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Abstract

The value of diatoms as bioindicators in contemporary and palaeolimnological studies

through transfer function development has increased in the last decades. While such mod-

els represent a tremendous advance in (palaeo) ecology, they leave behind important

sources of uncertainties that are often ignored. In the present study we tackle two of the

most important sources of uncertainty in the development of diatom salinity inference mod-

els: the effect of secondary variables associated to seasonality and the comparison of con-

ventional cross-validation methods with a validation based on independent datasets.

Samples (diatoms and environmental variables) were taken in spring, summer and autumn

in the freshwater and brackish ditches of the province of North Holland in 1993. Different

locations of the same province were sampled again in 2008–2010 to validate the models.

We found that the abundance of the dominant species significantly changed between the

seasons, leading to inconsistent estimates of species optima and tolerances. A model cov-

ering intra-annual variability (all seasons combined) provides averages of species optima

and tolerances, reduces the effect of secondary variables due to the seasonality effects,

thus providing the strongest relationship between salinity and diatom species. In addition,

the ¨all-season¨ model also reduces the edge effects usually found in all unimodal-based

calibration methods. While based on cross-validation all four models seem to perform rela-

tively well, a validation with an independent dataset emphasizes the importance of using

models covering intra-annual variability to perform realistic reconstructions.

Introduction

Diatom assemblage changes provide an excellent basis for inferring environmental changes

from seasonal to decadal or centennial scales given their sensitivity to a broad variety of habitat

parameters. Available transfer functions cover nutrient status of freshwater bodies, tempera-

ture, as well as salinity dynamics [1–5]. Diatom-based models to infer salinity or tidal height

have recently become an increasing focus in transfer function development as a potential tool

in sea level reconstruction efforts [6–8]. These models require extremely high predictive preci-

sion given the often subtle changes they need to quantify. However, the application of transfer
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functions to model a single variable (e.g. salinity) is problematic under multiple response trig-

gers [9,10]. The effect of secondary gradients on model performance and importantly on the

forthcoming reconstructions, has yet received surprisingly little attention [11]. Quantitative

reconstructions are a form of space-for-time substitution [12], and as such require that the co-

variation between the modelled variable and potentially confounding underlying ecological

factors is constant in both time and space. In most situations this is difficult to test, but none-

theless a highly unrealistic assumption. Firstly, this inherent problem of quantitative recon-

structions is especially evident in relation to seasonality (referring to biological and chemical

changes occurring in continental waters according to the different seasons in temperate cli-

mates). In diatom populations, seasonal succession is related to changes in nutrient concentra-

tions, light [13], thermal stratification and predator–prey relationships [14,15]. In addition,

diatom communities follow distinct seasonal succession patterns caused by changes in life-his-

tory traits [16,17] and nutrient stoichiometry [18]. Despite the high likelihood that a modern

training set selected for building a transfer function will be influenced by the seasonality

effects, the strength of such dependences is not known, yet. Only a limited number of diatom-

based studies have used contemporary data to facilitate interpretation of sediment core in

terms of intra-annual diatom distribution [19]. The few studies available that have analyzed

the effect of seasonality on diatom-based transfer functions generally focused on nutrient vari-

ables [19–21]. However, the effect of many other environmental variables can be obscured by

seasonality, including salinity. The potential effect of seasonality is thereby extremely impor-

tant, given the intra-annual variability of salinity that needs to be separated from the long-

term changes [7].

A second limitation in the development of transfer functions is the lack of independent

data sets to test the reliability of the reconstructions [22]. Usually the predictive ability of the

transfer functions is only assessed by cross-validation methods. If the observations in the cali-

bration set are not independent, because of autocorrelation or other types of pseudo-replica-

tion, performance statistics based on cross-validation will be over-optimistic [23]. Therefore,

the ideal way of finding unbiased transfer-function performances is the use of an independent

test set [11].

In the present study, we tackle two important uncertainty sources in diatom based transfer

function development following the recommendations set outlined in Juggins [11]. We evalu-

ate (1) the effect of seasonality when modeling a single variable, e.g.salinity, regarding the

“true” ecological meaning of statistically significant models and (2) compare model perfor-

mance between conventional cross validation methods and independent validation dataset.

Both approaches aim to detect confounding environmental factors on the primary variable of

interest.

Materials & methods

Study area and datasets

The study was conducted in the province of North Holland, the Netherlands. The samples

were collected in modified wetlands that have been reclaimed for agriculture representing a

system of shallow brackish and freshwater ditches draining water from low-lying areas. Water

tables in the three areas are kept within strict limits and the banks are bordered by reed belts

dominated by Phragmites australis. Most of the diatom species and macrophytes found in

these modified wetlands are also found in mesotrophic and eutrophic European lakes. Detailed

description of the study area is provided in [24].

