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Abstract
Introduction  Asthma is a complex disease with 
heterogeneous expression/severity. There is growing 
interest in defining asthma endotypes consistently 
associated with different responses to therapy, focusing 
on type 2 inflammation (Th2) as a key pathological 
mechanism. Current asthma endotypes are defined 
primarily by clinical/laboratory criteria. Each endotype 
is likely characterised by distinct molecular mechanisms 
that identify optimal therapies.
Methods  We applied unsupervised (without a priori 
clinical criteria) principal component analysis on sputum 
airway cells RNA-sequencing transcriptomic data from 19 
asthmatics from the Severe Asthma Research Program at 
baseline and 6–8 weeks follow-up after a 40 mg dose of 
intramuscular corticosteroids. We investigated principal 
components PC1, PC3 for association with 55 clinical 
variables.
Results  PC3 was associated with baseline Th2 
clinical features including blood (rank-sum p=0.0082) 
and airway (rank-sum p=0.0024) eosinophilia, FEV1 
change (Kendall tau-b R=−0.333 (−0.592 to −0.012)) 
and follow-up FEV1 albuterol response (Kendall 
tau-b R=0.392 (0.079 to 0.634)). PC1 with blood 
basophlia (rank-sum p=0.0191). The top 5% genes 
contributing to PC1, PC3 were enriched for distinct 
immune system/inflammation ontologies suggesting 
distinct subject-specific clusters of transcriptomic 
response to corticosteroids. PC3 association with 
FEV1 change was reproduced in silico in a comparable 
independent 14-subject (baseline, 8 weeks after daily 
inhaled corticosteroids (ICS)) airway epithelial cells 
microRNAome dataset.
Conclusions  Transcriptomic PCs from this unsupervised 
methodology define molecular pharmacogenomic 
endotypes that may yield novel biology underlying 
different subject-specific responses to corticosteroid 
therapy in asthma, and optimal personalised asthma 
care. Top contributing genes to these PCs may suggest 
new therapeutic targets.

Introduction
Asthma is a common complex disease with hetero-
geneity in both expression and severity. Multiple 

studies have addressed clinically based endotypes 
of asthma.1–8 Despite heterogeneity in asthma study 
populations and their defining clinical features/
criteria, some universally recognised common clin-
ical subgroups have emerged. These include mild 
atopic asthma originating in childhood, atopic 
asthma with lower lung function, and medication-
resistant exacerbation-prone asthma. Clinical endo-
types have also been consistently associated with 
different responses to therapy.9 With the advent 
of next generation biologics for the treatment of 
severe asthma, endotyping efforts have focused 
on identifying type-2 airway inflammation (Th2) 
asthma.10–14 Currently, asthma endotypes have 
been defined primarily by clinical laboratory or 
biomarkers criteria.9 For example, the Th2 clinical 

Key messages

What is the key question?
►► Can we discover asthma endotypes using 
transcriptomic data alone before/after 
corticosteroid treatment in asthmatic airway 
cells that are clinically relevant to disease 
typing and therapeutic response?

What is the bottom line?
►► In a population of 19 mainly severe asthmatic 
adults, we show that their sputum airway cell 
transcriptomic changes 6–8 weeks after a 
single systemic corticosteroid treatment can be 
used (without any a priori clinical/laboratory 
criteria) to define molecular pharmacogenomic 
endotypes that are associated with type 2 
inflammation asthma clinical features and 
changes in lung function.

Why read on?
►► This methodology is readily adaptable to similar 
study designs of corticosteroid treatment 
response in asthma. The top contributing genes 
to these endotypes may yield novel biology 
of corticosteroid treatment response and new 
therapeutic targets.
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features include fractional exhaled nitric oxide (FeNO) >25 ppb, 
peripheral blood eosinophil count >300 (or >150, 2 cut-offs 
considered separately) cells/µL, and sputum eosinophils >2%. 
There has been no reported molecular clustering in asthma 
without these a priori clinical criteria.15 16 A common theme is 
that each endotype is likely characterised by distinct molecular 
mechanisms that may identify optimal therapies for targeting the 
endotype.1 2 5 6 17 Indeed, several studies have reported distinct 
transcriptomic differences that appear to correlate with clinical 
subgroups.7 18 19

The aim of this study is to extend the concept of molecular 
endotype identification in asthma in novel directions through 
RNA-sequencing (RNA-seq) of sputum airway cells derived from 
a subset of 19 asthmatic subjects in the Severe Asthma Research 
Program (SARP, Wake Forest University centre) at baseline before 
(baseline), and 6–8 weeks after (follow-up) administration of 
a 40 mg dose of intramuscular corticosteroid (CS).15 We used 
the unsupervised principal components (PCs)20–22 of transcrip-
tomic changes following systemic CS treatment to define distinct 
molecular pharmacogenomic endotypes, derived independently 
of any a priori clinical criteria and evaluated these endotypes for 
their association with clinical features (focusing on Th2 ones) 
and clinical response outcomes.

Methods
Study population and biological samples
The study population consisted of 19 subjects from the National 
Heart, Lung and Blood Institute Severe Asthma Research 
Program 3 (SARP 3, Wake Forest University centre Institu-
tional Review Board IRB00021507) ​ClinicalTrials.​gov iden-
tifier NCT01750411. Twelve subjects in this longitudinal 
cohort have severe asthma and seven have non-severe (mild 
to moderate) asthma. All subjects underwent extensive pheno-
typing23 including an induced phenotype where each subject 
had systemic CS responsiveness characterised before (‘baseline’), 
and 6–8 weeks after (‘follow-up’) the administration of a 40 mg 
dose of intramuscular CS triamcinolone acetonide.15 Sputum 
was obtained at both baseline and follow-up using standardised 
SARP protocols.24–26 Thirty-eight transcriptome profile samples 
of subject sputum cells total were obtained using RNA-seq: 19 
subjects×2 timepoints.

