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A B S T R A C T   

Background: Data generated by phase I trials is richer than the classical binary DLT measured at the first cycle 
used as primary endpoints. Several works developed designs for more informative endpoints, e.g. ordinal toxicity 
grades and/or longitudinal data which relied however on strong assumptions, in particular the proportional odds 
(PO) assumption. 
Methods: We evaluated this PO assumption for the dose and cycle on a large database of individual patient data 
from 54 phase I clinical trials of molecularly targeted agents. The PO model is a specific case of the continuation 
ratio logit model (CRLM) with null parameters. We compared the PO and CRLM models using the widely 
applicable information criterion (WAIC). We considered a longitudinal multivariate ordinal toxicity outcome 
(cutaneous, digestive, hematological, general disorders, and other toxicities). 
Results: WAIC suggested that the CRLM model (WAIC ¼ 30911.58) outperformed the PO model (WAIC ¼
31432.10). Deviance from PO assumption for dose was observed for digestive and general disorder toxicities. 
There was moderate cycle effect with slight deviance from PO assumption for the other type of toxicity. 
Conclusions: Designs based on PO for dose should be a useful tool for drug with low expected digestive or general 
disorder toxicity dose-related incidence.   

1. Introduction 

In oncology, dose finding phase I clinical trials aim at determining 
the maximum tolerated dose (MTD) as the dose presenting an acceptable 
rate of severe toxicity during the first cycle of treatment, also called dose 
limiting toxicity (DLT). Groups of patients are enrolled at increasing 
dose levels. A given patient is assigned to a dose that is administered in 
repeated cycles until treatment failure; intra-patient dose escalation is 
usually not allowed. At each cycle of treatment, adverse events of 
various types (digestive, hematological, cutaneous, general disorders, 
etc.) are measured on a graded scale that ranges from 0 (absence of 
toxicity) to 4 (severe life threatening toxicity). One of the main limita-
tions of dose finding trials is the limited amount of information extracted 
from the primary outcome [1,2] that results from (i) the composite 
nature of the outcome ‘worst observed toxicity’, (ii) the dichotomization 
of this graded outcome in presence or absence of severe toxicity (DLT), 

and (iii) the use of data collected at cycle 1 only although more than 50% 
of the first severe toxicity occur after cycle 1 [3,4]. 

Recently the European Medicine Agency underlined the importance 
of analyzing adverse events at all cycles of treatment in order to refine 
the risk of toxicity and to consider not only severe toxicity but also in-
termediate toxicity [5]. Some authors have proposed designs based on 
the longitudinal ordinal toxicity measurements [6,7]. Markov chain 
models have been explored [8], and others authors have included 
multiple toxicity constraints in the dose finding design [9–12]. Alter-
natively, cumulative logit models have been suggested to model the 
ordinal nature of the graded toxicity, and to estimate the dose effect 
[13], possibly adjusted for the treatment cycle [1,14–16]. One of their 
advantages is to match the assumption of increasing toxicity with dose, 
to provide easy to interpret coefficients, either in terms of odds ratio or 
absolute probabilities. However, sample sizes for dose finding trials 
being typically small; to account for multiple toxicity grades, a natural 
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simplification of the cumulative logits is the proportional odds (PO) 
model that assumes that the effect of covariates (here the dose level and 
the cycle) is similar on the various cumulative logits. This assumption 
reduces the number of parameters to estimate and allows using inter-
mediate grades of toxicity to refine the estimate of the risk of severe 
toxicity [17]. Before we implement such an assumption in prospective 
clinical trials, we explored the PO assumption on real data. The effects of 
dose and cycle on various types of toxicity were modeled in a large 
database of individual data of patients treated in 54 phase I clinical trials 
of molecularly targeted agents provided to the DLT-TARGETT group, a 
European Organization for Research and Treatment of Cancer (EORT-
C)-led initiative. We developed a continuation ratio logit model [18] to 
account for longitudinal multivariate ordinal toxicity outcomes. In order 
to draw conclusions applicable to future trials, we based our develop-
ment on predictive modeling strategy, using the horseshoe shrinkage 
prior [19] to shrink weak coefficients; we compared the models using 
the widely applicable information criterion [20] (WAIC). 

