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Simple Summary: Pollinators are essential to produce fruits in apple production. Bumble bees are
among the most effective pollinators in orchards during the blooming season, yet they are often
threatened by the high levels of pesticide use in apple production. Hedgerows and flower strips
are infrequently sprayed by pesticides and are thus potentially good shelter for bumble bees. This
study evaluated the influence of landscaping in the form of hedgerows and flower strips on the
abundance and number of bumble bee species found in apple orchards. The number of bumble bee
species found in orchards with hedgerows or flower strips was higher than in orchards without such
landscape enhancements. Similarly, three species were more abundant in orchards with landscaping
than orchards without those enhancements. Our work provides additional evidence that landscaping
in the form of hedgerows and/or flower strips improves bumble bee presence in apple orchards and
should therefore be considered as a means to enhance and ensure pollination within farms.

Abstract: Bumble bees are among the most effective pollinators in orchards during the blooming
period, yet they are often threatened by the high levels of pesticide use in apple production. This
study aimed to evaluate the influence of landscape enhancements (e.g., hedgerows, flower strips)
on bumble bee queens in apple orchards. Bumble bee queens from 12 orchards in southern Québec
(Canada) were marked, released, and recaptured in the springs and falls of 2017 to 2019. Half of
the 12 orchards had landscape enhancements. Apples were harvested in 2018 and 2019 to compare
their quality (weight, diameter, sugar level, and seed number) in sites with and without landscape
enhancements. Species richness, as well as the occurrence of three species out of eight, was higher in
orchards with landscape enhancements than in orchards without such structures. The occurrence of
Bombus ternarius was lower in orchards with high levels of pesticide use. Apples had fewer seeds
when collected in orchards with landscape enhancements and were heavier in orchards that used
more pesticides. Our work provides additional evidence that landscape enhancements improve
bumble bee presence in apple orchards and should therefore be considered as a means to enhance
pollination within farms.

Keywords: Bombus; Apidae; bloom; hierarchical model; community composition; occupancy;
pesticide; capture–mark–recapture (CMR)

1. Introduction

Apples are one of the most widely eaten fruits on the planet [1]. The adage “An
apple a day keeps the doctor away” may have contributed to the fruit’s popularity, but in
terms of health benefits, there is some truth in the saying. Apples are well known for their
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nutritional properties, such as high antioxidant levels, antiproliferative activity, inhibition
of lipid oxidation, and cholesterol-lowering effects [2,3]. Global apple production totaled
around 85 million tons in 2018, surpassed only by bananas and watermelons [1]. While
China and the United States are, respectively, the two biggest apple producers, Canada lies
in the top 35 apple-producing countries worldwide [1]. In Canada, the volume of apples
produced in 2018 was by far greater than that of all other fruit crops [4].

One particularity of apple production is the cross-pollination required for fruit set.
Not only must pollen grains come from another flower but they also usually need to come
from another apple variety [5]. In fact, most cultivars are self-incompatible and thus require
insects as pollen vectors for fruit production, or improved fruit quality [6,7]. Apples are
usually larger, heavier, sweeter, and more symmetrical when pollinated by insects [8].
Deformed apples are linked to a lower number of seeds, generally caused by the absence of
pollination [8,9]. Honey bees are usually used in orchards to ensure adequate pollination.
For example, in the province of Quebec, apple producers rented 2300 hives for a total cost
of CDN 152.9K in 2019 [10]. However, honey bees may not be the most efficient pollinators
in apple orchards. In fact, early-spring apple blooming often limits pollination, especially
by honey bees [11,12]. Temperatures rarely rise above 13 ◦C during the blooming period for
ranges of latitudes in Quebec, which greatly reduces the diversity, abundance, and activity
of flying insect pollinators [5]. Native bee species present in early spring are generally
better adapted for ensuring apple pollination than honey bees, but the two groups can also
work synergistically to increase fruit set [13].

