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Simple Summary: Animals adjust their resource allocation strategies to maximize their reproductive
benefit under dynamic socio-sexual environments. For example, male insect adults increase their
testicular investment with the perceived increase of rivals to gain a competitive advantage in fathering
offspring. To date, it is not clear whether insect pupae, which do not feed and crawl, can fine-tune
their investment in sperm and testis size according to their social-sexual settings. This knowledge
is vital to understanding how male insects respond to their surroundings experienced at different
life stages. Using a moth which produces both fertile and unfertile sperm, we demonstrated for the
first time that after detecting cues from conspecific pupae regardless of sex, male pupae increased
production of both types of sperm at the same rate but kept testis size unchanged. Because most
morphological traits are formed during the larval stage in insects, testis size may be fixed after
pupation, allowing little room for the pupae to adjust testis size with social changes. Like adults,
male pupae with fully grown testes have sufficient resources to produce more sperm of both types
according to the perceived increase of sperm competition risk.

Abstract: Theoretic and empirical studies show that social surroundings experienced by male insects
during their larval or adult stage can influence their testicular investment in diverse ways. Although
insect pupae do not feed and crawl, they can communicate using sex-specific and/or non-sex
specific cues. Yet, it is unknown, in any insect, whether and how male pupae can fine-tune their
resource allocation to sperm production and testis size in response to socio-sexual environments.
We investigated this question using a moth, Ephestia kuehniella, which produces fertile eupyrene
sperm and unfertile apyrene sperm. We held male pupae individually or in groups with different
sex ratios, and dissected adults upon eclosion, measured their testis size, and counted both types of
sperm. We demonstrated that after exposure to conspecific pupal cues regardless of sex, male pupae
increased production of eupyrenes and apyrenes at the same rate but kept testis size unchanged.
We suggest that testis size is fixed after pupation because most morphological traits are formed
during the larval stage, allowing little room for pupae to adjust testis size. Like adults, male pupae
with fully grown testes have sufficient resources to produce more sperm of both types according to
the perceived increase in sperm competition risk.

Keywords: spermatogenesis; sperm competition; testes; socio-sexual environment

1. Introduction

Animals adjust their resource allocation strategies to maximize their reproductive
fitness in response to socio-sexual environments [1–3]. For example, male animals may
invest more in sperm after they detect the presence of rivals to gain an advantage in sperm
competition [2,4–10]. In insects, males fine-tune their sperm investment in response to sex
specific cues experienced during the adult stage [10–16] or non-sex specific cues during the
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larval stage [17–21]. Although insect pupae do not feed and crawl, they can communicate
with each other using species-specific acoustic [22–29] or chemical cues [30–34]. Further-
more, female pupae can release sex pheromones [35–38]. These findings suggest that male
pupae should be able to detect conspecific pupal cues representing the density and sex
ratio of the local population, and thus future sperm competition risk. Yet, prior to the
current study, nothing is known about whether and how insect pupae can adjust their
sperm production in response to these cues.

Testes are a sperm production organ and their relative size or mass may be an indicator
of sperm production. Evidence shows that male insect larvae, in the growth and develop-
ment stage, can adjust their testis size in response to conspecific larval cues, regardless of
sex. For example, with the increase in larval density, testis size increases in some species,
suggesting an increase of sperm production (sperm were not counted though) [17,39,40]. In
a study where testis size is measured and sperm are counted [19], the male larvae exposed
to larval cues, regardless of sex, produce smaller testes but more fertile sperm. These discov-
eries suggest that in response to their social environment, male larvae are able to dedicate
varying portions of testis volumes to spermatogenesis and other functions [41], resulting
in potential trade-offs between traits of different functions [19,42–44]. However, there is no
report that insects can alter their testis size in response to the socio-sexual environment ex-
perienced at the adult stage. This may be because most resource allocation to traits making
up the adult body takes place during growth and development [42,43,45–48], leaving little
room for adults to change their testis morphology. To date, it is not clear whether insect
pupae can alter their testis size after exposure to different socio-sexual environments.