2. Material and methods 

2.1. Study design 

Full toxicity data of 54 completed phase 1 studies evaluating 
molecularly targeted agents (MTAs) was provided by four academic 
institutions (Cancer Research UK (United Kingdom), EORTC, National 
Cancer Institute-Canada and National Cancer Institute) and three 
pharmaceutical companies (Pfizer, Roche and Sanofi). The MTAs were 
administered as single agent to adult patients with solid tumors. All 
patients who received at least one cycle of treatment were included in 
the analysis. 

The reader may refer to the publication by Postel-Vinay et al. [4] for 
complete details about the data collection and the study design. 

2.2. Toxicity data 

All grade 1 or above severity adverse events (AEs) reported as at least 
‘possibly drug-related’, which were not present at baseline and occurred 
between cycle 1 and cycle 6 were selected; in fact previous data showed 
that the majority of AEs occurred during the first 6 cycles of treatment in 
dose finding trials [3]. To ensure comparability of the AEs over trials 
that used different grading systems, the grade of all reported toxicities 
was harmonized to the National Cancer Institute Common Terminology 
Criteria of Adverse Events, version 3.0 and labeled for description ac-
cording to Medical Dictionary for Regulatory Activities (MedDRA) 15. If 
the same AE was reported at different severity grades during a given 
cycle, only the worst toxicity grade was taken into account in the sta-
tistical analysis. The grades were grouped in 4 levels: no toxicity, 
toxicity grade 1, toxicity grade 2 and toxicity grade � 3 (usually 
considered as dose limiting toxicity (DLT) when they occur during the 
DLT evaluation period). 

In this report, we focused on four different types of AEs which are 
typical of targeted agents [3]: cutaneous, digestive, general disorder and 
hematologic toxicities. These categories were defined from the MedDRA 
classification preferred items in accordance with NCIC experts to better 
fit the cancer phase 1 trial context and the most frequent toxicity re-
ported in early phase trials of single targeted agents [21]. A fifth (het-
erogeneous) type was defined that contained all other toxicities and was 

labeled ‘other type’. 

2.3. Models 

As toxicity data was collected at the end of each cycle of treatment, 
whose duration may vary across trials, the treatment cycle, as defined 
per protocol, was used as time unit, irrespective of its duration in days. 
The dose for the patient i, Di, was standardized by the MTD, i.e. the ratio 
between the planned dose and the MTD of this trial, or the maximal 
allocated dose during this trial when the MTD was not reached (� 25% 
of trials). 

We used mixed effect multivariate continuation ratio logit model 
[18] with correlated random effects to jointly assess the relationship 
between the J types of graded toxicity (J ¼ 5) denoted Y and the dose D 
and cycle C considered as continuous variables. The probability that the 
patient i presents a toxicity of type j (j ¼ 1;⋯;5) of grade higher than k 
(k ¼ 0; 1;2) at the cycle c (c ¼ 1;⋯;6), was:  

with βjk ¼
Pk

l¼0βjl the intercept for the grade k, γjk ¼
Pk

l¼0γjl and ζjk ¼
Pk

l¼0ζjl the parameters associated to the dose and the cycle respectively, 
and αijeMVNð0;ΣÞ a patient specific random effect distributed according 
to a centered multivariate normal distribution with J� J covariance 
matrix Σ. expit denotes the inverse of the logit transform function, i.e. 
expitðxÞ ¼ expðxÞ=ð1 þ expðxÞÞ. Of note, the random effects have been 
set at the patient level to account for the possible correlations of the 
repeated measurements. For model tractability, we did not consider 
patient-level random effects nested in trial-level random effects. Con-
ditional on αij, we assumed independence of the longitudinal AEs mea-
sures. With this parameterization, labeled full model in the rest of the 
paper, the PO assumption for the dose effect then corresponds to γj1 ¼ 0 
and γj2 ¼ 0, and for the cycle effect to ζj1 ¼ 0 and ζj2 ¼ 0. The PO model 
can then be written as: 

