil counts; however, both non-oily 
fish and vegetables intakes were not associated with basophil 
counts (F(12, 454,673) = 213.73, p ⩽ 0.001, R2(adjusted) = 0.006, 
Cohen’s f2 = 0.006) and unprocessed red meat intake was not asso-
ciated with platelet count (F(12, 455,524) = 2595.16, p ⩽ 0.001, 
R2(adjusted) = 0.064, Cohen’s f2 = 0.068). Higher lymphocyte count 
was associated with lower fruit and higher unprocessed red and 
processed meat and vegetable intakes (F(12, 454,673) = 402.372, 
p ⩽ 0.001, R2(adjusted) = 0.010, Cohen’s f2 = 0.010). Higher NLR 
was associated with lower intakes of vegetables, fruits, unpro-
cessed red meat, oily and non-oily fish, but with higher amounts of 
processed meat (F(12, 448,637) = 684.17, p ⩽ 0.001, 
R2(adjusted) = 0.018, Cohen’s f2 = 0.018).

SCI biomarkers predict problematic sleep

In the unadjusted model, we observed negative associations between 
problematic sleep index and all markers of SCI, except leukocyte 
count (F(7, 372,649) = 452.57, p ⩽ 0.001, R2(adjusted) = 0.008, 
Cohen’s f2 = 0.008). After controlling for age, sex, BMI, mental and 
overall health ratings and SES, leukocyte, lymphocyte and basophil 
counts were no longer associated with better sleep; however, lower 
counts of platelets, CRP and NLR and higher counts of neutrophils 
were associated with better sleep (F(13, 372,649) = 6008.846, 
p ⩽ 0.001, R2(adjusted) = 0.173, Cohen’s f2 = 0.209) (Table 3).

Table 1. Correlation matrix showing the relationships between problematic sleep index, healthy diet score and SCI biomarkers.

1 2 3 4 5 6 7 8 9

1. Problematic sleep index r 1 0.016*** −0.053*** −0.039*** −0.021*** −0.056*** −0.018*** −0.081*** −0.021***
N 410,217 393,878 393,881 393,153 393,153 393,153 386,054 393,148

2. Healthy diet score r 1 −0.072*** 0.002 −0.007*** −0.086** −0.011*** −0.051*** −0.049***
N 478,149 478,151 477,265 477,265 477,265 468,550 477,258

3. Leukocyte count r 1 0.205*** 0.706*** 0.794*** 0.250*** 0.188*** 0.204***
N 478,145 477,265 477,265 477,265 456,520 477,258

4. Platelet count r 1 0.072*** 0.226*** 0.075*** 0.124*** 0.036***
N 477,261 477,261 477,261 456,522 477254

5. Lymphocyte count r 1 0.154*** 0.184*** 0.021*** −0.275***
N 477,265 477,265 455,690 477,258

6. Neutrophil count r 1 0.149*** 0.240*** 0.535***
N 477,265 455,690 477,258

7. Basophil count r 1 0.052*** −0.018***
N 455,690 477,258

8. C-reactive protein r 1 0.160***
N 455,683

9. NLR r 1
N  

***Correlation is significant with a false discovery rate <0.001 level (two-tailed).
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The role of SCI biomarkers in problematic 
sleep index and healthy diet score 
association

Significance and path coefficients are shown in the mediation 
models depicted in Figure 1, Table 4 shows indirect effects. We 
found significant relationships between healthy diet score and all 
SCI biomarkers, indicating that individuals with lower healthy 
diet scores had increased SCI biomarkers (paths a). We also 
observed (i) negative associations between problematic sleep 
index and neutrophil counts, CRP and NLR (showing that higher 
biomarker counts/levels were associated with more problematic 
sleep) and (ii) positive associations between problematic sleep 
index and platelet count (showing that counts were associated 
with less problematic sleep) (paths b). While platelet and neutro-
phil counts, CRP levels and NLR fully mediated the association 
between healthy diet score and problematic sleep index, for leu-
kocyte, lymphocyte and basophil counts, both direct (paths c) 
and total (paths c′) effects of healthy diet score on problematic 
sleep index were significant, indicating that these SCI biomarker 
counts partially mediated the effects of healthy diet score on 
sleep problems.