RNA-seq and data analysis
Expanded in online supplemental methods M1. Briefly, unsu-
pervised principal component analysis (PCA) was applied on 
the subject-wise sample difference (follow-up minus baseline) 
column vectors of expression of 16 944 robustly detected genes 
to identify the dominant directions of sample variation in tran-
scriptome space called PCs20 21 focusing on PC1–3. Sample PC 
coordinates were tested for association with the 55 core clinical 
variables, online supplemental table S1. Gene ontology (GO) 
enrichment analysis was performed on the top 5% contributing 
genes of each PC. All data used in this study will be publicly 
available on NCBI GEO GSE184433.

Results
The 19 SARP subjects in this study are listed on online supple-
mental table S2 with select clinical variables at baseline, and 
their change (follow-up minus baseline) 6–8 weeks after a 
40 mg dose of intramuscular CS. Sputum cell samples were 
obtained at baseline and follow-up, and the 19×2 sputum 
sample transcriptome profile were obtained using RNA-seq 
and analysed. Figure 1 outlines the analysis workflow and key 

results on these transcriptomic data with select clinical vari-
ables, and on a comparable independent set of airway epithe-
lial cells (N=14 subjects) microRNAome dataset GSE3446627 
on NCBI GEO to assess generalisability of our strategy and 
results in silico.

Sputum cell transcriptomic PC1 and PC3 sample coordinate 
dichotomies are associated with Th2 clinical features
We applied PCA on the CS treatment sample difference/
change (follow-up minus baseline, paired) column vectors of 
16 944 genes for all 19 subjects. Without using any clinical 
variables, PCA identifies the directions of dominant global 
variance among the 19 subjects in this 16 944-gene dimen-
sional sputum cell transcriptome space. PC1–3 accounted 
for 28.93%, 19.95% and 11.93% of the global transcrip-
tomic variance, respectively. We plotted the 19 subjects in 
PC1–3 space, and visual inspection suggests transcriptomic 
clusters within quadrants of PC1/PC3 space, figure 2A–B.

We dichotomised PC1 and PC3 coordinates at 0, respec-
tively, to define transcriptomic endotypes, and we checked 
whether these dichotomies/endotypes were associated with 
CS treatment response in particular Th2 clinical features 
(eg, FeNO, sputum eosinophil %) and lung function change, 
table 1.

PC1 dichotomy was significantly associated with baseline 
blood basophil count (p=0.0191, Wilcoxon rank-sum). PC3 
dichotomy was significantly associated with baseline blood 
eosinophil count (p=0.0082), baseline (p=0.0024) and 
change (p=0.0181) in sputum eosinophil %. Thus, the molec-
ular endotypes of CS treatment response defined by PC1 and 
PC3 dichotomies are directly associated with baseline blood 
basophilia (PC1), baseline blood eosinophilia (PC3), and base-
line/change in sputum/airway eosinophilia (PC3). We also 
noted there were no significant associations with FeNO or 
pre-bronchodilator (BD) FEV1 percent predicted (%p). PC2 

Figure 1  Outline of the analysis workflow and key results from the 
primary study population of 19-subject sputum transcriptome dataset 
with select clinical variables from the Severe Asthma Research Program, 
and on a comparable independent 14-subject airway epithelial cells 
(HBEC) microRNAome dataset GSE34466 on NCBI GEO for assessing the 
generalisability of the strategy and results in silico. CS, corticosteroid; 
BASO, basophils; EOS, eosinophils; GCGS, glucocorticoid gene set; 
GO, Gene ontology; HBEC, human bronchial epithelial cells; NEU, 
neutrophils; PC#, principal component #; PCA, principal component 
analysis; SARP, Severe Asthma Research Program.
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dichotomised at 0 was not associated with any clinical vari-
ables here.

Sputum cell transcriptomic PC1 and PC3 sample coordinates 
associated with baseline blood basophil and eosinophil 
counts respectively
Next, to increase the power of our transcriptomic endo-
type analysis, we treated the subject PC1–3 coordinates as 
continuous variables (not dichotomised as above), and we 
checked whether these coordinates were associated with 55 
core clinical variables, online supplemental table S1). We 
highlight select clinical variable associations for investigation 
in table 2 focusing on Th2 clinical features. In addition, we 
investigated these associations within the 12/19 severe asthma 
sub-population.

PC1 was significantly associated with baseline blood baso-
phil count (Kendall tau-b correlation R=0.340 (0.020 to 0.597) 
95% CI). PC2 was not associated with any clinical variables here. 
PC3 with baseline blood eosinophil count (R=−0.457 (−0.680 to 
–0.158)) and baseline sputum eosinophil % (R=−0.367 (−0.627 
to –0.051)), figure 2C–D. PC1 and PC3 were not associated with 
baseline/follow-up/change in FeNO. Within the 12/19 severe 
asthma sub-population, the baseline blood basophil (PC1) 
and eosinophil (PC3) associations were not significant, but the 
baseline sputum eosinophil % (PC3) became greater (R=−0.509 
(−0.769 to –0.102)).