Bumble bees (Hymenoptera: Apidae) are one of the most common native pollinators
found in apple orchards in early spring, particularly during blooming. In fact, the queens
of the genus Bombus are often the most efficient pollinators for apples, in terms of flower
visitation rate, flower constancy, and pollen deposition [11,14–16]. In late summer and
early fall, queens newly produced by colonies will mate with males and then hibernate
as adults [17]. In spring, the newly emerged solitary queen requires a nesting location to
establish her own colony and floral resources to feed herself and her future workers [17].
Apple orchards usually provide both of these resources during the blooming period.
Yet, if queens are unable to secure sufficient food from around their nest, it can lead to
the collapse of their colonies [17]. This issue is likely critical for queens nesting in or
near apple orchards, where food resources substantially decline after apple bloom [17].
Although spring conditions determine colony survival through summer, fall conditions
are equally critical as new queens need to ingest enough food to survive winter [17].
Within monocultures, such as those typically found in intensively managed orchards,
food resources can be sparse during the fall and may thus jeopardize the survival of
new queens [17].

In order to produce more marketable fruit, apple production often relies on the liberal
use of pesticides to control pest insects and diseases [18]. However, pesticides are known
to harm non-targeted, pollinating insects [19,20], such as bumble bee queens present in
orchards [21]. In fact, apple production in the US scored fifth on the Environmental Working
Group’s (EWG) “dirty list” of crops using the most pesticides, with only strawberries,
spinach, kale, and nectarines considered more toxic [18]. In 2019, 17 pesticides, including
five neonicotinoids and four fungicides, were detected in 379 apple juice samples evaluated
by the Pesticide Data Program (PDP) [22]. Such combinations of pesticides are well known
to be detrimental to bees [21,23–26]. For example, the fungicide imazalil, when used in
mixture with common insecticides (namely: fipronil, thiamethoxam and cypermethrin),
synergized the insecticidal toxicity on bumble bees [21]. Insecticides alone negatively
affect bumble bee colony initiation [27], development [27–31], reproductive success [28–31],
foraging ability, and homing success [32,33]. Unfortunately, apple growers are often
constrained to juggle between lowering pesticide inputs and achieving a profitable yield.

For growers, landscape enhancements may represent a way to increase the abundance
of bumble bee queens in their orchards while simultaneously limiting the negative impact
of pesticides on these insects. Often included in European agri-environmental schemes
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(AES), they can be as diverse as flower strips, riparian strips, flowered field margins,
or hedgerows [34,35]. For pollinators, such landscape enhancements can provide food
resources, nesting opportunities, and possible shelter from pesticide exposure, particularly
for bumble bees [34,36–44]. For example, hedgerows around apple orchards in Spain were
found to offer a rich succession of floral resources for bees, including bumble bees [39].
Moreover, in the US, buffer strips showing higher flower diversity were found to harbor or
be visited by more beneficial insects, such as bumble bees [44].

In Quebec, Canada, apple orchards are mostly found in the southern portion of
the province within landscapes often characterized by intensively managed row crops.
Enhancements within such landscapes, and in or around apple orchards in particular,
could thus be beneficial for bumble bees, and, ultimately, for growers. Several studies
have investigated native bee communities in apple orchard agroecosystems [34,39,41].
Our study aimed to assess the relationships between landscape enhancements, bumble
bee queen presence in apple orchards, and the quality of apples produced therein. More
specifically, this study evaluated the effect of landscape enhancements on (1) bumble
bee queen site occupancy; (2) bumble bee queen species richness; and (3) apple diameter,
weight, sugar level, and seed number as a proxy of quality. We hypothesized that landscape
enhancements benefit both bumble bees and apple quality. As pesticide use is currently a
crucial component of apple orchard management, we also hypothesized that high intensity
of pesticide use has a negative impact on bumble bee community composition and richness,
yet a positive effect on apple quality.