The dataset for the development of the diatom inference models is referred as ¨training set¨

and consists of a total of 96 samples from 32 locations sampled in spring (March), summer
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(June) and autumn (September) 1993. The samples were collected randomly in the province of

North Holland spanning a salinity gradient from 200–9000 mg/l chloride. As a result, salinity

represents the most important gradient in the dataset. Water samples were collected monthly

at the same locations as the diatom samples and measured for: surface water oxygen, pH, con-

ductivity, chloride, sulphates, transparency (Secchi depth), total nitrogen, total phosphorus

and chlorophyll-a (results are summarized in Table 1). In this dataset, 400 diatom valves were

identified per sample.

The dataset used for testing the performance of the models (henceforth referred to as “vali-

dation dataset”) consists of 90 samples collected in drainage ditches within the framework of a

long-term monitoring program in North-Holland carried out by the local water authority dur-

ing spring 2008–2010. In this dataset, 200–300 diatom valves were identified per sample,

according to the standard for routine monitoring in The Netherlands. Fig 1 shows the sam-

pling locations for both datasets. In the validation dataset, water samples were collected

monthly. The determination of chloride, nutrients and other environmental variables followed

the standardized national protocols accredited by the Dutch Standards Institute (NEN-EN

13946). We used chloride average values of the spring months (i.e. March through May),

assuming that these values reflect local conditions better than single measurements. A sum-

mary of the environmental variables measured in the validation data set can be found also in

Table 1.

In both datasets, diatoms were sampled from reed stems (Phragmites australis), which is the

most abundant and common emergent macrophyte in the drainage ditches. Reed is the recom-

mended substratum for sampling periphyton in the Netherlands [25] in order to avoid differ-

ences caused by substratum heterogeneity. Attached diatoms were prepared using H2O2

digestion and mounted on microscope slides with Permount Mounting Medium (Fischer Sci-

entific, Pittsburgh). Taxonomic identification was based on the volumes of Krammer and

Hoffmann [26,27] following standard protocols (NEN-EN 14407). Species percentage data

Table 1. Descriptive statistics of the environmental variables measured in the training and validation datasets. Temp = temperature; O2 = dissolved oxygen;

tN = total nitrogen; tP = total phosphorus; Cl = chloride; Secchi = Secchi depth; Cond. = conductivity; Chl a = chlorophyll a.

TRAINING SET

Temp. O2 NO3 NH4 tN tP Cl pH Secchi Cond. SO4 Chl a
unit ºC mg/l mg/l mg/l mg/l mg/l mg/l cm uS/cm mg/l ug/l

SPRING Max 12.0 24.0 2.5 2.0 9.5 2.4 7700.0 9.1 100.0 32000.0 1800.0 234.50

n = 32 Min 5.5 6.2 0.0 0.1 2.0 0.1 230.0 7.4 10.0 9125.0 70.5 3.00

Mean 9.1 11.9 0.6 0.4 5.2 0.6 2213.9 8.4 33.4 25138.9 381.2 78.11

Median 9.0 11.1 0.1 0.2 4.6 0.4 1200.0 8.5 25.0 27500.0 210.0 64.50

SUMMER Max 20.0 14.0 1.1 3.0 13.1 6.8 8700.0 9.2 90.0 32000.0 1833.3 175.00

n = 32 Min 11.0 1.4 0.0 0.1 1.1 0.1 190.0 7.3 5.0 9543.3 32.0 3.00

Mean 17.1 8.0 0.1 0.5 4.2 1.2 2312.2 8.3 30.0 24348.0 401.7 38.67

Median 17.3 8.3 0.0 0.2 3.4 0.8 1300.0 8.3 25.0 29500.0 170.0 27.67

AUTUMN Max 18.0 15.0 2.7 5.4 10.0 2.8 7900.0 9.5 110.0 32000.0 1700.0 167.50

n = 32 Min 10.0 0.8 0.0 0.1 0.6 0.1 140.0 7.3 10.0 10780.0 63.0 3.00

Mean 14.5 7.3 0.3 0.7 4.2 0.9 1964.7 8.0 29.7 23868.6 377.7 40.64

Median 15.5 7.5 0.1 0.3 4.1 0.8 670.0 7.9 22.5 26500.0 147.5 29.50

VALIDATION SET Max 23.5 18.2 2.0 8.1 11.6 6.6 13000.0 10.0 120.0 31360.0 1600.0

n = 90 Min 6.4 0.0 0.1 0.0 0.9 0.0 110.0 7.4 10.0 690.0 7.0

Mean 13.4 9.1 0.3 0.5 4.1 0.9 1316.7 8.2 37.9 4233.4 217.9

Median 13.8 9.0 0.1 0.1 3.5 0.7 470.0 8.2 30.0 2030.0 120.0

https://doi.org/10.1371/journal.pone.0199343.t001
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were square-root transformed to reduce the weight of dominant species prior statistical

analysis.

