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The mechanism of epithelial-mesenchymal transition (EMT) consists of the cellular
phenotypic transition from epithelial to mesenchymal status. The cells exhibiting EMT
exist in cancer stem cell (CSC) population, which is involved in drug resistance. CSCs
demonstrating EMT feature remain after cancer treatment, which leads to drug resistance,
recurrence, metastasis and malignancy of cancer. In this context, the recent advance of
nanotechnology in the medical application has ascended the possibility to target CSCs
using nanomedicines. In this review article, we focused on the mechanism of CSCs and
EMT, especially into the signaling pathways in EMT, regulation of EMT and CSCs by
microRNAs and nanomedicine-based approaches to target CSCs.
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INTRODUCTION

The cell types transit in human body, which is identified by molecular profiles and contributes into
the human disease (Regev et al., 2017). Epithelial-mesenchymal transition (EMT) is defined as
cellular phenotypic changes from epithelial to mesenchymal type with high expression of N-
cadherin and vimentin, which occurs in various conditions including normal and cancer cells
(Tanabe, 2015a; Noh et al., 2017). The EMT plays various roles in the cellular processes such as
migration, extracellular matrix (ECM) alteration and apoptosis (Song and Shi, 2018; Peixoto et al.,
2019). EMT is also known to drive cell plasticity and contributes in intra-tumor heterogeneity
(Krebs et al., 2017; Wahl and Spike, 2017). Cancer poses the entity-specific differences and variety of
populations in different malignant stages (Dawood et al., 2014; Fatima et al., 2019). Cancer stem cell
(CSC), stem cell population in cancer, is detected with markers such as CD44, while the distinct
markers for CSC have not been determined, so far (Yan et al., 2015; Ghuwalewala et al., 2016). Two
possibilities for cancer generation, such as the stochastic model and hierarchy model, have been long
discussed and are still controversial. CSCs consist of cancer cells with stem-like features, which have
capacities of self-renewal, differentiation in cancer cells (Sato et al., 2016). It is also known that some
population of CSCs shares the EMT-like cell features (Shibue and Weinberg, 2017). The potential
link between EMT and CSCs is a key to cancer drug resistance acquisition, as well as cancer cell
plasticity in which the cancer cells transform into the malignant cells and vice versa (Loret et al.,
2019). To reveal the mechanism of cancer drug resistance, the features of EMT and CSCs should be
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investigated. The CSCs express transporters on their cell
membrane to transport anticancer drugs from inside to outside
of the cells (Savage, 2016; Begicevic and Falasca, 2017). The gene
and protein expression of the transporters are altered in the
CSCs, which may contribute to the acquisition of drug resistance
(Lipinska et al., 2017).
THE ROLE AND REGULATION OF EMT

The Gene Modules and Network-Based
Approaches for EMT-Regulated Genes
EMT controls various cellular processes such as migration,
invasion, metastasis, ECM alteration, and apoptosis (Song and
Shi, 2018; Peixoto et al., 2019). EMT is implicated in the cancer
malignancy, and many genes such as NOTCH family genes are
regulated as comparing mesenchymal stem cells (MSCs) and
diffuse-type gastric cancer (Tanabe et al., 2015a; Tanabe et al.,
2015b). Gene expression of E-cadherin (cadherin1; CDH1) and
N-cadherin (cadherin2; CDH2), as well as vimentin are altered in
diffuse-type gastric cancer and MSCs (Tanabe et al., 2014).
Molecular networks are regulated in EMT, which is a critical
process in cancer metastasis and malignancy (Tanabe, 2015b;
Tanabe, 2017; Tanabe, 2018a; Tanabe, 2018b; Tanabe et al.,
2018). Network-based approach has revealed the several
transcription factors predicting diagnosis and drug response in
colorectal cancer, which may contribute into the whole
understanding of the EMT-regulated mechanisms (Bae et al.,
2013; Tanabe, 2018b).