2. Materials and Methods
2.1. Study Area

We measured the effects of landscape enhancements using 12 apple orchards located
in two regions of southern Québec: Montérégie-Est and Estrie (Figure 1; [45]). Montérégie-
Est is characterized by large-scale, intensive row cropping devoted to the production
of maize, soybean, wheat, and other cereals [46], with small interspersed forest patches.
Surface waters of this region are often contaminated by a vast array of pesticides, including
neonicotinoids, many of them at concentrations deemed harmful to aquatic life [47,48].
In contrast, Estrie is mostly composed of small-scale dairy farms (hayfields and pastures)
surrounded by substantial forest cover [49]. Each of the above two regions comprised six
apple orchards, including three with existing landscape enhancements and three without.
The nearest neighboring orchard was, on average, 19.2 ± 18.4 km (±SD) away, with
the closest neighbors 2.8 km away (orchards #1 and #2), and the farthest 69.8 km away
(orchards #8 and #7; Figure 1).
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Figure 1. Apple orchards (n = 12) wherein bumble bee communities were monitored between 2017 and 2019 in southern
Quebec, Canada. Orchards in the western cluster are in the Montérégie-Est region (#7 to 12); those in the eastern cluster
are in the Estrie region (#1 to 6). White and black dots represent orchards with and without landscape enhancements,
respectively. Orchard ID numbers are included in the dots. Coordinate system: WGS84 (EPSG 4326). Source: underlying
raster based on the Annual Crop Inventory of Agriculture and Agri-food Canada [45].

2.2. Bumble Bee Capture–Mark–Recapture

We opted for a capture–mark–recapture (CMR) approach to estimate site occupancy and
species richness of bumble bee queens as this allowed us to alleviate biases related to imper-
fect detection probability (see below). We surveyed bumble bee queens during apple bloom in
spring (May) and prior to hibernation in the fall (September–October), starting in spring 2017
and ending in spring 2019 (three springs, two falls). While bumble bees were captured only in
the vicinity of apple trees during apple bloom, captures occurred throughout the orchard in
the fall. During each season, orchards were visited three times. Each visit lasted for one hour
and consisted of two different teams composed of two observers, for a total sampling effort of
12 h per orchard (3 visits/orchard × 2 teams/visit × 2 observers/team × 1 h/observer). At
the beginning of each visit, the time of day and ambient temperature were noted. Each time
a queen was caught, the timer was stopped during the marking process, resulting in some
visits lasting more than 3 h (searching + handling). Usually, all visits within one orchard
were performed on the same day, but on some occasions, mostly during the fall, consecutive
visits could be separated by as much as two weeks (orchards #8 and 11; once). Bumble bee
queens were captured by hand netting and then marked using a honey bee queen marking
cage (Figure 2) and non-toxic, waterproof Craftsmart® paint pens. Using 8 different colors,
each individual queen was assigned a unique 3-color combination. We further recorded
thorax width with a ruler (i.e., intertegular width to help with species identification), and
abdomen color pattern before individuals were released.

Typically, the species found in the study area are Bombus bimaculatus, B. borealis,
B. citrinus, B. fervidus, B. griseocollis, Bombus impatiens, B. insularis, B. perplexus, B. rufocinctus,
B. sandersoni, B. ternarius, B. terricola, and B. vagans [50]. However, since some of these
species can be difficult to identify in the field without a stereomicroscope, captured queens
were grouped into morpho-species (grouping of morphologically similar species). The
B. borealis group included B. borealis Kirby and B. fervidus (Fabricus), the B. bimaculatus
group included B. bimaculatus Cresson and B. griseocollis (Degeer), and the B. vagans group
included B. vagans Smith, B. perplexus Cresson, B. sandersoni Franklin, and B. griseocollis
(this species can be placed in both groups). The other species encountered were more
easily distinguishable and included B. citrinus (Smith), B. impatiens Cresson, B. rufocinctus
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Cresson, B. ternarius Say, and B. terricola Kirby. Identification was either performed upon
marking or later based the color patterns noted in the field and with the help of a bumble
bee identification guide [50].
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2.3. Apple Quality

To quantify the effect of landscape enhancements on apple quality, 30 floral bouquets
of Cortland apples—the only variety present in all the orchards—were marked with a
flag during spring in 2018 and 2019. During the following fall season, the apple closest
to each flag was selected, resulting in 30 apples collected in each of the 11 sites in 2018
and the 10 sites in 2019. The selected apples were collected from all orchards within two
days and placed in a refrigerator at 4 ◦C overnight. Bags of apples were removed from the
refrigerator sequentially, in order to prevent bias due to post-harvest maturation. Every
apple was weighed (METTLER TOLEDO, Model ML 1502E, 0.01 g), the diameter (ROK
digital caliper, Model 28123, 0.02 mm) and sugar level (ATAGO, Model 3810, 0–53%; Brix)
were measured, and the number of seeds was counted. The number of seeds was used to
evaluate apple shape [7,51].