Focusing on the PC1 versus baseline blood basophil count, 
and PC3 versus baseline blood eosinophil count associations, we 
used ROC curve analyses to assess the diagnostic performance 
of PC1 and PC3 as binary classifiers of high versus not high base-
line blood basophil and eosinophil counts respectively, as the 
PC discrimination threshold is varied, figure 3A–B. We consider 
a subject to have a high blood basophil count if their blood 
basophil count >10 cells/μL. For blood eosinophil count, we 
considered two cut-offs: >300 cells/μL yielding just 4/19 (21%) 

high blood eosinophil subjects, and  >150 cells/μL yielding 
12/19 (63%) high blood eosinophil subjects. The areas under 
receiver operator characteristic curve (AUCCH) values of 0.883 
(PC1 vs blood basophil), and 0.900, 0.815 (PC3 vs blood eosin-
ophil at >300, >150 cells/μL cut-offs) indicate the CS treatment 
response PCs to be robust predictors of high baseline blood 
basophil and eosinophil counts, respectively.

Sputum cell transcriptomic PC3 sample coordinates sputum 
macrophage and neutrophil % following CS treatment
While the primary focus in our work here is Th2 clinical 
feature associations of PC1/3, we noted that PC3 was signifi-
cantly associated with baseline/follow-up/change in sputum 
neutrophil % (Kendall tau-b R=0.556 (0.284 to 0.745)), 
and change in sputum macrophage % (R=−0.485 (−0.699 
to –0.193)), table  2, figure  4C–D. Change in sputum 
neutrophil and macrophage % associations remain signifi-
cant within the 12/19 severe asthma subpopulation. Blood 
neutrophil count is not associated with PC1–3.

Sputum cell transcriptomic PC3 sample coordinates 
associated with change in pre-BD FEV1 following CS 
treatment
A notable result when the subject PC3 coordinates is treated 
as a continuous variable (not dichotomised at 0) is that PC3 
is significantly associated with two lung function measure-
ments following CS, table  2, figure  4A–B, namely change 
in pre-BD FEV1%p (Kendall tau-b R=−0.333 (−0.592 
to –0.012)), follow-up BD response (R=0.392 (0.079 to 
0.634)). Within the 12/19 severe asthma subpopulation 
both associations became greater, and interestingly PC1 is 
now significantly associated with baseline (R=0.485 (0.071 
to 0.756)) and follow-up (R=0.576 (0.195 to 0.806)) BD 
response.

Focusing on the change in pre-BD FEV1%p with PC3, we 
used a ROC curve analysis to assess the diagnostic perfor-
mance of PC3 for discriminating lung function improve-
ment. We consider a subject to have improved lung function 
if their change in pre-BD FEV1%p following CS is >0. In this 
mainly severe asthmatic population (12/19 severe), just 2/19 
had >10% increase in pre-BD FEV1%p and 8/19 had >0. The 
AUCCH value of 0.864 indicate PC3 to be a robust predictor of 
lung function improvement following CS treatment, figure 3D. 
That is, PC-defined molecular endotypes resulting from CS 
treatment response can be used to as a pharmacogenomics 
predictor of clinical response.

In contrast to a supervised analysis, no baseline/follow-up 
Th2 clinical features were significantly associated with BD 
response or with change in pre-BD FEV1%p, table 2, online 
supplemental table S3. We did note that change in FeNO was 
associated with change in pre-BD FEV1%p.

Top contributing genes to sputum cell transcriptomic PC1 and 
PC3 enriched for immune system and inflammation GOs
We regard the top 5% PC loading coefficient magnitude 
genes as the top contributing genes driving variation along 
each respective PC coordinate axis. There are ~847/16 944 
(~5%) such genes ranked by loading coefficient magni-
tude per PC after adjusting for ties and repeat genes. We 
investigated their GO enrichments separately. In contrast 
to a supervised analysis, we similarly investigated the top 
5% genes rank correlated (magnitude) with Th2 clinical 

Figure 2  (A, B) Principal component (PC) analysis of corticosteroid 
induced transcriptomic change (follow-up minus baseline) sample 
coordinates in the PC1–3 planes. (C) PC1 sample coordinate versus 
baseline blood basophil count. (D) PC3 sample coordinate versus 
baseline blood eosinophil count. Each subject is indicated by their 
unique 2-digit identifier, 7/19 non-severe asthmatics are in cyan. The 
PC1 and PC3 dichotomy line at 0 is draw in (A, B). The linear regression 
line is drawn in (C, D) and the Kendall tau-b correlation and 95% CI are 
indicated.
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features: baseline blood basophil/eosinophil counts and 
FeNO, and change in FeNO.

First, we found strong overlap between top 5% PC1 genes (OR 
4.07 (3.22 to 5.13) Fisher exact 95% CI) and top 5% PC3 genes 
(OR 3.73 (2.94 to 4.73)) with our previously reported glucocorti-
coid gene set (GCGS),28 table 3. In contrast, the supervised top 5% 
Th2 clinical features correlated gene overlaps with GCGS were not 
significant or had smaller ORs. Also notable is that the top PC1 and 
PC3 gene sets strongly overlapped (OR 70.28 (59.02 to 83.70)), 
whereas the supervised top Th2 clinical features correlated gene 
sets overlaps were less strong (ORs range 0.22–6.29), table 4.

We separated the top 5% PC1 and PC3 contributing genes 
by loading coefficient sign prior to GO enrichment analysis, 
focused on the 10% highest enrichment scoring significant 
GO clusters, and summarised their keywords, table  5. For 
PC1 and PC3, we found significant and repeated enrichments 
of immune system and inflammation related ontologies 
among the top 10% scoring clusters. Interestingly, steroid 
metabolism ontologies are found in PC1 positive GO cluster 
23, PC3 positive GO cluster 12 and PC3 negative GO cluster 
100, data not shown. In contrast, the supervised top 5% Th2 

clinical features correlated genes (except change in FeNO) 
had lesser enrichments for immune system and inflammation 
related GO clusters, online supplemental table S4.