The Signaling Pathways in EMT
Several signaling pathways such as estrogen receptor signaling,
androgen receptor signaling, transforming growth factor beta
(TGF-b) signaling and epidermal growth factor (EGF) signaling
are involved in EMT in prostate cancer (Montanari et al., 2017).
The EMT feature is also involved in resistance in antiandrogen
therapy for prostate cancer (Montanari et al., 2017).
transforming growth factor beta (TGF-b) signaling, Sonic
Hedgehog (SHH) signaling, and WNT signaling pathways are
involved in EMT relating development, wound healing and
cancer (Zhang et al., 2016). The molecules targeting the
signaling related to EMT signaling are anticancer drug
candidates, in which the trabedersen (AP12009) inhibiting
TGF-b2 expression has been developed for pancreatic cancer
treatment, SB431542 inhibiting TGF-b receptor I is used for
breast cancer therapy, and LY2109761, another TGF-b receptor
inhibitor has been developed for pancreatic cancer treatment
(Melisi et al., 2008; Tanaka et al., 2010; Schlingensiepen et al.,
2011; Zhang et al., 2016). Fresolimumab, a human anti-TGF-b
monoclonal antibody was applied for the treatment in advanced
malignant melanoma and renal cell carcinoma patients in Phase
I study, which resulted in the acceptable safety and preliminary
evidence of antitumor activity (Morris et al., 2014). TGF-b
signaling is also targeted in the glioma treatment (Han et al.,
2015). It has been revealed that TGF-b signaling and EGF
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signaling pathways play critical roles in the regulation of the
metastasis of aggressive breast cancer (Wendt et al., 2010).

Regulation of EMT by MicroRNAs
MicroRNAs (miRNAs) are highly conserved, small noncoding,
single-stranded RNAs of 20–25 nucleotides that suppress the
expression of target genes by translational repression, mRNA
degradation, or both (Shyu et al., 2008). To date, 1,917 miRNAs
are reported in the human genome (GRCh38) (Kozomara et al.,
2019). A single miRNA usually has multiple target genes with
partially complementary mRNA sequences, while a single gene
can be regulated by several miRNAs (Iorio and Croce, 2012).
miRNAs play important roles in the various biological processes,
including differentiation, proliferation, apoptosis, and
progression of tumors (Zhang and Ma, 2012). In the process of
progression of tumors, EMT plays crucial roles in tumor invasion
and metastasis. Increasing evidence supports that miRNAs are
associated with EMT. A subset of miRNAs (miR-187, miR-34a,
miR-506, miR-138, miR-30c, miR-30d, miR-30e-3p, miR-370,
and miR-106a) were found to either enhance or suppress the
ovarian carcinoma-associated EMT (Koutsaki et al., 2014).
Reduced expression levels of the miR-200 family (miR-200a,
miR-200b, miR-200c, miR-141, and miR-429) in breast cancer
upregulated ZEB1/ZEB2, activating TGF-b/BMP signaling to
promote EMT (Saydam et al., 2009). It was reported that the
overexpression of miR-200 family could inhibit EMT through
the direct suppression of ZEB1/ZEB2 and increases the
sensitivity of cancer cells to chemotherapeutic agents (Gregory
et al., 2008; Fischer et al., 2015). miR-655 was reported as both an
EMT-suppressive miRNA and a predictor for poor prognosis in
esophageal squamous cell carcinoma (Harazono et al., 2013). It
was also reported that overexpression of miR-509-5p and miR-
1243 increased the expression of E-cadherin through the
suppression of EMT-related gene expression and that drug
sensitivity increased with a combination of each of these
miRNAs and gemcitabine (Hiramoto et al., 2017). These
reports suggest that miRNAs are one of the promising tools to
regulate EMT.
LINKAGE BETWEEN EMT AND CSCS