We also examined the significance of indirect associations for 
each model, by using bias-corrected bootstrap confidence inter-
vals. The confidence intervals for each indirect path were above 
zero for some SCI biomarkers, indicating significant indirect 
associations between healthy diet score and problematic sleep 
index through platelet and lymphocyte counts, CRP levels and 
NLR (see Table 4).

Secondary analyses

Given the bidirectional nature of sleep-inflammation and diet-
inflammation relationships, we have also included results from 
regression analyses predicting SCI from both problematic sleep 
index and healthy diet score (see Supplemental Results, Tables 3 
to 9).

Discussion and conclusion
To the best of our knowledge, this is the first large-scale study 
that aimed to investigate (1) the associations of SCI biomarkers 
with (1.1.) problematic sleep and (1.2.) healthy diet and (2) the 

Table 3. Regression analysis summary for problematic sleep index.

Problematic sleep index# Problematic sleep index##

 β
(SE)

LL
UL

β
(SE)

LL
UL

Constant ***
(0.001)

0.785
0.788

***
(0.002)

0.963
0.970

Leukocyte count 0.010
(0.001)

−0.001
0.002

−0.014
(0.001)

−0.002
0.000

Platelet count −0.022***
(0.000)

0.000
0.000

−0.010***
(0.000)

0.000
0.000

Lymphocyte count −0.014*
(0.001)

−0.003
0.000

0.008
(0.001)

0.000
0.002

Neutrophil count −0.042***
(0.001)

−0.004
−0.002

0.016*
(0.001)

0.000
0.002

Basophil count −0.006***
(0.004)

−0.020
−0.006

0.002
(0.001)

−0.002
0.011

C-reactive protein −0.070***
(0.000)

−0.002
−0.002

−0.016***
(0.000)

0.000
0.000

NLR 0.008***
(0.000)

0.000
0.001

−0.005**
(0.000)

−0.001
0.000

Age −0.099***
(0.000)

−0.001
−0.001

Sex (F = 0/M = 1) 0.068***
(0.000)

0.014
0.015

BMI −0.047***
(0.000)

−0.001
−0.001

MH symp. (higher = worse) −0.256***
(0.000)

−0.009
−0.009

Health rating (higher: worse) −0.220***
(0.000)

−0.033
−0.032

SES (higher : least affluent) −0.057***
(0.000)

−0.002
−0.002

BMI: body mass index; MH symp.: mental health symptomatology; NLR: neutrophil to lymphocyte ratio; SES: socioeconomic status.
#Unadjusted.
##Adjusted for age, sex, BMI, mental health symptomatology, SES and overall health ratings.
**p ⩽ 0.01. ***p ⩽ 0.001.
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Leukocyte 
count

Problema�c 
Sleep Index

Healthy 
Diet Score

Platelet count

Problema�c 
Sleep Index

Healthy 
Diet Score

a= -0.0991***
[-0.1049, -0.0933]

b= 0.0000
[-0.0002, 0.0001]

Neutrophil 
count

Problema�c 
Sleep Index

Healthy 
Diet Score

a= -1.9312***
[-2.0923, -1.7701]

b= 0.0000***
[0.0000, 0.0005]

Lymphocyte 
count

Problema�c 
Sleep Index

Healthy 
Diet Score

a= -0.0817***
[-0.0856, -0.0779]

b= -0.0001
[-0.0003, 0.0001]

c= 0.0003
[0.0000, 0.0006]

c’= 0.0003*
[0.0000, 0.0006]

a= -0.0095***
[-.00127, -0.0063]

b= 0.0001
[-0.0001, 0.0004]

c= 0.0003*
[0.0000, 0.0006]

c’= 0.0003*
[0.0000, 0.0006]

c= 0.0003
[0.0000, 0.0005]

c’= 0.0003*
[0.0000, 0.0006]

c= 0.0003*
[0.0000, 0.0006]

c’= 0.0003*
[0.0000, 0.0006]

Basophil 
count

Problema�c 
Sleep Index

Healthy 
Diet Score

C-reac�ve 
protein

Problema�c 
Sleep Index

Healthy 
Diet Score

a= -0.1347***
[-0.1463, -0.1231]

b= -0.0004***
[-0.0005, -0.0003]

c= 0.0002
[0.0000, 0.0005]

c’= 0.0003***
[0.0000, 0.0006]

a= -0.0006***
[-0.0007, -0.0004]

b= 0.0033
[-0.0027, 0.0092]

c= 0.0003***
[0.0000, 0.0006]

c’= 0.0003***
[0.0000, 0.0006]