Airway epithelial cells microRNAome PC3 sample coordinates 
associated with change in pre-BD FEV1 following 8-week 
inhaled CS regimen
To assess the generalisability of our findings in silico, we 
applied the above unsupervised analysis on an comparable 
independent microRNA dataset GSE3446627 on NCBI GEO of 
862-microRNA profiles of airway epithelial cells from broncho-
scopic brushing of 14 steroid-naive (6 weeks before enrolment) 
asthma subjects at baseline before, and after an 8-week inhaled 
CS 200 µg two times a day, with pre-BD FEV1 measurements at 
both timepoints, figure 1. In contrast to the mainly severe asth-
matic SARP study population where just 2/19 had  >10% and 
8/19 had >0% increase in pre-BD FEV1%p, in this population 
4/14 had >10% and 8/14 had >0% increase in pre-BD FEV1%p.

First, we applied PCA on the 14-subject 8 weeks minus baseline 
sample difference column vectors of 862 microRNAs with PC1–3 

Table 1  Select clinical variables (asthma severity, sex, age, body mass index (BMI), pre-bronchodilator (BD) FEV1% predicted) and Th2 clinical 
feature associations of two molecular endotypes of corticosteroid treatment response defined by corticosteroid induced sputum cell transcriptomic 
change (=follow up minus baseline) in PC1 and PC3 sample coordinates, respectively, dichotomised at 0 from the 19-subject Severe Asthma Research 
Program study

Clinical variables

Ratio // median (IQR) OR (95% CI)// Ratio // median (IQR) OR(95% CI)//

PC1 <0 PC1 ≥0 ranksum p PC3 <0 PC3 ≥0 ranksum p

# Not severe: severe 
asthma

2:6 5:6 0.400 (0.055 to 2.933) 4:6 3:6 1.333 (0.204 to 8.708)

# Female: male 6:2 10:1 0.300 (0.022 to 4.060) 8:2 8:1 0.500 (0.037 to 6.684)

Age (years, baseline) 43.43 (41.64–50.40) 45.81 (38.80–52.29) 0.8404 50.40 (45.08–54.47) 41.77 (39.22–43.18) 0.0350*

BMI (baseline) 32.28 (25.76–44.97) 33.41 (32.32–39.98) 0.5448 33.38 (31.32–35.42) 32.66 (30.88–42.61) 0.9048

Baseline blood 
basophil count (cells/
ul)

4 (3–5) 69 (16–95) 0.0191* 5 (4–89) 50 (4–74) 0.9506

Baseline blood 
eosinophil count 
(cells/µl)

162 (90–244) 200 (148–394) 0.4073 244 (180–456) 140 (68–188) 0.0082*

Baseline blood 
neutrophil count 
(cells/µl)

4025 (2921–5963) 4554 (3968–5752) 0.3950 4295 (3640–5874) 4554 (3725–6057) 0.8421

FeNO (ppb) baseline 17.5 (7.0–37.5) 29.0 (16.3–39.8) 0.3942 32.5 (20.0–38.0) 14.0 (7.0–36.5) 0.3143

 � Follow-up 14.5 (9.0–27.5) 29.0 (24.3–39.8) 0.0786 27.0 (20.0–32.0) 24.0 (8.5–36.3) 0.6448

 � Change −3.0 (−10.0 to 1.5) −2.0 (−6.3 to 10.5) 0.4785 −4.5 (−7.0 to 2.0) −1.0 (−6.0 to 4.8) 0.5350

 � Change, #<0 : #≥0 5 : 2 7 : 4 0.952 (0.144 to 6.281) 7 : 3 5 : 4 1.867 (0.283 to 12.310)

Sputum eosinophil % 
baseline

0.70 (0.30–1.85) 0.20 (0.00–0.65) 0.1604 1.20 (0.40–2.00) 0.00 (0.00–0.20) 0.0024*

 � Follow-up 0.50 (0.30–1.10) 0.20 (0.00–0.43) 0.1171 0.40 (0.20–1.00) 0.20 (0.00–0.73) 0.2252

 � Change −0.30 (−0.55 to 0.10) −0.20 (−0.45 to 0.15) 0.6132 −0.45 (−1.50 to 0.20) 0.00 (−0.20 to 0.40) 0.0181*

 � Change, #<0 : #≥0 6:2 8:3 1.125 (0.141 to 8.995) 9:1 5:4 7.200 (0.622 to 83.342)

Pre-BD FEV1% 
predicted baseline

70.39 (57.55–86.41) 78.07 (70.71–89.94) 0.3950 78.45 (59.77–86.87) 72.33 (67.42–85.47) 0.9048

 � Follow-up 70.67 (58.44–84.36) 80.32 (59.27–87.41) 0.5999 82.20 (57.08–87.51) 75.25 (61.80–82.90) 0.7802

 � Change −0.17 (−2.05 to 1.89) −3.43 (−8.38 to 2.03) 0.3101 0.51 (−2.80 to 2.25) −3.43 (−7.39 to 0.28) 0.2428

 � Change, #<0 : #≥0 4:4 7:4 0.571 (0.090 to 3.641) 4:6 7:2 0.190 (0.025 to 1.432)

For continuous-valued clinical variables, the median (IQR) and 2-sided Wilcoxon rank-sum p value are shown. For binary-valued clinical variables (eg, asthma severity, change in 
pre-BD FEV1% predicted dichotomised at 0), the ratios, ORs and Fisher exact test (95% CI) are shown.
*indicates significance at p<0.05.
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accounting for 38.64%, 14.71% and 12.13% of the global microR-
NAome variance respectively, as we had done with the SARP tran-
scriptome data above. Second, we found PC3 to be associated with 
change (8 weeks minus baseline) in pre-BD FEV1%p (Kendall tau-b 
R=0.389 (0.001 to 0.675)). We highlight the positive correlation 
(R=0.389) of pre-BD FEV1%p with the GSE34466 microRNAome 
PC3, in contrast to the negative correlation (R=−0.333) of pre-BD 
FEV1%p with the SARP transcriptome PC3 above. Finally, we 
identified 405 functionally validated target genes (miRTarBase July 
15 201929) of the top 5% PC3 contributing microRNAs by their 
PC3 loading coefficient magnitude and found significant overlaps 
with our earlier top 5% PC3 contributing genes (OR 3.65 (2.73 to 
4.89), data not shown), and with our previously reported GCGS 
(OR 5.63 (4.19 to 7.57)), table 3.