2.4. Landscape Enhancements and Orchard Management

As few orchards in the study area had established landscape enhancements, several
different types had to be included in our study (Table 1). Nevertheless, all enhancements
could provide nesting, hibernating, and food resources for bumble bee queens, and no
distinction was made among them for the analyses. All landscape enhancements were
at least three years old and already well established. Flower strips on orchards #3 and 7
were mostly composed of native species of Asteraceae and Apiaceae. Orchard #4 had
squashes intercropped with mature deciduous trees (maple: Acer spp. L., Sapindaceae;
oak: Quercus spp. L., Fagaceae; and walnut: Juglans spp. L., Juglandaceae) aligned next
to the apple trees. The windbreaks of orchards #2, 4, 7, and 8 were mostly composed of
a mix of deciduous (maple, oak, walnut, and poplar: Populus spp. L., Salicaceae) and
coniferous (pine: Pinus spp. L., Pinaceae; spruce: Picea spp., Pinaceae; and balsam fir:
Abies balsamea (L.) Mill., Pinaceae) trees.
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Table 1. Characteristics of the 12 orchards sampled from 2017 to 2019. The orchard numbers
correspond to those in Figure 1. Intensity of pesticide use was defined according to Equation (1)
(see text).

# Orchard Region Type of Landscape
Enhancements

Index of Pesticide Use
(0 = Low; 109 = High)

1 Estrie None 23

2 Estrie Deciduous/coniferous
windbreaks 13

3 Estrie Flower strips 27

4 Estrie Deciduous/coniferous
windbreaks and intercropping 51

5 Estrie None 48

6 Estrie None 49

7 Montérégie Deciduous/coniferous
windbreaks and flower strips 109

8 Montérégie Deciduous/coniferous
windbreaks 32

9 Montérégie None 70

10 Montérégie None 54

11 Montérégie None 52

12 Montérégie Coniferous windbreaks 48

All orchards were managed conventionally, except orchards #2 and 6, which were
organically managed. We estimated the potential toxic load that may be harmful to bumble
bees based on the pesticide registries that orchards provided to the research team for
2017 (Table S1). We first determined the toxicity to bees [52] of each pesticide used on a
scale ranging from 1 (low toxicity) to 3 (highly toxic). We then calculated the intensity of
pesticide use as the number of applications A of each pesticide i multiplied by its toxicity
level T and summed that product over all n pesticides used on a given orchard:

Intensity of pesticide use = ∑n
i=1 (Ti × Ai) (1)

For the purposes of analyses, we converted the intensity data into a binary vari-
able reflecting pesticide intensities ≤48.5 (low) and >48.5 (high) to provide a more bal-
anced dataset.

2.5. Statistical Analyses
2.5.1. Bumble Bee Community

The capture–mark–recapture (CMR) data we collected were originally intended to
estimate bumble bee abundance while accounting for imperfect detection probability [53].
However, some species were captured in low numbers and the level of recapture of all
species was too low (<5%) to perform CMR analyses based on individual captures. We thus
converted the original CMR information into detection data whereby species i was either
detected (1) or undetected (0) at site j during visit k. We then used a Bayesian hierarchical
community model to estimate the impact of landscape enhancements on species-specific
site occupancy, community composition, and species richness [54–56]. This model simul-
taneously estimates the effects of explanatory variables on species occupancy (ϕ) and
detection probability (p) using logit link functions similar to logistic regression [57,58]. We
allowed the occupancy of species i at site j to vary with season (spring vs. fall), management
(with enhancements vs. none), and pesticide use intensity (low vs. high), as well as site:

logit(ψij) = ϕi + βSeason i × Seasonj + βManagement i × Enhancementj + βIntensity i × Pesticidej + αj (2)
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whereϕi corresponds to the random intercept of occupancy associated with species i, normally
distributed with hyperparameters mean µϕ and standard deviation σϕ (ϕi ~ N(µϕ, σϕ)). The
slopes βi of season, enhancement, and pesticide use intensity were allowed to vary for each
species i, normally distributed with mean µβ and standard deviation σβ (βi ~ N(µβ, σβ)).
A random effect of site (αj) was included to account for multiple observations from the
same site across different seasons, and this parameter was normally distributed with
mean 0 and standard deviation σsite (αj~N(0, σsite)).