Here, we used a polygamous moth, Ephestia kuehniella, as a model to investigate
whether and how the socio-sexual environment during the pupal stage affects male invest-
ment in testis size and sperm production. Adults of this species do not feed so they acquire
all resources via larval feeding [49,50]. The pupal stage lasts about eight days [19,51,52],
during which time, females emit sex pheromones [36]. Like most lepidopterans [53],
E. kuehniella males produce two types of sperm, larger nucleated eupyrenes during the
larval and pupal stages, and smaller anucleated apyrenes during the pupal stage [54].
After mating, both types of sperm migrate to the sperm storage site (spermatheca) but only
eupyrenes can fertilize eggs. Apyrenes may function to delay female remating [55,56], pro-
tect eupyrenes in the female reproductive tract [57], or enable eupyrenes to migrate to the
spermatheca [58]. More recent studies suggest that the role of apyrenes may be completed
after both types of sperm arrive at the spermatheca [59,60]. The apyrene-to-eupyrene ratio
remains consistent under food shortage during the larval stage [61] or environmental stress
during the larval [62] and pupal stages [63]. However, E. kuehniella males increase the ratio
after detecting rival cues during the adult stage [10] or reduce it following exposure to
larval cues during the larval stage [19]. So far, it is still unclear whether the socio-sexual
environment during the pupal stage affects the sperm production ratio.

Based on the theoretic framework and empirical evidence outlined above, we hypoth-
esize that male pupae kept together with other male pupae should grow larger testes and
produce more sperm with higher apyrene-eupyrene ratio than those maintained individ-
ually or with female pupae. To test this prediction, we individually reared hundreds of
larvae under the same condition, starting from neonate larvae. We then transferred newly
pupated pupae to experimental arenas and held male pupae individually or in groups with
different sex ratios. Upon adult eclosion, we dissected them, measured their testis size, and
counted both types of sperm. This is the first study to examine whether and how male
insects adjust their testicular investment in response to their socio-sexual environment
experienced during the pupal stage.

2. Materials and Methods
2.1. Insects

We established a laboratory colony of E. kuehniella from thousands of larvae collected
at Turks’ Poultry, Foxton, New Zealand. We raised these larvae with their original food
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until adult eclosion in the laboratory. To standardize the colony, we randomly selected and
confined about 300 newly eclosed adults (approx. 1:1 sex ratio; females with an ovipositor
and males with a pair of claspers at the end of abdomen) in a transparent plastic cage
(28 cm in length and width and 24 cm in height), lined with porous plastic sheets on the
bottom for oviposition. We then randomly allocated 200 resultant neonate larvae to each of
the 10 transparent plastic cylinders (8 cm in diameter and 10 cm height), each filled with
50 g artificial diet (ad libitum) comprising of a 3.0:10.0:43.5:43.5 mixture of yeast, glycerine,
maize meal, and whole meal wheat flour, respectively. We covered the cylinder with a lid.
We made a hole (3 cm diameter) in the middle of the lid and covered it with two layers of
cloth mesh (2.8 apparatus per mm2) for ventilation.

To generate an experimental line, we randomly collected 1000 neonate larvae produced
by adults from the above cylinders and reared them individually in 2.0-mL micro-centrifuge
tubes, each with 0.25 g artificial diet for food and a ventilation hole in the lid made by an
insect pin. We observed their pupation daily after the larvae reached the final (sixth) instar.
The breeding colony and experimental line were kept and all experiments conducted at
25 ± 1 ◦C and 60 ± 10% RH with a photoperiod of 10:14 h (dark:light).

2.2. Experimental Setup and Data Collection

We randomly selected newly pupated pupae (male pupae with visible reddish testes
in the abdomen) from the experimental line and transferred them into glass vials (2 cm in
diameter and 7.5 cm height) to create three treatments (Figure 1): (1) one male pupa in a
vial (1M), (2) six male pupae in a vial (6M), and (3) one male pupa and five female pupae
in a vial (1M5F). Pupae in treatments (2) and (3) were in close contact with each other. We
plugged the glass vial opening with cotton wool and monitored adult emergence daily
six days after transfer. All pupae from the vials successfully emerged. Immediately after
eclosion, we individually transferred newly emerged male adults into micro-centrifuge
tubes, clearly labelled them and placed them at −20 ◦C in a freezer. We considered all
emerged males as replicates, i.e., the male from each 1M vial, the male from each 1M5F
vial, and all six males from each 6M vial. In total, we obtained 30 adult males (replicates)
for each treatment.
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Figure 1. Experimental setup for the entire pupal stage of E. kuehniella: (a) 1M, one male, (b) 6M,
six males together, and (c) 1M5F, one male and five females together.