Discussion
We identified molecular pharmacogenomic endotypes to an 
induced phenotype of response to systemic CSs in mainly severe 

asthmatic subjects using unsupervised PCA of a subject’s sputum 
airway cell transcriptomic changes.15 16 We used resulting the 
PC1 and PC3 coordinates (figure 2) to define endotypes in two 
ways: dichotomised at the 0 coordinate point (binary variable) 
and as is (continuous variable). Respectively, we investigated 
PC1 and PC3 separately for associations with a set of 55 clin-
ical variables, focusing on Th2 clinical features. We used the 
top 5% genes contributing to these PCs to uncover biologically 
and clinically meaningful treatment response genes and ontolo-
gies. Crucially, the molecular endotypes defined in this fashion 
were associated with clinical response to CS. Namely, PC3 is 
associated with treatment-related change in pre-BD FEV1 and 
follow-up BD response (table 2). While the molecular endotypes 
were also related to baseline Th2 status, with PC1 associated 
with baseline blood basophils, and PC3 with baseline blood 
and sputum eosinophils (tables 1–2, figures 2–3), none of these 
baseline Th2 clinical features were themselves associated clinical 
response to CS (online supplemental table S3). Within the 12/19 

Table 2  Select clinical variable associations of sputum cell transcriptomic change PC1 and PC3 sample coordinates and severity (binary) variable in 
the Severe Asthma Research Program study using Kendall tau-b correlation where* indicates significance where 0 lies outside the respective 95% CI

Variables tested for 
association

Kendall tau-b correl R (95% CI)

PC1 28.93% PC3 11.93% Severe
PC1 28.93%
(in 12/19 severe)

PC3 11.93%
(in 12/19 severe)

PC1 28.93% – 0.018 (−0.307 to 0.338) −0.184 (−0.478 to 0.148) – 0.212 (−0.238 to 0.587)

PC3 11.93% 0.018 (−0.307 to 0.338) – 0.000 (−0.323 to 0.323) 0.212 (−0.238 to 0.587) –

Severe −0.184 (−0.478 to 0.148) 0.000(−0.323 to 0.323) – – –

Sex −0.022 (−0.342 to 0.303) 0.066 (−0.262 to 0.381) −0.031 (−0.351 to 0.294) 0.275 (−0.174 to 0.630) 0.110 (−0.334 to 0.514)

Age baseline 0.088 (−0.242 to 0.399) −0.404 (−0.642 to 0.093)* −0.367 (−0.617 to 0.051)* −0.273 (−0.628 to 0.176) −0.394 (−0.704 to 0.042)

BMI baseline 0.146 (−0.185 to 0.448) −0.018 (−0.338 to 0.307) 0.033 (−0.292 to 0.352) 0.152 (−0.296 to 0.545) 0.091 (−0.351 to 0.500)

Baseline blood BASO count 0.340 (0.020 to 0.597)* 0.000 (−0.323 to 0.323) 0.025 (−0.300 to 0.345) 0.152 (−0.296 to 0.545) 0.152 (−0.296 to 0.545)

Baseline blood EOS count 0.199 (−0.132 to 0.490) −0.457 (−0.680 to 0.158)* −0.050 (−0.367 to 0.277) 0.198 (−0.251 to 0.578) −0.290 (−0.639 to 0.158)

Baseline blood neutrophil 
count

0.193 (−0.138 to 0.485) 0.053 (−0.275 to 0.369) 0.367 (0.051 to 0.617)* 0.061 (−0.378 to 0.477) 0.242 (−0.208 to 0.608)

FeNO baseline 0.047 (−0.280 to 0.364) −0.177 (−0.473 to 0.154) −0.370 (−0.619 to 0.054)* 0.109 (−0.336 to 0.513) −0.233 (−0.601 to 0.218)

 � Follow-up 0.219 (−0.112 to 0.506) −0.041 (−0.359 to 0.285) −0.211 (−0.500 to 0.120) 0.264 (−0.186 to 0.622) −0.047 (−0.466 to 0.390)

 � Change 0.212 (−0.118 to 0.501) 0.083 (−0.247 to 0.395) 0.438 (0.134 to 0.666)* 0.321 (−0.125 to 0.659) 0.229 (−0.221 to 0.599)

Sputum EOS % baseline −0.068 (−0.383 to 0.260) −0.367 (−0.617 to 0.051)* 0.098 (−0.232 to 0.407) −0.127 (−0.527 to 0.319) −0.509 (−0.769 to 0.102)*

 � Follow-up −0.237 (−0.520 to 0.092) −0.275 (−0.549 to 0.053) −0.125 (−0.430 to 0.206) −0.259 (−0.619 to 0.191) −0.323 (−0.660 to 0.122)

 � Change −0.042 (−0.360 to 0.285) 0.294 (−0.032 to 0.563) −0.094 (−0.404 to 0.236) 0.016 (−0.416 to 0.441) 0.362 (−0.078 to 0.685)

Sputum macrophage % 
baseline

−0.029 (−0.349 to 0.296) 0.228 (−0.102 to 0.513) −0.067 (−0.381 to 0.261) −0.030 (−0.453 to 0.403) 0.333 (−0.111 to 0.667)