We modeled the detection probability of species i at site j during visit k as a function
of the air temperature and time of day during the visit:

logit(pijk) = ηi + βAir i × Airijk + βTime i × Timeijk (3)

where ηi is a species random intercept associated with species i and follows a normal
distribution ηi ~ N(µη, ση). The slopes βi of air temperature and time of day were allowed
to vary for each species i, normally distributed with mean µβ and standard deviation σβ
(βi ~ N(µβ, σβ)). The complete code for the model is provided in Table S2.

Parameters of the community occupancy model were estimated by Markov chain
Monte Carlo (MCMC) using five chains [59]. Each chain was run with 500,000 iterations,
using 250,000 iterations as burn-in, and a thinning rate of 10. We used vague prior distri-
butions for all parameters. Specifically, we used normal priors with N(0, 1000) for the β
parameters and uniform priors U(0, 50) for all standard deviation parameters, except for
the variance of site random effect where it was U(0, 150). This model was implemented in
JAGS 4.3.0 within R 4.0.2 with the jagsUI and coda packages [60–63]. We used trace plots,
posterior density plots, and the Brooks–Gelman–Rubin statistic to assess convergence. We
assessed model fit using posterior predictive checks with a Pearson chi-square aggregated
over rows and columns [55]. We also computed the area under the receiver operating char-
acteristic (ROC) curve as a measure of predictive ability [64], where values of 0.5 indicate
that the discriminatory ability of the model is not better than random and values > 0.5
indicate improvement in discrimination up to a maximum of 1 (perfect classification). We
report means and 95% credible intervals (95% CRI) around the parameters, where intervals
excluding 0 denote that the effect of a variable differs from 0.

2.5.2. Apple Quality

The effect of landscape enhancements on apple characteristics was evaluated using
generalized linear mixed models with a normal distribution and identity link for apple
weight, diameter, and sugar level, and with a Poisson distribution and a log link, for the
number of seeds in each apple [65]. Similar to the community occupancy model above, we
included management and pesticide use intensity as explanatory variables. Season was not
included in the analysis because apples were collected in the fall and preliminary analysis
showed no difference between years. We included orchard identity as a random effect
and estimated the model parameters with MCMC based on 5 chains, each consisting of
250,000 iterations with the first 125,000 as a burn-in period and a thinning rate of 10. We
used N(0, 1000) priors for the β parameters and uniform priors U(0, 100) for all standard
deviation parameters (Table S3). We computed the Pearson chi-square as a measure of fit
and used Pearson residuals to check for departures from model assumptions. As above,
analyses were conducted in JAGS and with the same convergence diagnostics.

3. Results

During the three years of the project, a total of 4765 individual queens were captured,
with an average of 1453 captures per spring and 214 captures per fall across the 12 orchards.
On average (±SD), 119 ± 106 and 17 ± 20 queens were caught per orchard in the spring
and fall, respectively. The large seasonal difference likely resulted from the ease of finding
bumble bees in the spring when apple trees were in bloom, as opposed to the fall, when
floral resources were scarce. A total of eight species or morpho-species were captured. By
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far the most abundant species was Bombus impatiens, followed by the group B. bimaculatus
and B. ternarius (Figure 3).
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3.1. Bumble Bee Community

The hierarchical community model included the eight species detected during our
study. Trace plots and the Brooks–Gelman–Rubin statistic suggested model convergence
(R-hat < 1.06 for all parameters) and that chains were sufficiently long (MCMC error < 2%
of the posterior standard deviation, sensu [61]). There were no indications that the
model lacked fit, based on either the posterior predictive check on rows or on columns
(χ2

rows = 37.05, p = 0.47; χ2
columns = 596.39, p = 0.39). The area under the ROC curve was

0.80 (95% CRI: [0.62, 0.89]), suggesting good model performance.
Species richness was greater in spring than in fall (Number of SpeciesSpring—Number

of SpeciesFall = 2.81, 95% CRI: [1.86, 3.81]). A greater number of species occurred at orchards
with enhancements than at those without enhancements (Number of SpeciesEnhancement—
Number of SpeciesNoEnhancement = 1.10, 95% CRI: [0.59, 1.71]). Species richness was higher
at orchards with low levels of pesticide use compared to orchards with higher levels
of pesticide use (Number of SpeciesLowPesticide—Number of SpeciesHighPesticide = 0.92,
95% CRI: [0.43, 1.50]).