NLR

Problema�c 
Sleep Index

Healthy 
Diet Score

a= -0.0335***
[-0.0370, -0.0300]

b= -0.0004*
[-0.0006, -0.0001]

c= 0.0003
[0.0000, 0.0005]

c’= 0.0003*
[0.0000, 0.0006]

Figure 1. Results of the mediation analyses showing standardised coefficients, significance and confidence intervals. ***p ⩽ 0.001. *p ⩽ 0.05.
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role of SCI biomarkers in diet–sleep relationship. As predicted, 
all SCI biomarkers were negatively associated with both better 
sleep and healthy diet score (except platelet count for healthy 
diet). We found that food groups that are abundant in healthy (e.g. 
MED-style) diets (fruit, vegetable and oily and non-oily fish) 
were negatively associated with SCI markers, whereas food 
groups that are abundant in unhealthy (e.g. Western-style) diets 
(processed meat) were positively associated with SCI markers in 
the adjusted models. Regards to sleep, we observed negative 
associations with platelet counts, CRP levels (i.e. lower levels 
and counts were associated with better sleep) and NLR, but a 
positive association with neutrophil count in the adjusted model. 
Finally, after adjusting for age, sex, BMI, mental health symp-
tomatology, overall health ratings and SES, platelet and neutro-
phil counts, CRP levels and NLR were found to be fully mediating 
the association between healthy diet score and problematic sleep 
index, whereas leukocyte, lymphocyte and basophil counts were 
found to be partially mediating the associations between healthy 
diet score and problematic sleep index. Additionally, we observed 
significant indirect associations between healthy diet score and 
problematic sleep index through platelet and lymphocyte counts, 
CRP levels and NLR.

Our findings showing negative associations between food 
groups that are abundant in healthy diets (vegetables, fruits and 
fish) and SCI biomarkers are consistent with the existing litera-
ture showing anti-inflammatory effects of consumption of these 
food groups (Esmaillzadeh et al., 2006; Imano et al., 1999; Menni 
et al., 2021; Nakagami et al., 2019; Wannamethee et al., 2006; 
Zampelas et al., 2005) and adherence MED-style diets (Bonaccio 
et al., 2014; Chrysohoou et al., 2004; Lopez-Garcia et al., 2004; 
Waldeyer et al., 2018). The beneficial effects of healthy diets 
have been ascribed to their high content of antioxidants, fibre and 
unsaturated fatty acids (Bonaccio et al., 2013); therefore, these 
nutrients may have contributed to this anti-inflammatory effect. 
Converging evidence comes from previous research showing 
inverse relationships between SCI and dietary antioxidant 
(Wisnuwardani et al., 2020), fibre (Ma et al., 2008) and polyun-
saturated fatty acid (Ferrucci et al., 2006) intakes. Additionally, 
this negative relationship between inflammatory biomarkers and 
food groups that are abundant in the healthy diets could also be 
attributed to the healthy lifestyle associated with adherence to 
these diets.

On the other hand, in line with previous literature (Ali et al., 
2017; Azadbakht and Esmaillzadeh, 2009; Chai et al., 2017; 
Ley et al., 2014), we observed positive associations with SCI 

biomarkers and (i) consumption of food groups that are abun-
dant in unhealthy diets (such as processed and unprocessed red 
meat) and (ii) adherence to Western-style diets (Khayyatzadeh 
et al., 2018; Silveira et al., 2018). It is well known that 
unhealthy diets are characterised by higher consumption of 
sugar, salt, refined grains and saturated- and trans-fatty acids 
(Jacka, 2017; Marx et al., 2017) and, of special importance, 
saturated fatty acids, have been repeatedly shown to increase 
inflammatory markers (Mu et al., 2014; Ruiz-Núñez et al., 
2016). Additionally, innate immune cells are known to (i) be 
affected by food intake (as nutrients can stimulate pattern rec-
ognition receptors) and (ii) start an inflammatory response to 
some or all of these nutrients as they do to pathogens 
(Hotamisligil, 2017).