 � Follow-up −0.129 (−0.434 to 0.202) −0.199 (−0.490 to 0.132) −0.385 (−0.629 to 0.071)* −0.290 (−0.639 to 0.158) −0.168 (−0.556 to 0.281)

 � Change −0.064 (−0.379 to 0.264) −0.485 (−0.699 to 0.193)* −0.050 (−0.367 to 0.277) −0.061 (−0.477 to 0.378) −0.545 (−0.789 to 0.153)*

Sputum neutrophil % 
baseline

0.018 (−0.307 to 0.338) −0.333 (−0.592 to 0.012)* −0.150 (−0.451 to 0.181) −0.121 (−0.523 to 0.324) −0.303 (−0.647 to 0.144)

 � Follow-up 0.053 (−0.275 to 0.369) 0.333 (0.012 to 0.592)* 0.217 (−0.114 to 0.504) 0.182 (−0.268 to 0.566) 0.303 (−0.144 to 0.647)

 � Change 0.181 (−0.150 to 0.476) 0.556 (0.284 to 0.745)* 0.067 (−0.261 to 0.381) 0.273 (−0.176 to 0.628) 0.455 (0.032 to 0.739)*

Pre-BD FEV1%p baseline −0.064 (−0.379 to 0.264) 0.053 (−0.275 to 0.369) −0.100 (−0.409 to 0.230) −0.091 (−0.500 to 0.351) 0.152 (−0.296 to 0.545)

 � Follow-up −0.135 (−0.438 to 0.197) −0.088 (−0.399 to 0.242) −0.284 (−0.555 to 0.043) −0.242 (−0.608 to 0.208) −0.061 (−0.477 to 0.378)

 � Change −0.146 (−0.448 to 0.185) −0.333 (−0.592 to 0.012)* −0.334 (−0.593 to 0.013)* −0.273 (−0.628 to 0.176) −0.455 (−0.739 to 0.032)*

BD response baseline −0.018 (−0.338 to 0.307) 0.029 (−0.296 to 0.349) 0.100 (−0.230 to 0.409) 0.485 (0.071 to 0.756)* 0.000 (−0.429 to 0.429)

 � Follow-up
0.135 (−0.197 to 0.438)

0.392 (0.079 to 0.634)* 0.000 (−0.323 to 0.323) 0.576 (0.195 to 0.806)* 0.515 (0.111 to 0.773)*

 � Change 0.146 (−0.185 to 0.448) 0.146 (−0.185 to 0.448) −0.067 (−0.381 to 0.261) 0.121 (−0.324 to 0.523) 0.364 (−0.077 to 0.685)

There associations were also studied within the 12/19 severe asthma subpopulation.
*Indicates statistical significance.
BD, bronchodilator; BMI, body mass index.
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severe asthma subpopulation, the baseline blood basophil (PC1) 
and eosinophil (PC3) associations were diminished, PC3 associa-
tions with sputum eosinophil % and change in pre-BD FEV1 and 
follow-up BD response became greater. The differences between 
the molecular treatment response endotypes and Th2 status is 
further emphasised through different biologies represented 
by ontology enrichment analysis of top loading (contributing) 
genes from the PC-defined endotypes (table 5) versus the top 
correlated genes with any Th2 clinical feature (online supple-
mental table S4). Finally, we demonstrated that the molecular 

endotypes are generalisable at the level of the airway epithelial 
cell, in an independent inhaled CS treatment cohort analysis of 
microRNA data. Overall, molecular treatment endotypes appear 
to be more representative of CS induced changes in biology and 
more specific predictors of clinical CS treatment response.

Underscoring the Th2 biologic significance of our findings, the 
endotype defined by positive PC1 coordinates mainly has subjects 
with baseline peripheral blood basophilia, figure 3A. Basophils are 
underappreciated mediators of Th2 immune response that are 
increasingly recognised as mediators of thymic stromal lympho-
poietin induced Th2 inflammation.30 31 In contrast, the endotype 
defined by negative PC3 coordinates has subjects with the classic 
Th2 phenotype of blood and sputum eosinophilia,32 33 figure 3B–C. 
This emphasises the role that Th2 status may play in response to 
CS34 and supports Th2 status as a key underlying feature of our 
molecular endotypes. From a clinical response perspective, as 
the PC3 coordinates increased, there was a significant decrease in 
lung function change following CS administration, figure 4B. Given 
that blood/sputum eosinophils were not found to be associated 
with lung function change, the PC3 molecular endotype contains 
features that represent a more comprehensive biological picture of 
treatment response than blood/sputum eosinophils alone. This is 
consistent with previous work suggesting that molecular features 
might be superior to clinical characteristics in predicting response 
to CS in severe asthma from children in SARP.35 The top 5% PC1 and 
PC3 contributing genes were enriched for CS signalling indicated 
by their significant enrichment for our previously reported GCGS28 
table 3. Thus, these mainly severe asthmatic subjects appear to 
cluster into at least two distinct types of clinically and biologically 
relevant molecular responses to CS treatment.