Regulation in EMT and CSC Pathways
EMT and CSC pathways are regulated at gene level in different
pathways such as MAPK/ERK, TGFb-SMAD, JAK/STAT, PI3K-
AKT-NFkB, and WNT/b-catenin pathways (Loret et al., 2019).
Figure 1 shows the complexity model scheme for the linkage
between EMT and CSC concept. Diverse genes are involved in
cancer phenotypes and heterogeneity, which defines the subtypes
of breast cancer (Sørlie et al., 2001). Immune modulatory effect
has been reported in EMT and CSCs, which realized the
immunotherapy targeting cancer immunity (Deng et al., 2015;
da Silveira et al., 2017; Saygin et al., 2019). EMT and CSC
properties are involved in the resistance to cytotoxic T
lymphocytes (Terry and Chouaib, 2015). Tumor-associated
macrophages resides in the microenvironment of the cancer
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contributes to the EMT characterization (Li et al., 2018). EMT
and CSCs are implicated in cellular senescence (Del Barco et al.,
2011; Olivos and Mayo, 2016). The cellular senescence can be
targeted in terms of the acquisition of stemness of CSCs in cancer
therapy (Del Barco et al., 2011; Olivos and Mayo, 2016). The
senescence of CSCs is also one of the major reasons of the
anticancer treatment which inhibits the cell division (Del Barco
et al., 2011; Olivos and Mayo, 2016). The tumor dormancy is one
of the major factors of therapy resistance mediated by CSCs
(Steinbichler et al., 2018). There is controversially interesting
discussion that the dormant tumor cells which acquire EMT
phenotypes promote the metastatic proliferation of the cells in
CSC-like phenotypes (Weidenfeld et al., 2016). Moreover, in the
metastasis process, cytoskeletal changes are required for the cells
to migrate from tissues into the blood circulation, which is
programmed by TGFb signaling inducing EMT (Tsubakihara
and Moustakas, 2018). The cells exhibiting EMT phenotype
demonstrate loosened tight junctions and cell-to-cell adhesion
to be ready to migrate (Iqbal et al., 2016; Tsubakihara and
Moustakas, 2018).

The Role of EMT and CSCs in Hypoxia
Hypoxia is involved in the development and aggressiveness of
solid tumors. The hypoxia-inducible factor (HIF), which is a
main transcriptional regulator of cellular responses to hypoxia,
regulate hypoxia responsive genes and contributes to increased
cell proliferation, survival, angiogenesis, invasion and metastasis,
as well as resistance to therapies. The EMT and CSCs are
associated with the hypoxia in tumors, which plays an
important role in the regulation and maintenance of the CSC
phenotype. It has been demonstrated that the in vitro exposure of
several human carcinoma cell lines induces EMT, likely due to
mechanisms associated with HIF-1 activation (Imai et al., 2003;
Lester et al., 2007; Yang et al., 2008). Moreover, it has been
reported that HIF-1 promotes EMT of carcinoma cells in clear
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cell renal cell carcinoma, suppressing E-cadherin indirectly by
inducing the expression of ZEB1 and ZEB2 and E2A
immunoglobulin enhancer-binding factors E12/E47 (TCF3).
Such inhibition leads to the mesenchymal characteristics to the
carcinoma (Esteban et al., 2006; Krishnamachary et al., 2006).
These findings indicate the complex contribution of various
factors contributing to EMT in carcinoma cells, and represent
a formidable challenge for formulating therapeutic approaches to
control the EMT in tumors.

Plasticity in EMT and CSCs
CSCs are also phenotypically heterogeneous both inter- and
intratumorally (Magee et al., 2012; Meacham and Morrison,
2013), which poses a significant challenge for developing targeted
therapies. The heterogeneity of CSCs could be given by genetic
mutations and epigenetic changes, or by microenvironmental
differences, such as cell-cell interaction, cytokines, and hypoxia
(Magee et al., 2012; Meacham and Morrison, 2013). Increasing
evidence is also indicating that CSCs exist in anatomically and
physiologically specialized environments within tumors,
constituting niches that favor their survival (Plaks et al., 2015;
Brozovic, 2017). The reliance of the CSCs on niche signals is a
general phenomenon and has been demonstrated in several
tumors (Borovski et al., 2011; Plaks et al., 2015). CSCs can in
turn modulate their niche, and utilize cell-signaling pathways for
maintaining homeostatic processes, such as inflammation, EMT,
hypoxia and angiogenesis (Borovski et al., 2011; Plaks et al.,
2015). Consequently, the architecture and position of this niche
are dynamic, and change with tumor development and
progression, as well as with the applied treatments.
Additionally, the microenvironment of the niche can revert
nontumorigenic cancer cells into CSCs by EMT-associated
processes, increasing tumor invasion and metastasis (Visvader
and Lindeman, 2008; Borovski et al., 2011; Iliopoulos et al., 2011;
Plaks et al., 2015). Such dynamic interchange between cancer
FIGURE 1 | The complexity model scheme for the linkage between epithelial-mesenchymal transition (EMT) and cancer stem cell (CSC) concept. The CSC
subpopulations exhibit the EMT phenotypes. The EMT and CSC pathways are regulated at gene level in several signaling pathways, where the plasticity is important
for the cancer resistance.
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cells and CSC population suggests that therapies that are only
active against CSCs may eventually result in the recurrence/
resistance, if the residual differentiated cancer cells can
repopulate the niche of CSCs. The cells with the mesenchymal
phenotype release from the tissues to enter the circulation as
circulating tumor cells (CTCs), where the mesenchymal-
epithelial transition (MET) may occur to express the epithelial
marker EPCAM in the blood circulation condition. However, it
is still controversial that CTCs having high expression of
EPCAM correlate with low survival, as shown in castration-
resistant prostate cancer patients (de Wit et al., 2018). CTCs
themselves may have a variety of subpopulations (Onidani et al.,
2019). Therefore, targeted therapeutics aimed for tumor
suppression should be able to reach the entire tumor, including
CSC niches, at any step of tumor development and eliminate
both cancer cells and CSCs with sufficient selectivity, for
achieving safe and robust long-term responses.