We dissected all males, extracted their testes, and measured testis volume with the aid
of a stereomicroscope (Leica MZ12, Germany) equipped with a digital camera (Olympus
SC30, Tokyo, Japan) operated by Olympus CellSens® software (GS-ST-V1.7, Tokyo, Japan).
As E. kuehniella testes are fused into a spherical organ [19], we calculated its volume using
the sphere formula, 4/3πr3. We determined the r (radius) using the mean diameter from
two measurements across the organ’s central axis divided by two [17,19,64]. After volume
measurement, we placed the testes into a drop of Belar saline solution on a cavity slide,
tore them apart completely, gently rotated the slide, and counted the number of eupyrene
and apyrene sperm under a phase-contrast microscope (Olympus BX51, Tokyo, Japan)
according to Liu et al. [19].
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2.3. Statistical Analysis

Prior to statistical analyses, we fitted data to a general linear model to calculate their
residuals and test residual distribution (Shapiro-Wilk test, UNIVARIATE procedure). Data
on eupyrene number, apyrene number, and ln(x)-transformed testis size were normally
distributed. Because the experimental design was pseudoreplicated, we employed a
linear mixed-effects model [65,66] to analyze our data with treatment as a fixed factor and
replicate nested into vial (male source) as a random factor [19,66–68]. We used a Tukey
test for multiple comparisons between treatments. We analyzed the relationship between
eupyrenes and apyrenes by a general linear model (GLM procedure) and the slopes of
linear lines by an analysis of covariance (ANCOVA) with treatment as the covariate in the
model. The numbers of eupyrenes and apyrenes were ln(x)-transformed to achieve normal
distribution of data before performing linear regression and ANCOVA. We performed the
statistical analyses using SAS 9.4 (SAS, Inc, Cary, NC, USA).

3. Results

We demonstrate that males kept in groups (treatments 6M and 1M5F) produced
significantly more eupyrene (F2,29 = 26.31, p < 0.0001) and apyrene sperm (F2,29 = 10.07,
p = 0.0005) than those maintained singly (treatment 1M) (Figure 2a,b). Sex ratio did not
significantly affect production of either eupyrene (F1,29 = 3.66, p = 0.0658) or apyrene
(F1,29 = 3.19, p = 0.0847) (Figure 2a,b). Testis size remained similar in all treatments
(F2,29 = 0.01, p = 0.9852) (Figure 3).
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Figure 2. Effect of socio-sexual environment during the pupal stage on the number of eupyrene
(a) and apyrene (b) sperm in testes of E. kuehniella. 1M, one male; 6M, six males together; 1M5F,
one male and five females together. Each box plot shows the range between the first and third
quartiles (black box), mean (black dot) and median scores (black lines); and ‘violin’ shapes show the
shape of the distribution. Different letters on the top of the shapes denote significant differences
between treatments (p < 0.05).
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Figure 3. Effect of socio-sexual environment during the pupal stage on testis size of E. kuehniella. 1M,
one male; 6M, six males together; 1M5F, one male and five females together. Each box plot shows the
range between the first and third quartiles (black box), mean (black dot) and median scores (black
lines); and ‘violin’ shapes show the shape of the distribution. The same letters on the top of the
shapes denote no significant differences between treatments (p > 0.05).
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Our results show that the ratio of apyrene:eupyrene was about 5:1 with no significant
difference between treatments (F2,29 = 1.24, p = 0.3041). The numbers of eupyrenes and
apyrenes were significantly positively correlated in all treatments (F1,28 = 5.31, p = 0.0289
for 1M; F1,28 = 16.65, p = 0.0003 for 1M5F; F1,28 = 11.94, p = 0.0018 for 6M) but the slopes of
regression lines were not significantly different (F2,84 = 0.22, p = 0.7996) (Figure 4).
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Figure 4. Relationship between the number of eupyrene and apyrene sperm produced. For 1M
(one male), ln(eupyrene) = 6.58 + 0.31 × ln(apyrene), R2 = 0.1594; for 6M (six males together),
ln(eupyrene) = 6.59 + 0.32 × ln(apyrene), R2 = 0.2990; and for 1M5F (one male and five females
together), ln(eupyrene) = 7.54 + 0.24 × ln(apyrene), R2 = 0.3729.