We previously applied unsupervised PCA to identify top 5% PC 
contributing genes to be associated with human fetal lung devel-
opment in the context of embryonic gestational age, vitamin D 
signalling and CS response.20 21 36 While those analyses were aimed 
at expanding basic understanding of lung development biology, 
our current study suggests that molecular subgroups resulting 
from such unsupervised analysis may also reflect distinct biologic 
mechanisms in response to CS treatment. The method may be 
generally applied to classifying and predicting CS treatment 
response. In contrast to supervised analyses using clinical vari-
ables, unsupervised PCA (and more generally surrogate variable 
analysis SVA22) has two distinct advantages. First, a gene’s contri-
bution is not limited to a single PC as shown by the strong overlap 
between top PC1 and PC3 contributing genes, table 4. Indeed 
this might reflect the interactome being the basis of a systems 
biology model, or pleiotropy in general. Second, we can system-
atically identify and prioritise the top N contributing genes per PC 
to clarify both individual genes and their ontologies that underlie 
the endotypic subgroups. We highlight the effectiveness of our 
method by contrasting it with supervised analysis using the top 
5% Th2 clinical features (ie, blood and sputum eosinophilia, high 
FeNO) correlated genes which ultimately had fewer overlapping 
genes with each other (table 4) and lesser enrichment for GCGS 
(table 3), immune system and inflammation related ontologies 
(online supplemental table S4) suggesting less biologic certainty 
for prominent involvement of these processes.

Our work complements current clinical cluster analyses. A 
recent SARP analysis focused on CS response in severe asth-
matics18 suggested four potential CS response clusters, with the 
cluster associated with the greatest CS response demonstrating 
the highest levels of blood eosinophils. Another current SARP-3 
analysis26 identified differences in pre-BD and post-BD lung func-
tion longitudinal trajectories between subjects stratified into four 
groups by baseline sputum eosinophil % high/low+neutrophil% 

Figure 3  Areas under receiver operator characteristic curve (AUCCH) 
analyses for: (A) PC1 sample coordinate and baseline blood basophil 
count >10 cells/μL. (B) PC3 sample coordinate and baseline blood 
eosinophil (EOS) count >300 cells/μL. (C) PC3 sample coordinate and 
baseline blood EOS count >150 cells/μL. (D) PC3 sample coordinate and 
change in pre-BD FEV1% predicted >0.

Figure 4  (A) PC3 sample coordinate versus follow-up bronchodilator 
response. (B) PC3 sample coordinate versus change in pre-
bronchodilator FEV1% predicted. (C) PC3 sample coordinate versus 
change in sputum macrophage %. (D) PC3 sample coordinate versus 
change in sputum neutrophil %. Each subject is indicated by their 
unique 2-digit identifier, 7/19 non severe asthmatics are in cyan. The 
linear regression line is drawn in each and the Kendall tau-b correlation 
and 95% CI are indicated.
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high/low. While our subset analysis does not have sufficient 
sample size to assess the presence of such clinical clusters, the 
association of blood eosinophils and sputum neutrophils with 
PC3 supports a possible overlap of a portion of the clinical endo-
type with molecular features. Nonetheless, given the deficiencies 
of supervised analysis to fully capture meaningful ontological 
associations, it is also likely that molecular endotyping can 
independently yield additional novel biology when used as an 
independent metric, as supported by our ontology enrichment 
analysis. Others and we previously cited the advantage of molec-
ular endotyping for predicting therapeutic response in asthma.37 
Fitzpatrick et al35 noted that clinical features were of limited use 
for predicting triamcinolone response, whereas systemic mRNA 
expression of inflammatory cytokines and chemokines related to 
interleukin (IL)-2, IL-10 and tumour necrosis factor signalling 
pathways, including, AIMP1, CCR2, IL10RB, and IL5, strongly 
differentiated children who failed to achieve control with triam-
cinolone treatment. Our analysis also includes prediction of 
response using molecular features that were not noted using clin-
ical biomarkers alone,15 16 but in the context of molecular endo-
types generated by genome-wide RNA-seq CS response data.

Several studies have described gene expression signatures 
that may predict CS responsiveness in asthma.35 38 However, 
these have generally focused on circulating blood cells rather 

than airway cells, and on baseline differential gene expression 
differences between predefined responding and non-responding 
subject populations. Moreover, their prior expression analyses 
focused on panels of preselected candidate genes. In contrast, 
our molecular endotyping of each subject is based on whole 
transcriptomic change in sputum cells following CS treatment. 
Our model has the unique advantage of capturing dynamic 
changes inherent in transcriptional response to CS treatment 
that is agnostic to clinical outcomes/features a priori and gene/
molecular preselection biases, and yet our resulting molec-
ular endotypes were found to be associated with clinical vari-
ables at baseline and follow-up. Interestingly, 3 genes* from a 
6-gene baseline sputum gene expression signature (CLC, CPA3, 
DNASE1L3, IL1B*, ALPL*, CXCR2*)39 40 reported to discrimi-
nate inflammatory phenotypes of asthma and predict ICS treat-
ment response are among the top 5% genes contributing to PC1 
and PC3 with IL1B ranked 2, online supplemental table S5, 
Berthon et al40 noted the 3 genes to be neutrophil markers and 
PC3 was significantly associated with baseline/follow-up/change 
in sputum neutrophils, table 2, figure 4D.

The small sample size of our study is an important multifaceted 
issue. Clinically, severe asthma is heterogeneous and sample size 
limits our ability to fully characterise this heterogeneity. With 
regards to generalising the pre-BD FEV1%p association to other 

Table 3  Overlaps between previously reported glucocorticoid gene set (GCGS) with the top 5% PC1 and PC3 contributing genes (unsupervised), 
the top 5% Th2 clinical feature rank correlated genes (supervised) from Severe Asthma Research Program, and target genes of the top 5% PC3 
contributing microRNAs (unsupervised) from GSE34466
GCGS overlap with 
each test variable PC1 28.93% PC3 11.93% Baseline blood baso Baseline blood eos Baseline FeNO Change FeNO

GSE34466
PC3

Test 
variable GCGS

# genes in overlap 15 598 15 592 15 531 15 542 15 544 15 556 16 040 No No

484 490 553 545 545 526 522 No Yes

753 759 820 809 807 795 311 Yes No

95 89 26 34 34 53 57 Yes Yes

OR(95% CI) 4.07 (3.22 to 5.13)* 3.73 (2.94 to 4.73)* 0.89(0.60 to 1.33) 1.20(0.84 to 1.71) 1.20(0.84 to 1.71) 1.97 (1.47 to 2.64)* 5.63 (4.19 to 7.57)*  �   �

The number of overlapping genes, ORs and Fisher exact test 95% CI are indicated.
*Indicates statistical significance.