Targeting EMT and CSCs by miRNAs
EMT and CSC formation have strong correlations in tumor cell
invasion and metastasis. Moreover, EMT and CSCs are related to
the acquisition of chemoresistance of tumor cells. Recently,
miRNAs were reported to suppress chemoresistance in CSCs.
For example, overexpression of miR-608, which targets
ribonucleotide reductase large subunit M1 (RRM1) and
cytidine deaminase (CDA), decreased the viability of the
gemicitabine-resistant MIA-PaCa-RG4 and AsPC-RG2
pancreatic cancer cells (Rajabpour et al., 2017). Overexpression
of miR-204 significantly inhibited the metastasis and invasion of
gastric cancer cells through the suppression of EMT by SNAI1
(Liu et al., 2016). miR-361-3p regulates ERK1/2-induced EMT
via direct negative regulator of DUSP2 mRNA degradation in
pancreatic ductal adenocarcinoma (Hu et al., 2018).
Overexpression of miR-195-5p in DLD1 and HCT116 colon
cancer cells repressed cell growth, colony formation, invasion,
and migration, while the inhibition of miR-195-5p function
contributed to aberrant cell proliferation, migration, invasion,
and EMT (Sun et al., 2017). The emerging reports related to
miRNA regulation may support the targeting EMT and CSCs by
miRNAs (Tanabe and Ono, 2018).
THERAPEUTIC STRATEGIES FOR CSC
TARGETING

Potential Therapeutic Strategies to
Target CSCs
The resistance of CSCs to conventional chemo- and radio-
therapies, along with intratumoral heterogeneity and associated
plasticity are the significant factors contributing to cancer
treatment failure and recurrence. Accordingly, therapies that
target CSCs and interrelated cellular hierarchy, represent an
attractive direction toward developing robust cancer cures.
Among different CSC targeting strategies, meddling with CSC
surface markers, controlling drug efflux channels and
transporters and targeting signaling pathways, such as Wnt,
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Hedgehog, and Notch pathways, produced encouraging pre-
clinical results and are now in different phases of clinical trials
(Koury et al., 2017; Annett and Robson, 2018; Desai et al., 2019;
Saygin et al., 2019). Drug-induced differentiation to convert CSCs
to non-CSCs (Moreb et al., 2017; van Gils et al., 2017), or inducing
MET (Pattabiraman et al., 2016; Pattabiraman and Weinberg,
2016) has also been experimentally confirmed as a practical
therapeutic approach to sensitize this therapy-resistant
subpopulation to chemotherapies. Several differentiation-
inducing agents have shown their vast potential as in single-
agent anticancer therapies in pre-clinical studies, however,
equivalent responses have not always been observed in patients.
These epigenetic modulators generally exert pleiotropic effects and
have relatively low cytotoxicity on malignant cells; accordingly,
their true therapeutic potential most likely lies in optimal
combination with other anticancer drugs (Bayat Mokhtari et al.,
2017). In this respect, concomitant cytotoxic therapy with
differentiation therapy is expected to prove as a promising
therapeutic approach to eradicate this tumor-driving cell
population and ultimately bring complete remission. In addition
to the differentiation-inducing CSC targeting strategies,
immunotherapy-based anti-CSC approaches are also receiving
much research attention. Considering that co-inhibitory
molecules and immune checkpoint ligands, such as programmed
death-ligand 1 (PD-L1) and programmed death-ligand 2 (PD-L2),
are highly expressed on CSCs of various cancers, many research
groups have also evaluated immunotherapeutic approaches to
target CSCs. Among different immunotherapy-based strategies
that have been assessed to target CSCs, adaptive T-cells,
dendritic cell (DC)-based vaccines, oncolytic viruses, and
immune checkpoint inhibitors are typical examples and have
recently been reviewed elaborately by Badrinath and Yoo
(Badrinath and Yoo, 2019; Saygin et al., 2019). Added to the
strategies mentioned above; another rational approach of targeting
CSCs is signified by the use of nanotechnology as an efficient tool
for the detection and elimination of CSCs. Nanotechnology-based
approach will be discussed elaborately in the following chapter.