4. Discussion

We demonstrate for the first time that male pupae of an insect increased sperm
production after exposure to conspecific pupal cues regardless of sex (Figure 2). Previous
studies report that male insect larvae also can increase their investment in sperm in the
presence of non-sex specific larval cues [17,19–21]. These findings indicate that juvenile
male insects can predict future sperm competition risks from cues of conspecific immature
stages and subsequently adjust their sperm production [17,19,69–71]. In lepidopteran
insects, adults [10] and pupae (current study) adjust production of both fertile eupyrene
and infertile apyrene sperm, while larvae only fine-tune production of eupyrene sperm [19]
in response to socio-sexual environments. Furthermore, larvae either increase [17,40] or
reduce [19] testis size in response to larval cues but pupae (Figure 3) and adults do not
change their testis size under different socio-sexual situations. These discoveries suggest
that resource allocation to sperm production and testis size differs depending on the life
stages exposed to sperm competition environment.

The above diverse responses to social cues may be attributed to the fact that re-
source allocation to morphological traits and spermatogenesis takes place in different life
stages. Evidence shows that most adult morphological traits are formed during the larval
stage [42,43,47,48], allowing the larvae but not pupae and adults to adjust their testis size.
Lepidopteran males produce most eupyrene sperm during the larval and pupal stages,
most apyrene sperm during the pupal stage [53] and continue to produce both types of
sperm during the adult stage [10]. Therefore, male larvae can donate varying portions of
testis volumes to spermatogenesis and other functions [41], and trade off testis size and
apyrene sperm production to increase eupyrene sperm production in response to increasing
sperm competition risk [19]. However, with fully grown testes, adults and pupae have
sufficient resources to increase production of both types of sperm in response to sperm
competition environment.

In sperm-heteromorphic insects, the ayprene sperm often overwhelmingly outnumber
the eupyrene sperm [12,16,57,72,73]. Previous studies on E. kuehniella show that adult
males increase the apyrene-eupyrene ratio in response to the presence of rivals [10] but
male larvae reduce the ratio after being exposed to larval cues [19]. These may be ascribed
to the fact that spermatogenesis of apyrenes and eupyrenes occurs at different stages of
insects [53,73] and they have different functions in reproduction [56–60], allowing adults
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to increase investment in apyrene and larvae to trade-off apyrene for more eupyrene.
However, the current study on pupae demonstrates that the apyrene-eupyrene ratio was
about 5:1 with no significant difference between treatments. Furthermore, the numbers of
eupyrenes and apyrenes were significantly positively correlated in all treatments with no
significant difference in the slopes of regression lines (Figure 4). We suggest that in all life
stages, males should strive to increase production of eupyrene sperm to ensure advantages
in sperm competition (fertilization of more offspring) but also increase production of
apyrene when they can (such as at the pupal and adult stages) to ensure successful arrival
of eupyrene at the spermatheca.

Many studies reveal that insect larvae can communicate with each other using non-
sex-specific cues [34,35,74–81] and male larvae can adjust their testicular investment in
response to these cues [17,19,39,40]. Although female pupae can produce sex pheromones
in insects including our study species E. kuehniella [35–38], we have not found any indication
that male pupae could respond to this sex specific cue and adjust sperm production
accordingly (Figures 2 and 3). Because pupae were in close contact with each other in
treatments (2) and (3), physical contact cues could also play a role in pupal response. These
findings suggest that testicular investment in E. kuehniella juvenile males only responds
to the presence of social (including contact), but not sexual cues, during their growth and
development. An earlier study demonstrates that E. kuehniella adults can remember rival
cues and increase sperm allocation for most of their reproductive life after the cues are
removed [10]. However, our findings on larval [19] and pupal (current study) responses
to social environments result from dissecting adults at emergence. Therefore, we still do
not know whether different larval and pupal social exposures influence sperm allocation
during their adult lifespan, which warrants further investigation.

5. Conclusions

This is the first report on testicular investment in response to the social environ-
ment during the pupal stage in an insect. We show that after exposure to pupal cues,
male E. kuehniella pupae increase production of both eupyrene and apyrene sperm at the
same rate but keep testis size unchanged. We suggest that testis size is fixed after pupation
because resource allocation to most morphological traits occurs during the larval stage,
allowing little room for pupae to adjust testis size. With fully grown testes, pupae can
manipulate production of both types of sperm according to the sperm competition risk.
Furthermore, sex specific cues such as sex pheromones do not affect sperm production.
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