Data analysis

The effect of seasonality on diatom community structure. We performed two different

tests to quantify the effect of seasonality on diatom community structure: 1) permutational

multivariate analysis of variance (PERMANOVA) [28] to reflect changes in community com-

position (species identity and abundances) and 2) analysis of multivariate dispersions [29] that

reflects changes in community heterogeneity or beta diversity.

PERMANOVA analyzes the variance of multivariate data explained by a set of explanatory

factors on the basis of any dissimilarity measure of choice, thereby allowing for a wide range of

empirical data distributions. The null hypothesis tested by PERMANOVA is that, under the

assumption of exchangeability of the sample units among the groups:”the centroids of the

groups are equivalent for all groups” [30]. The test of multivariate dispersions explicitly exam-

ines that ‘‘the average within-group dispersion (measured by the average distance to group

centroid) is equivalent among the groups”. This test is equivalent to the popular Levene’s test

in univariate ANOVA but applied to the study of species assemblages by using dissimilarity

indices [31].

The statistical significance of multivariate variance components were each tested using

9999 permutations of residuals under a reduced model [28] with an a priori chosen signifi-

cance level of α = 0.05. All multivariate analyses were done on the basis of a Bray–Curtis dis-

similarity matrix calculated from square-root transformed relative abundance data. To

visualize multivariate patterns in assemblages across the three seasons, non-metric multi-

dimensional scaling (NMDS) was used as an ordination method.

To determine which individual species contributed most to the differences between the sea-

sons we used the species contribution to similarity method (SIMPER), which measures the

percentage contribution of each species to average dissimilarity between two groups [7,32].

One Way Anova was performed to test if environmental variables differed between spring,

summer and autumn. These analyses were performed in R with the vegan package [33].

The development of diatom based salinity transfer functions. The weighted optima of

each species along the salinity gradient (chloride) were determined by averaging all values for

each variable from the sites where the taxon occurred, weighted by its abundance at each site.

The taxon’s tolerance along each gradient was then calculated as an abundance-weighted stan-

dard deviation of the environmental variable [34].

We measured the explanatory strength of salinity as a predictor of diatom assemblage com-

position by calculating the ratio of the eigenvalue of the first (constrained) CCA axis (λ1) with

salinity as a single explanatory variable with the first unconstrained axis (λ2). A value of λ1/λ2

greater than 1 indicates that the variable of interest represents an important ecological gradient

in the training set and meets the criterion for a “useful calibration” [11]. To assess the potential

confounding effect of other explanatory variables, we performed hierarchical partitioning

ordination with the full suite of environmental variables [11]. The analysis were performed in

Canoco 5.0. [35].

The WA-PLS regression [36] with “leave one out” cross-validation was used to develop sta-

tistical prediction models. This method combines the features of weighted averaging (WA)

Fig 1. Sampling locations of the training and validation dataset. Sampling locations of the training dataset collected in 1993 in spring, summer

and autumn (locations marked with stars). Sampling locations of the validation dataset collected in spring 2008–2010 (marked with circles) in the

province of North Holland (The Netherlands).

https://doi.org/10.1371/journal.pone.0199343.g001
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and partial least squares (PLS) and uses the residual correlation structure in the data to

improve the fit between the biological data and environmental data in the training set [37].

The predictive abilities of transfer functions were assessed by examining the relationship

between the observed and diatom-inferred values, as well as the observed and leave one out-

estimated values of the variables of interest in the training set (r2
apparent and r2

leave-one-out), and

evaluation of root mean square error of prediction (RMSEP) [38]. We have worked with the

smallest number of ‘useful’ components, these are the ones giving a reduction of 5% or more

in the cross-validated RMSE (compared with the RMSE for the 1 component model) [39].

We further evaluated the ability of the model to predict salinity through an independent

validation: We used the data from the training set to develop transfer functions and tested

their accuracy using the validation dataset. These analyses were performed using C2 version

1.7 software. [40].

Results

A total of 408 species were identified in the training set of which 179 species covered 98% of all

observations and therefore only these were used to develop the models. In the validation data-

set 253 species were identified of which 145 already covered 98% of the data set and were used

for the reconstructions.