Nanomedicines Targeting CSCs
Nanotechnologies for disease management has already
demonstrated significant potential in clinical oncology with
several anticancer drug-loaded nanomedicines being already in
clinical use (Tran et al., 2017; Aftab et al., 2018). With a unique
pharmacokinetics (PK)/pharmacodynamics (PD) profile,
nanomedicine delivers many pharmacological advantages over
conventional chemotherapy, such as improved bioavailability,
reduced toxicity, and increased target-tissue selectivity (Rodallec
et al., 2018). Nanomedicine has the potential for developing
unprecedented therapies by controlling drug functions in a
spatiotemporal manner (Cabral et al., 2018), which allows for
effective targeting to subpopulations in tumor tissues, as well as
intracellular therapeutic targets. With CSC subpopulation in
tumors accounting for resistance to therapies and tumor
recurrence, institution of novel therapeutic strategies capable of
eradicating the CSC fraction is central for achieving the robust
responses and long-term patient survival. In this respect,
nanomedicine has the potential to target CSCs for realizing
June 2020 | Volume 11 | Article 904
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effective cancer treatment outcome. For example, the polymeric
micelle-based nanomedicine incorporating cisplatin (CDDP/m),
which is currently in Phase III of clinical trials for treating
pancreatic cancer (Cabral and Kataoka, 2014), was able to
eradicate both undifferentiated cell and differentiated cancer
cell populations within tumors by controlled intratumoral and
intracellular navigation (Wang et al., 2016). This effect was
demonstrated in head and neck cancers, where a majority of
late-stage cancer cases suffer tumor relapse following cisplatin
treatment. Additionally, several nanomedicine-type approaches
for both CSC-related therapy and diagnostics have been
developed recently (Reda et al., 2019). Combination of thermo
and chemotherapy utilizing multifunctional magnetic
nanoparticles have been used to target CSCs for the effective
cancer treatment (Liu et al., 2020). The nanomedicine containing
miR-125b-5p to target EMT and CSCs effectively demonstrated
the tumor inhibition in vivo (Guo et al., 2019). Another
nanomedicine strategy includes co-loaded liposomes of
cabazitaxel and CSC inhibitor silibinin to target CD44
receptors on CSCs (Mahira et al., 2019). Strategies capable of
enhancing the levels of nanomedicines in tumors and cancer cells
could also promote the activity in CSC-rich tumors. Besides
peptides or small molecules, the surface of nanomedicines can be
modified with other ligands, such as antibodies, antibody
fragments or aptamers, providing a versatile platform for
targeting tumors and CSCs.
CONCLUSION

The CSCs exhibit a variety of features, some of which
demonstrate EMT characteristics. CSCs contribute into the
anticancer drug resistance leading to the recurrent of cancer,
which may be one of the targets for the therapy. Signaling
pathways in EMT and CSCs are possible targets for cancer
treatment. Considering that these pathways in EMT and CSCs
are also found in normal cells, specific targeting of the cancer
Frontiers in Pharmacology | www.frontiersin.org 5
is critical. There have been emerging evidences that miRNAs
regulate various cellular phenotypic changes including EMT
and CSCs, which may be one of the targets for cancer therapy.
Varieties of novel therapeutics, including nanomedicine and
immunotherapy, also have great possibilities for CSC
targeting. Further advancement of CSC therapies in
combination with several targeting strategies can be
envisioned in the near future.
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