P
�
Yijc > k

�
�Yijc � k

�
¼ expit

�
αijþ βjk þ γjDi þ ζjc

�

2.4. Model priors 

The model parameters were estimated in a bayesian framework. 
Despite the large number of trials, patients and observations in this joint 
analysis, the full model contains 45 fixed parameters plus the random 
effect covariance matrix. To improve the stability of the estimates, we 
used Horseshoe shrinkage prior [19] for the P parameters of the fixed 
effects, θ ¼ ðβ; γ; ζÞ, with β ¼ ðβ10;β11;…;βJ2Þ, γ ¼ ðγ10; γ11;…; γJ2Þ and 
ζ ¼ ðζ10;ζ11;…;ζJ2Þ. A normal prior distribution for each parameter θp 

was elicited, in which the parameters for the variance prior, λp and τ, 
followed the standard half-Cauchy distribution Cþð0;1Þ : 

θp

�
�
�λp; τ � N

�
0; λ2

pτ2
�

λp � Cþð0; 1Þ

τ � Cþð0; 1Þ

τ was common to all components of θ, and λp was specific of θp. This 
approach has common features with the Bayesian LASSO that uses 
Laplacian prior distributions [22], but it belongs to the global-local 
shrinkage prior family [23]: a global prior parameter τ shrinks all the 

8
<

:

P
�
Yijc > 0

�
�Yijc � 0

�
¼ expit

�
αij þ βj0 þ γj0Di þ ζj0c

�

P
�
Yijc > 1

�
�Yijc � 1

�
¼ expit

�
αij þ βj0 þ βj1 þ

�
γj0 þ γj1

�
Di þ

�
ζj0 þ ζj1

�
c
�

P
�
Yijc > 2

�
�Yijc � 2

�
¼ expit

�
αij þ βj0 þ βj1 þ βj2 þ

�
γj0 þ γj1 þ γj2

�
Di þ

�
ζj0 þ ζj1 þ ζj2

�
c
�

(1)   
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model parameters towards 0, and local prior parameters λp modulates 
this shrinkage at various degrees. A reparametrisation of τ and λp in a κp 

parameter has been proposed to directly quantify the degree of 
shrinkage [19] by θp ¼ ð1 � κpÞ bθp , with θp the posterior mean of θp, bθp its 
maximum likelihood solution, and κp the shrinkage coefficient for each 
parameter p. The distribution of κp has a horseshoe (‘U’) shape, pre-
senting a first point mass at κp � 0 (i.e. no shrinkage, θp � bθp ) and a 
second at κp � 1 (i.e total shrinkage, θp ¼ 0). The horseshoe prior is 
therefore expected to apply a more severe shrinkage to zero-coefficients, 
while avoiding over-shrinkage of larger coefficients, favoring both 
sparsity and robustness to large signals. Several authors have shown that 

it outperforms the Laplacian prior for prediction, and provides results 
comparable to the bayesian model averaging (bayesian gold standard for 
prediction) without the computation burden [19,23–25]. 

The covariance matrix of the random effects was modeled as pa-
rameters. We used the LKJ prior [26] with the shape parameter η ¼ 1 
(uninformative prior) for the Cholesky factor of the random effect cor-
relation matrix. Parameter posteriors were obtained by an Hamiltonian 
Monte Carlo sampling scheme [27] (4 chains, 5000 iterations including 
1000 burning) using the Stan software [28]. 

2.5. Model selection 

In addition of the full and the PO models, a reduced model without 
the parameters whose 95% credibility intervals that included 0, was fit 
as a sensitivity analysis. To compare these 3 models, we relied on the 
widely applicable information criterion [20] (WAIC). It can be viewed as 
an approximation of cross-validation [20,29] and lower value indicates 
better compromise between information and model dimension. 

Model goodness-of-fit was assessed by graphical representation of 
the observed proportion of toxicity versus the predicted probabilities of 
toxicity for the full CLRM and the PO model, extracted from 1000 
samples generated from the posterior predictive distribution of the 
models. 

3. Results 

3.1. Descriptive results 

The 2048 patients in the 54 studies received a total of 5592 cycles. 
During each cycle, toxicities of various types occurred, resulting in 9904 
adverse events detailed by grade in Table 1. 

The Venn diagram in Fig. 1 illustrates the co-occurrences of toxicities 
in the 5592 reported cycles. The most frequent combinations were: 
digestive/general disorders/other (n ¼ 520), digestive/general disor-
ders/hematologic (n ¼ 383) and digestive/others (n ¼ 369). Distribu-
tions of proportions of co-occurrences can be found in the 
supplementary Table A1. 