Table 4  Overlaps between gene sets from the 19-subject Severe Asthma Research Program study: the top 5% PC1 and PC3 contributing genes 
(unsupervised), and the top 5% Th2 phenotypes rank correlated genes (supervised)

Top 5% gene overlaps PC3 11.93% Baseline blood baso Baseline blood eos Baseline FeNO Change FeNO

PC1 28.93% 510 62 36 23 109 # gene overlap

70.28* 1.54* 0.84 0.52* 3.06* OR

(59.02 to 83.70)* (1.18 to 2.01)* (0.60 to 1.18) (0.34 to 0.79)* (2.47 to 3.79)* (95% CI)

PC3 11.93% 47 74 36 82

1.12 1.90* 0.84 2.14*

(0.83 to 1.52) (1.48 to 2.44)* (0.60 to 1.18) (1.69 to 2.72)*

Baseline
blood baso

73 53 9

1.88* 1.30 0.20*

(1.46 to 2.41)* (0.97 to 1.73) (0.10 to 0.38)*

Baseline blood eos 84 10

2.24* 0.22*

(1.77 to 2.84)* (0.12 to 0.41)*

Change
FeNO

180

6.29*

(5.24 to 7.54)*

The number of overlapping genes, ORs and Fisher exact test 95% CI are indicated.
*indicates statistical significance.
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asthma populations, we addressed this technically in silico in a 
comparable independent microRNA dataset GSE3446627 (cf. 
Result 6) where we found the resulting microRNAome change 
PC3 to be associated with change in pre-BD FEV1%p with an 
opposite signed correlation. This is intriguing considering that 
expression of microRNAs and their target genes are generally 
understood to be inversely correlated. Also, MALAT1 (ranked 
6 in PC3, and a target of a top 5% GSE34466 microRNAome 

PC3 hsa-miR-429, online supplemental table S5) is one of five 
key long non-coding RNAs in an asthma-associated competing 
endogenous network targeted by eight potential new drugs.41 
Despite sample size, we achieved potentially meaningful clin-
ical endotypes. It is notable that neutrophils, eosinophils and 
basophils (peripheral blood/sputum inflammatory cells clinically 
known to be associated with asthma severity) are relevant to 
transcriptomic endotyping for steroid response thus suggesting 
that a simple Th2 versus non-Th2 dichotomy may be insufficient 
to describe response to inhaled steroids in severe asthma.

Conclusions
Our analysis of sputum airway cell RNA-seq data in well-
characterised mainly severe asthmatics identified distinct 
molecular pharmacogenomic endotypes in response to an 
induced phenotype with systemic CSs. Since CSs remain a 
mainstay of therapy for most asthmatics with persistent symp-
toms, these endotypes may clarify biological differences under-
lying the heterogeneity in CS treatment response, and provide 
an objective useful model for predicting treatment response 
and developing novel therapies. Our analysis suggest that unsu-
pervised PCA/SVA can be used to objectively define testable 
(across multiple datasets and populations) molecular endotypes 
that may yield novel biology underlying different responses 
to CS therapy in asthma, identify potential new therapeutic 
targets, and improve the identification of subjects most likely 
to respond to CSs alone versus those who may benefit from a 
biologic added to their CS regimen leading to optimal person-
alised asthma care. Potentially such molecular endotyping 
could be applied as a diagnostic test using sputum induction 
and rapid gene expression measurements designed to delineate 
therapy specific responses in asthma.
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Table 5  Top 10% significant gene ontology (GO) clusters and 
their keywords for the top 5% PC1 and PC3 negative and positive 
contributing genes from the 19-subject Severe Asthma Research 
Program study

PC1 PC3

# genes top 5% negative (N) 378 371

# GO clusters (N) 93 70

# genes top 5% positive (P) 470 477

# GO clusters (P) 90 117

Top 10% GO 
cluster order 
(N) Score Keyword Score Keyword

1 13.92 lysosome 13.67 ribosome, RNA 
processing

2 12.64 cell adhesion 6.88 lysosome

3 9.14 glycosylation 5.24 cell-cell adhesion

4 5.19 host-virus interaction 2.59 phosphatidylinositol 
binding, retromer

5 3.93 chaperone, 
endoplasmic reticulum

2.56 innate immunity

6 3.72 cell adhesion 2.33 annexin

7 3.66 ATP-binding 2.23 NAD, oxidation-
reduction

8 3.45 actin-binding, spectrin  �

9 3.36 antigen processing 
and presentation, 
asthma, MHC class II

 �

Top 10% 
GO cluster 
order (P) Score Keyword Score Keyword

1 25.36 immunity 16.50 cell-cell adhesion

2 12.41 response to virus 11.54 innate immunity

3 7.68 ribosome, RNA 
processing

8.19 cell membrane

4 3.66 antigen processing 
and presentation, 
MHC class I

4.73 virus receptor activity

5 2.88 infection 3.77 antigen processing 
and presentation, 
asthma, interferon, 
MHC class I, MHC 
class II

6 2.75 NF-kappa B signalling 3.74 ATP-binding

7 2.42 interferon 3.65 GTP-binding

8 2.39 chemotaxis, cytokine 3.65 chemotaxis, cytokine

9 2.12 Ig-binding 3.55 SH3 domain

10  �  3.53 glycosylation, 
transmembrane

11  �  3.28 lysosome
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