Site occupancy by B. terricola, B. bimaculatus, and B. vagans was lower in the fall than
in spring (Figure 4A). Bombus ternarius followed the same pattern, although the difference
was marginal (90% CRI: [−2.36, −0.08]). Site occupancy by B. impatiens, B. bimaculatus,
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and B. vagans was higher in orchards with enhancements than those without (Figure 4B).
Bombus ternarius was the only species whose site occupancy responded to the intensity of
pesticide use, and it was lower in orchards with high levels of pesticide use than in orchards
with lower levels of pesticide use (Figure 4C). We found no effect of the covariates we
considered on the site occupancy of B. borealis, B. rufocinctus, and B. citrinus. The detection
probability of all species increased with the number of hours after sunrise (Figure 5A).
However, the detection probability did not vary with air temperature, regardless of species
(Figure 5B).
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The sugar level in apples followed the same pattern (βLandscapeEnhancement = −0.04, 95%
CRI: [−1.05, 0.96]; βHighIntensity = 0.60, 95% CRI: [−0.40, 1.61]). Finally, the number of
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species of bumble bee queens sampled in orchards (2017–2019) in southern Québec, Canada. Error
bars denote 95% Bayesian credible intervals around each estimate.

3.2. Apple Quality

Markov chain Monte Carlo diagnostics indicated that the generalized linear mixed
models on apple characteristics converged (trace plots, R-hat < 1.0002) and that chains were
sufficiently long (MCMC error < 0.5% of the posterior standard deviation). Residual diagnos-
tics and posterior predictive checks suggested model fit (p value: 0.50–0.96). Apple weight was
higher in orchards with high pesticide use than in orchards with lower levels of pesticide use
(βHighIntensity = 29.24, 95% CRI: [0.22, 61.90]) but did not vary with the presence of landscape
enhancements (βLandscapeEnhancement = 7.81, 95% CRI: [−20.92, 44.25]). In contrast, apple diam-
eter did not vary either with landscape enhancements (βLandscapeEnhancement = −0.68, 95% CRI:
[−6.31, 5.32]) or with the intensity of pesticide use (βHighIntensity = 3.98, 95% CRI: [−1.65, 9.97]).
The sugar level in apples followed the same pattern (βLandscapeEnhancement = −0.04, 95%
CRI: [−1.05, 0.96]; βHighIntensity = 0.60, 95% CRI: [−0.40, 1.61]). Finally, the number of
seeds was lower at sites with landscape enhancements than at sites without enhancements
(βLandscapeEnhancement = −0.20, 95% CRI: [−0.37, −0.02]) but did not vary with the intensity of
pesticide use (βHighIntensity = 0.03, 95% CRI: [−0.15, 0.20]).

4. Discussion
4.1. Landscape Enhancements

In support of our hypothesis, we found that the site occupancy of three species
(groups) of bumble bee queens, namely, B. impatiens, group B. bimaculatus, and group
B. vagans, was higher in orchards with landscape enhancements than in orchards without
such structures (Figure 4B). These results are significant as they are, to our knowledge,
the first that account for the imperfect detection of bees when evaluating the effects of
landscape enhancements on these insects. Moreover, they are consistent with several
reports of bumble bee abundance being higher in conventionally managed winter wheat
fields with adjacent flower strips, compared to conventional fields and organic fields
without flower strips [37]. There is evidence that flower strips have multiple positive effects
on pollinators in agroecosystems, even more so when those strips are diverse [36,37,66].
For instance, the presence of hedgerows in raspberry, blueberry, and apple orchards in
southern Quebec was beneficial to wild bee abundance, in terms of the availability of
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both floral and nesting resources [41]. Hedgerows were also shown to act as corridors for
bumble bee dispersal [67] and to contribute to a more homogenous distribution of native
pollinators in blueberry fields [68]. However, contrary to flower strips, which represent a
generally positive presence for bees [69], hedgerows may be beneficial only under certain
contexts. For instance, hedgerows were visited by foraging and nest-searching bumble bee
queens less often than arable field margins in Scotland [43]. Further research regarding the
benefits of the different types of landscape enhancements and how these benefits may vary
according to the surrounding landscape structure is thus warranted.