3.2. Exploring the PO assumption 

Table 2 provides the parameter estimates and their 95% credibility 
intervals (CI) for the full model. The dose significantly increased the risk 
of all types of toxicities; dose effect ranged from 2.98 (95%CI [2.27: 
3.96]) for cutaneous toxicities to 2.16 (95%CI [1.77: 2.65]) for the 
‘other’ type of toxicities. The PO assumption seemed to be plausible for 
the dose as the 95% credibility intervals of the DoseGrade�2 and 
DoseGrade�3 odds ratios included the null value. Conversely, for general 
disorders the odds ratio increased by 0.37 (95%CI [0.10: 0.67]) for the 
risk of grade � 2, with additional 0.67 (95%CI [0.05: 1.23]) for the risk 

Table 1 
Number of toxicities by type and grade.  

Grade Cutaneous Digestive General 
disorder 

Hematologic Others Total 

1 549 1754 403 1344 1513 5563 
2 207 794 433 748 946 3128 
� 3  31 190 345 200 447 1213 
Total 787 2738 1181 2292 2906 9904  

Fig. 1. Co-occurrence of the (ntotal ¼ 9904) toxicity (all grades) for the 5592 
reported cycles. 

Table 2 
Parameter estimates of the full continuation ratio logit model with their 95% credibility interval for each type of toxicity. Bolded figures correspond to parameters with 
credibility intervals excluding the null value.  

Parameter Cutaneous Digestive General disorder Hematological Other 

InterceptGrade�1  ¡9.51 [-10.81; -8.38] ¡1.79 [-2.16; -1.47] ¡2.66 [-3.14; -2.31] ¡7.33 [-8.27; -6.62] ¡1.93 [-2.37; -1.57] 
InterceptGrade�2  ¡3.11 [-3.68; -2.45] ¡3.38 [-3.73; -3.00] ¡3.02 [-3.38; -2.69] ¡1.95 [-2.39; -1.58] ¡2.70 [-3.03; -2.39] 
InterceptGrade�3  ¡4.85 [-6.43; -3.52] ¡4.61 [-5.24; -3.93] ¡4.17 [-4.87; -3.42] ¡2.52 [-3.04; -2.07] ¡2.70 [-3.14; -2.32] 

DoseGrade�1  2.98 [2.27; 3.96] 2.35 [1.96; 2.72] 2.16 [1.77; 2.65] 2.87 [2.17; 3.75] 2.51 [2.12; 2.98] 
DoseGrade�2  0.06 [-0.41; 0.43] 0.22 [-0.06; 0.51] 0.37 [0.10; 0.67] 0.30 [-0.01; 0.72] 0.08 [-0.19; 0.38] 
DoseGrade�3  0.33 [-0.56; 1.41] 1.37 [0.84; 1.87] 0.67 [0.05; 1.23] 0.03 [-0.37; 0.42] 0.26 [-0.03; 0.58] 

CycleGrade�1  0.37 [0.27; 0.48] 0.04 [-0.01; 0.11] 0.07 [0.01; 0.14] 0.08 [-0.00; 0.17] 0.18 [0.11; 0.24] 
CycleGrade�2  ¡0.16 [-0.33; -0.02] � 0.08 [-0.17; 0.00] ¡0.08 [-0.17; -0.00] � 0.02 [-0.12; 0.05] ¡0.09 [-0.17; -0.00] 
CycleGrade�3  0.05 [-0.20; 0.37] � 0.01 [-0.13; 0.11] � 0.08 [-0.26; 0.06] 0.00 [-0.10; 0.12] � 0.09 [-0.20; 0.01]  
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of grade � 3 violating the PO assumption. Finally, this assumption did 
not hold for digestive toxicity as the odds ratio increased by 1.37 (95%CI 
[0.84: 1.87]) for the risk of grade� 3. 