In the current study, we observed associations with between 
better sleep and lower counts of platelets, CRP levels and NLR. 
Our findings extend the evidence form previous research show-
ing negative associations with CRP levels and (i) sleep duration 
(Ferrie et al., 2013) and sleep quality (Lee et al., 2020; Liu et al., 
2014). To the best of our knowledge, the current study is the first 
one to show associations of poor sleep quality (i.e. an index of 
sleep quality beyond mere duration) with (i) platelet counts and 
(ii) NLR in generally healthy population by using self-reported 
sleep measures. Our findings show that poor sleep may induce 
SCI. Alternatively, given that increased counts of platelets, CRP 
levels and NLR are associated with SCI, an increase in these pro-
inflammatory signals may have affected various sleep outcomes 
via neural, humoral, blood–brain barrier transport and/or cellular 
mechanisms (for details of possible mechanisms of action, see 
Bryant et al., 2004; Irwin, 2019) and therefore predicted more 
problematic sleep.

Unlike previous studies showing negative associations bet-
ween leukocyte counts and subjective (Nishitani and Sakakibara, 
2007) and objective (Obayashi et al., 2016) sleep quality, in  
the current study, we did not observe this association. It is impor-
tant to note that half of the participants recruited by Nishitani 
and Sakakibara (2007) were involved in shift working prac-
tices. Given the association between shift working and SCI 
(Puttonen et al., 2011), their findings may partly be attributed to 
the higher counts of leukocytes observed in the shift workers 
skewing findings towards significance. Additionally, Obayashi 
and colleagues (2016) used actigraphy to measure sleep quality. It 
is well known that there is a poor agreement between sleep ques-
tions typically used to assess sleep quality in epidemiologic stud-
ies and actigraphy-derived sleep quality (Girschik et al., 2012); 

Table 4. Standardised indirect associations between healthy diet score on problematic sleep index.

Coefficient SE 95% CI

Diet→Leukocyte count→Sleep 0.0000 0.0001 [−0.0001, 0.0002]
Diet→Platelet count→Sleep 0.0003 0.0001 [0.0002, 0.0005]
Diet→Lymphocyte count→Sleep 0.0000 0.0000 [0.0000, 0.0000]
Diet→Neutrophil count→Sleep 0.0001 0.0001 [−0.0001, 0.0003]
Diet→Basophil count→Sleep 0.0000 0.0000 [−0.0001, 0.0000]
Diet→C-reactive protein→Sleep 0.0006 0.0001 [0.0005, 0.0007]
Diet→NLR→Sleep 0.0001 0.0000 [0.0000, 0.0002]

CI: confidence intervals; NLR: neutrophil to lymphocyte ratio; SE: standard error.
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hence, self-report questions in the UKB study might not be sensi-
tive enough to capture the association between sleep quality and 
leukocyte count.

Interestingly, although intervention studies found that long-
term sleep restriction (5 days of restricted/shortened sleep, 4 h/
night: 03.00–07.00 h) increased neutrophil counts (Lasselin et al., 
2015), we observed a positive association between better sleep 
and neutrophil counts. Given that (i) the NLR is a robust bio-
marker of SCI (Zahorec, 2021) and (ii) we observed a negative 
association between NLR and problematic sleep index, we could 
conclude that neutrophil counts alone might not be a sensitive 
marker for predicting habitual sleep outcomes, but they may be a 
useful indicator of altered SCI as a result of chronic sleep loss 
and/or sleep disorders.

Although it has been shown that both (i) diet quality 
(Hepsomali and Groeger, 2021) and (ii) reduced dietary inflam-
mation index scores (Godos et al., 2019) were associated with 
better sleep quality, the current study was the first to investigate 
and show the mediating role of various inflammatory markers on 
diet and sleep quality relationship in a large generally healthy 
population. These findings not only link the existing evidence 
showing negative associations between (i) healthy diets and 
inflammatory markers (Bonaccio et al., 2014; Chrysohoou et al., 
2004; Lopez-Garcia et al., 2004; Waldeyer et al., 2018) and (ii) 
inflammatory markers and sleep quality (Lee et al., 2020; Liu 
et al., 2014; Nishitani and Sakakibara, 2007; Obayashi et al., 
2016), but also add to the wealth of evidence showing the mediat-
ing role of SCI on the relationship between diet and chronic dis-
eases (Soory, 2012). Moreover, directly affecting metabolic and 
immunologic responses, diet could also influence sleep outcomes 
indirectly via influencing the gut microbiota (and vice versa), 
which is known to play a role in driving SCI (Hakansson and 
Molin, 2011). In fact, a recent review has proposed a link between 
the gut microbiota and circadian rhythms, potentially contribut-
ing to poor sleep and/or sleep disorders (Teichman et al., 2020). 
Therefore, adherence to healthy diets might lead to an anti-
inflammatory response as a result of changes in the gut microbi-
ota’s composition and diversity and may result in positive sleep 
outcomes.