The increased presence of bumble bees in orchards that we documented can potentially
be financially rewarding for apple growers. Indeed, Quebec apple producers generally pay
large sums of money to rent hives of honey bees, a species not native this region, to ensure
the pollination of apple trees [10]. Orchards with a high abundance of bumble bees could
probably reduce or even eliminate the need to rent honey bee hives as bumble bees are much
more efficient pollinators and work longer and at cooler temperatures than honey bees [11].

As expected, landscape enhancements had a positive effect on bumble bee queen
richness. This result is consistent with that of other studies showing a positive effect
of either flower strips or hedgerows on bee species richness [37,40,68]. For example, an
average of ~4.5 native bee species were found in conventional orchards with flower strips,
in comparison to ~0.7 and ~2 species in conventional and organic orchards without flower
strips, respectively [37]. Similar positive results were found for hedgerows, whose presence
contributed to a more homogenous distribution of native bee species across blueberry
fields [68]. Native bee species richness in hedgerows was also equal to or greater than
species richness in adjacent hay crops and woodlots [40]. The greater bumble bee diversity
found in orchards with landscape enhancements can be beneficial for growers since species
diversity is usually associated with an increased resilience of ecosystems [70–73]. Such
increased resilience could be particularly useful for ensuring pollination following major
environmental disruptions, such as the ones expected with climate changes.

Contrary to our hypothesis, we found no effect of landscape enhancements on apple
characteristics, except for the number of apple seeds which was lower at sites with land-
scape enhancements. However, these results are not unlike those found in the literature,
despite not explicitly investigating apple yield. Flower strips generally increased the abun-
dance and richness of pollinators, but this increase did not consistently lead to increased
yield [74]. In fact, a meta-analysis showed that flower strips enhanced pest control by
16% in adjacent fields, but the effect on pollination was more variable and depended on
landscape context [74]. Furthermore, flower diversity and older flower strips usually
increased pollination services in apple orchards, but apple yield did not follow the same
pattern [74]. Similar results were found on cucumber farms, where flower strips enhanced
the presence of beneficial insects within fields without affecting total yield [75]. In our
study, the 30 apples collected by orchard may have been insufficient to evaluate apple
quality for the whole orchard, and thus the difference between orchards with and without
landscape enhancements may not have been adequately measured. Furthermore, the use
of only one variety (Cortland) might have limited our power to detect an effect at the
orchard’s level. Unfortunately, more apples or more varieties could not be processed due to
logistical limitations. Another study covering more sites and collecting more apple/variety
samples per site might yield different results.

4.2. Intensity of Pesticide Use

Despite the growing body of evidence documenting negative impacts of pesticides
on bumble bees [26,76–79], and contrary to one of our hypotheses, we found a negative
effect of intensity of pesticide use on the site occupancy by bumble bee queens for only one
of the eight (groups of) species we detected in orchards, namely, B. ternarius (Figure 4C).
Aside from the fact that B. ternarius was the third most captured species in our study
(Figure 3) and that this may have led to an improved capacity of detecting such an effect,
it remains that this result may also stem from interspecific differences in exposure or
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sensitivity to pesticides. Indeed, some species are more sensitive to certain threats due to
their behavioral or functional traits, particularly when their functional traits are associated
with narrow climatic specialization, late-emerging queens, and when the site is located
closer to the species’ climatic tolerance range [80–82]. For instance, B. ternarius is known
to nest underground [50], and this functional trait may thereby increase its exposure to
pesticides in orchards since pesticides can accumulate and reach lethal concentrations for
bees in the soil [83]. This being said, the fact that one of the most abundant species in the
study area, B. ternarius, is significantly impacted by pesticides should raise concern. Known
threats that are not mitigated or eliminated rapidly enough can indeed seriously impair
the population persistence of bumble bee species [84,85]. One such example involves the
loss of habitat, a well-known cause of species decline, that drove B. affinis to near extinction
in eastern North America [84,85].