Table 3 contains the PO model parameter estimates and their 95%CI. 
The results were close to that provided by the full model, which is 
confirmed by the information criteria WAICPO ¼ 31432:10 vs WAICfull ¼

30911:58. Under the PO model, dose effects ranged from 2.55 (95%CI 
[2.12: 3.00]) for general disorder toxicities to 3.13 (95%CI [2.31: 4.01]) 
for the ‘other’ type toxicities. Assuming a proportional odds model 
would then lead to under-estimate the dose effect on the risk of digestive 
grade 3 or more toxicity by 35% (logPOðOdd  ratioÞ ¼ 2:58 instead of 
logFullðOdd  ratioÞ ¼ 3:94), resulting in a large underestimation of the 
odds ratio. The estimated odds ratio of grade 3 or more hematological 
toxicity in patients treated at the MTD compared to patients treated at 
half the MTD is 3.63 (assuming PO) instead of 7.15. This mis-
specification had more limited impact for general disorder. The differ-
ence of the same estimated odds ratio for grade 2 or more was small 

Table 3 
Parameter estimates of the proportional odds ratio logit model with their 95% credibility interval for each type of toxicity. Bolded figures correspond to parameters 
with credibility intervals excluding the null value.  

Parameter Cutaneous Digestive General disorder Hematological Other 

InterceptGrade�1  ¡9.73 [-10.75; -8.63] ¡1.90 [-2.25; -1.55] ¡2.89 [-3.34; -2.49] ¡7.47 [-8.71; -6.51] ¡2.01 [-2.37; -1.65] 
InterceptGrade�2  ¡3.52 [-3.83; -3.22] ¡3.36 [-3.53; -3.19] ¡2.94 [-3.11; -2.78] ¡1.73 [-1.92; -1.56] ¡2.87 [-3.02; -2.72] 
InterceptGrade�3  ¡4.40 [-5.15; -3.72] ¡3.24 [-3.48; -3.01] ¡3.71 [-4.02; -3.42] ¡2.49 [-2.75; -2.25] ¡2.72 [-2.90; -2.55] 

Dose 3.11 [2.35; 3.87] 2.58 [2.19; 2.95] 2.55 [2.12; 3.00] 3.13 [2.31; 4.01] 2.77 [2.36; 3.17] 

Cycle 0.33 [0.23; 0.42] 0.01 [-0.04; 0.06] 0.03 [-0.02; 0.09] 0.06 [-0.01; 0.15] 0.12 [0.07; 0.17]  

Table 4 
Random effects correlation matrix of the full continuation ratio logit model 
(correlation estimates and their 95% credibility interval).   

Cutaneous Digestive General 
disorder 

Hematologic Others 

Cutaneous 1     
Digestive 0.22 [0.15; 

0.28] 
1    

General 
disorder 

0.05 [-0.01; 
0.12] 

0.45 
[0.40; 
0.51] 

1   

Hematologic � 0.18 
[-0.27; 
� 0.07] 

0.28 
[0.23; 
0.35] 

0.26 
[0.21; 
0.33] 

1  

Others 0.01 [-0.06; 
0.08] 

0.42 
[0.36; 
0.46] 

0.41 
[0.36; 
0.46] 

0.37 [0.32; 
0.43] 

1  

Fig. 2. Observed (empty circle) vs expected conditional probability given the cycle of each type of toxicity at each cycle according to the PO model. The median 
expected probability (filled circles) and the 95% prediction interval were obtained from 1000 simulations from the posterior predictive distribution of the model. 
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(3.48 instead of 3.44), but it was higher for grade 3 or more (3.58 instead 
4.95). 

Conversely, additional cycles of treatment did not significantly 
modify the risk of digestive, general disorder and hematological toxic-
ities, but increased the risk of cutaneous and ‘other’ toxicities. This is in 
line with the underlying mechanisms of actions inducing cutaneous rash 
that is directly related to the drug exposure. Based on the 95% credi-
bility intervals of ζj1; ζj2, the PO assumption was plausible for cutaneous 
and ‘other’ types of toxicities. Nevertheless, in those later cases, the 
deviation were of borderline significance as the boundary of intervals for 
parameters associated with grade 2 or more were 0.02 for the former 
and � 0:00 for the later. Again, the PO assumption would lead to slightly 
over estimate the cycle effect for grade 2 or higher cutaneous toxicity. 
One possible explanation for this over-estimation might be the dose 
reduction which may have been applied to some patients. Indeed, in-
vestigators may reduce the dose after several cycles to avoid upcoming 
toxic side events leading to a systematic bias when we adjusted on the 
planned dose instead of the actual dose. 

The estimated variance-covariance matrix of the random effects of 
the full CR-model in Table 4 provides some insight on the correlations 
between the various types of toxicity. 