There are several notable limitations in the current research. 
First of all, although our study benefits from a large population-
based sample and a wide range of covariates available for adjust-
ment, including mental health, which is known to have a 
bidirectional relationship between both sleep outcomes (Breslau 
et al., 1996; Gillin et al., 1979; Neckelmann et al., 2007; Soehner 
and Harvey, 2012) and SCI (Cryan and Dinan, 2012; Phillips 
et al., 2018), due to the cross-sectional nature of the study, we 
could not determine causal relationships. This is especially 
important because while some researchers criticised conducting 
mediation analyses using cross-sectional data (Fairchild and 
McDaniel, 2017), others posited that atemporal mediation (as in 
the current study) can still be demonstrated without inferring 
causality (Hayes, 2017; Hayes and Rockwood, 2017; MacKinnon 
et al., 2007). Secondly, the UKB data set includes self-report 
sleep measures, and as such the possibility of potential bias and/
or measurement errors should not be ruled out. Thirdly, although 
we observed small effect sizes in our study, it is well known that 
effect sizes observed in large cohort studies are substantially 
smaller compared to case–control/clinical studies. Sample char-
acteristics of case–control/clinical studies (i.e. extreme cases 

and/or use of medication inflating the effect sizes) and/or reduced 
sensitivity of UKB measures compared to the ones utilised in 
case–control/clinical studies may partly account for the small 
effect sizes observed here. However, it is accepted that even 
though small to modest overall effect sizes may be of limited 
clinical relevance, such differences may have substantial conse-
quences for whole populations. Fourthly, associations we 
observed are based on single measurements of SCI biomarkers; 
however, although intraindividual variabilities of inflammatory 
biomarkers have been observed before (e.g. deGoma et al., 
2012), single measurements of these inflammatory biomarkers 
have been shown to predict a range of health outcomes (e.g. 
Chung et al., 2005; Ruggiero et al., 2007; Wium-Andersen et al., 
2013). Fifthly, the time of the blood draw is unknown in the cur-
rent study, hence results should be interpreted with caution as 
some SCI biomarkers show circadian rhythms (e.g. Lange et al., 
2022). Finally, as we adjusted our models for a number of covari-
ates (but not for smoking, physical activity, medication, sleep 
disorders etc.), our findings are potentially sensitive to selection 
bias or reduced power, arising from missing data. Further inter-
ventional studies that examine the temporal order of the associa-
tions are warranted to replicate our results, preferably by using 
objective measures and multiple biomarker collections, and 
while controlling for chronic diseases, and ultimately develop a 
better understanding of the mechanisms underlying the interplay 
between diet, SCI and sleep.

In conclusion, we found negative associations between SCI 
biomarkers and habitual consumption of food groups (vegeta-
bles, fruits and seafood) that are abundant in healthy diets. In 
contrast, positive associations were observed between SCI bio-
markers and habitual consumption of food groups (processed 
meat) that are abundant in unhealthy diets. Although a reduction 
in some SCI biomarkers (platelets, CRP and NLR) predicted bet-
ter sleep quality, neutrophil counts, CRP levels and NLR fully; 
and leukocyte, lymphocyte and basophil counts partially medi-
ated diet and sleep relationship. It is clear from our findings that 
healthy diets are associated with lower SCI, and lower SCI bio-
markers predict better sleep quality, and therefore, adherence to a 
good quality diet may represent a promising therapeutic, preven-
tative and/or self-management strategy for sleep disorders/issues 
and poor sleep-related long-term health outcomes.
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