As expected, species richness was negatively influenced by the intensity of pesticide
use. As mentioned above and shown here, evidence of negative effects of pesticides on
bumble bee species, such as B. impatiens and B. terrestris, is mounting [26,76–79]. However,
studies looking at the effects of pesticides on bee communities remain scarce, and those that
did so while controlling for imperfect species detection are even scarcer. Nonetheless, one of
these previous studies found results similar to ours, yet for the whole wild bee community:
fewer species were observed at the field, landscape, and regional (river basins) scales [86].
At the field scale, wild bee communities were less species-diverse when pesticides were
applied more than twice during the summer [86]. At the landscape level, pesticide-treated
vine fields were less species-diverse than uncultivated fields and maize fields [86]. Lastly,
bumble bee species were less species-diverse in the more intensively farmed basins [86].
Future research should definitely assess whether landscape enhancements can mitigate the
impact of pesticide use on pollinator communities and provide a source of predators and
parasitoids to control pest insects.

Finally, apart from a positive effect on apple weight, we found no effect of the intensity
of pesticide use on the three other characteristics related to apple quality that we considered
(diameter, sugar level, and number of seeds). This is surprising given that pesticides are
used to increase yield by, among other things, enhancing individual apple quality. Although
our sampling effort may have been too small (e.g., 30 apples of one variety per orchard) to
detect an effect, other studies in cucumber and watermelon cropping systems also failed
to find a relationship between crop yield and pesticide use [87,88]. In fact, even though
cucumber yields were greatly improved when pollination was increased, they were not
enhanced when pesticides were used for pest control [88]. Similarly, while increased use of
fertilizers and irrigation did not increase watermelon yields, adequate pollination did [87].
Furthermore, we found a relationship with apple weight, but not apple diameter. This
could suggest that apples produced under more intensive management might be denser.
However, we did not investigate that surprising result further as it was outside of the
scope of this project. More research on the cascading effects of pesticides on pollinator
communities and, in turn, of the latter on pollination and crop quality are needed.

5. Conclusions

This study aimed at determining if landscape enhancements could help apple growers
improve bumble bee queen presence as well as apple quality in their orchards. The
impact of intensity of pesticide use on both bumble bee queens and apple quality was
also evaluated. Landscape enhancements had a positive effect on bumble bee queen site
occupancy and species richness, but they had no effect on four characteristics representing
apple quality. While the intensity of pesticide use was negatively associated with B. ternarius
site occupancy, it was only positively associated with apple weight. To our knowledge,
this study is one of the first to assess the influence of landscape-related effects on bumble
bee site occupancy and species richness in agroecosystems while controlling for imperfect
species detection (see also [56,89]). Our work thus provides key additional evidence that
landscape enhancements improve bumble bee queen presence and diversity in apple
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orchards and should therefore be considered by growers as a means to enhance and ensure
the pollination and diversity of beneficial insects in their orchards.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/insects12050421/s1, Table S1. List of the pesticides used at the 12 orchards sampled in
2017 in southern Québec, Canada. Information on the active ingredient(s), the usage, and the bee
toxicity were taken from SAgE pesticides’ website [1]. When bee toxicity was unknown, the product
was not included in the formula estimating the intensity of pesticide use on a given orchard (see
Methods). The last column indicates if the pesticide was only used in orchard without landscape
enhancement (Without), only in orchards with landscape enhancement (With), or in both (Both).
Table S2: Formulation of Bayesian hierarchical community occupancy model implemented in JAGS
for the bumblebee queen data collected between 2017 and 2019 in southern Québec, Canada. Table S3:
Formulation of Bayesian hierarchical generalized linear mixed models for apple quality characteristics
as a function of landscape enhancements and intensity of pesticide use implemented in JAGS for the
apple data in 2017–2019 in southern Québec, Canada.
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