The low to moderate correlations between random effects (from 
� 0.15 to 0.46) suggest that each type of toxicity carries different in-
formation, which may also be the consequence of different toxicity 
profiles according to the investigated agent. This is reassuring that 
correlation between hematologic and cutaneous toxicity was low as they 
proceed from different mechanisms. Conversely, general disorders 
(typically fatigue, mood depressions, pain,…) and digestive toxicity that 
are commonly associated in clinical practice, were correlated in our 

data. Of note, the correlations estimated under the PO assumptions were 
quite similar (cf. Supplementary material Table A2). 

3.3. Goodness of fit 

Figs. 3 and 2 show that the observed probabilities of toxicity at each 
cycle were included in the 95% prediction interval drawn from the 
predictive posterior distributions for both the full and the PO models. 
The goodness of fit of the model was satisfactory. 

4. Discussion 

The richness of this large database highlighted some characteristics 
of the dose-response relationships for different types of toxicities. Our 
results suggest that the PO assumption may hold in most cases, but this 
statement cannot be generalized, specifically for digestive and general 
disorder toxicities. The cycle effect also depends of the type of toxicity as 
it ranged from no cycle effect for digestive and hematological toxicities, 
to a moderate effect attenuated for grade 2 or higher of the other types of 
toxicity. 

Those results may have application both at the design and at the 
analysis level. Assuming proportional odds for the dose effect enables to 
incorporate the occurrence of intermediate grades of toxicity in the es-
timate of the risk of toxicity and hence to increase its precision. In 
particular, the method proposed by Ref. [17] based on PO models ap-
pears as a simple and efficient extension of the continual reassessment 
method (CRM) for ordinal outcomes that may be applied in various 
situations. Designs based on PO assumption for dose effect may fail for 
trials applied to a drug which are expected to induce digestive and/or 

Fig. 3. Observed (empty circle) vs expected conditional probability given the cycle of each type of toxicity at each cycle according to the full model. The median 
expected probability (filled circles) and the 95% prediction interval were obtained from 1000 simulations from the posterior predictive distribution of the model. 

D. Drubay et al.                                                                                                                                                                                                                                 



Contemporary Clinical Trials Communications 17 (2020) 100529

6

general disorder toxicities, but they would be more informative than 
binary CRM designs in the other cases. In case the strict PO assumption 
appears too strong, an informative prior on the dose parameter in the 
continuation ratio logit model may be an alternative modeling option. 
Phase I trials enroll increasing numbers of patients (commonly larger 
than 100) [30]. More advanced analysis may then be performed to help 
refining the assessment of the toxicity profile according to the dose and 
over time. We proposed an analytical tool to explore the dose and the 
cycle effects on each type of toxicity. In addition, the joint modeling 
provides estimates of the correlations between the various toxicities, an 
additional information that is useful for the management of patients 
during the course of the treatment. One of the statistical issue with the 
analysis of multiple cycles of treatment relates to the patients who get 
off-study due to early progressive disease. Follow-up strongly varies 
across patients. Under the assumption that the risk of early progression 
is largely independent on the risk of toxicity after adjustment for the 
dose level, our estimates should not be biased by early drop out. When 
incorporating repeated cycles of treatment in the analysis, the main 
limitation is the lack of known model for the relationship between the 
cumulative drug exposure and the risk of toxicity. As patients are treated 
at the same dose level over all cycles, the delayed toxicity cannot be 
disentangled from the cumulative dose effect, if any. Is the toxicity at 
cycle 3 due to the dose administered at the same cycle or at a previous 
cycle or is it the consequence of some accumulation? It may depend on 
the half-life of the compounds, but PK models are often unknown at the 
time the first in man trials are carried out. This is also the reason why 
accounting for the actual administered dose is not straightforward. In 
case of adverse events, some dose reduction may be allowed. How to 
adjust the model on those dose reductions largely depend on the un-
derlying model for the drug exposure. Would this model be known, our 
approach could be easily adapted. Our analysis shows that the data 
generated by phase I trial is richer than the classical binary DLT 
measured at the first cycle. Analysis of all the collected information is 
feasible. This may help elaborating new designs with reasonable as-
sumptions for our models to select the optimal dose more reliably. 
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