The PERMANOVA analysis revealed that diatom community composition is affected by

seasonality, in terms of overall differences in species abundances: spring-summer p = 0.001;

spring-autumn p< 0.001; summer-autumn p = 0.01 (Table 2 and Fig 2). The species that con-

tributed the most to the differences between the seasons are common species present in all

three sampling seasons, as it is revealed by the SIMPER method (Table 3). In contrast, the anal-

ysis of multivariate dispersions showed that seasonality does not affect beta diversity or com-

munity heterogeneity (Table 2). In summary, these analyses indicate that the seasonal

differences in diatom community structure are due to changes in species abundances and not

to species identities. The optima and tolerances of species that contribute the most to commu-

nity dissimilarity are shown on Fig 3. Either spring or summer models tend to produce the

highest optima values, while autumn model lead to the lowest optima. The ¨all-season¨ model

produces average optima values in comparison to the individual season models. Most of the

species of Fig 3 contain a Hill´s N2 value higher than 5 (rule of thumb for selecting reliable

optima estimations) [41]. Only two species have Hills N2 values lower than 5 and none of

them belong to the all-season model:Mastogloia pumila 3.82; 3.51; 3.66 respectively in the

Spring, Summer and Autumn models and Diatoma moniliformis 3.09; 1.66; 3.33 respectively

in the Spring, Summer and Autumn models.

The environmental variables NO3, NH4, TN, TP. Cl and Chl a were log-transformed to

achieve normality, in order to reduce skewed distribution of the response variable and hence

reduce variance heterogeneity.

If instead of using averages of environmental variables of the summer months we have used

whole year averages of environmental variables, none of them was sufficient in explaining

Table 2. P values of PERMANOVA and test of multivariate dispersions comparing the three different datasets

(spring, summer and autumn). Significance level of α = 0.05.

PERMANOVA DISPERSION

P (Bonferroni corrected) P (Permuted)

Spring-Summer 0.001 0.45

Spring-Autumn < 0.001 0.61

Summer-Autumn 0.01 0.84

https://doi.org/10.1371/journal.pone.0199343.t002
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diatom composition in any of the individual seasonal datasets. Therefore, environmental vari-

ables were calculated per season and the CCA were produced for the corresponding seasonal

diatom dataset. Salinity thereby exhibits the strongest explanatory power (λ1/λ2>1) for diatom

community composition in the training dataset: λ1/λ2spring = 1.16; λ1/λ2summer = 1.29; λ1/

λ2autumn = 1.25 and λ1/λ2all = 1.22 (Fig 4). Only two environmental variables showed statistical

significant differences between the seasons according to One way ANOVA analysis: tN (F:

3.37; P = 0.038) and pH (F: 6.76; P = 0.002).

Hierarchical partitioning revealed that in all seasons sampled, salinity is the variable that

explained most of the variation on diatom community composition. From the total explained

variation, salinity explained 25.8% in the spring model (unique is 9.5%), 27.8% in the summer

model (unique is 9.7%), 25.2% in the autumn model (unique is 7.2%) and 35% in ¨all-season¨

model (unique is 9.7%) (Fig 4). The similarity and high percentage of total explained variation

Fig 2. Nonmetric multidimensional scaling ordination diagram of sites based on Bray–Curtis similarity in diatom composition in spring,

summer and autumn. Average within group dissimilarity spring: 0.77 (grey squares); summer: 0.83 (open circles); autumn: 0.81 (black circles). The

results of the statistical tests of community structure are visible in the graph: the groups differed in their relative position (centroids–PERMANOVA

test) and not in the dispersion of the sampling points. (Stress = 0.25).

https://doi.org/10.1371/journal.pone.0199343.g002
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by chloride and sulfates indicates the correlation between these two variables. Also relatively

high and expected correlation is found with conductivity (Table 4). Because chloride correlates

to sulfates and conductivity in a different degree according to the model, it was not possible to

use any rule of thumb to discard collinear variables because otherwise, models cannot be com-

pared. Therefore, we decided to keep all environmental variables measured in all models to see

the overall pattern of variance partitioning and be able to compare the three models.

The WA-PLS technique revealed that the most parsimonious models for salinity inference

would be the one-component model for spring and autumn and the two-component model

for summer and all seasons combined. The relationship between observed and predicted val-

ues of salinity were very strong with no apparent outliers (Table 5; Fig 5). The distribution of

the most common species along the salinity gradient is shown in Fig 6.

The validation of the model using an independent dataset is shown in Fig 7. The models to

some extent overestimate salinity values at the low end of the gradients and underestimate the

values at the high end, which was evident in the residuals vs. observed salinity plot (S1 Fig).

The edge effect is clearly improved by the ¨all-season¨ model, providing the most accurate

reconstruction out of the four models (Fig 7).

Discussion

Our study shows that seasonality effects were responsible for important shifts in species domi-

nance in our training set, as it is evident from the highly significant PERMANOVA test results.

Changes in species relative abundance during seasonal succession are usually advanced by the

shift from early colonizers such as the adnate species Navicula perminuta [42] or poor compet-

itors (Ctenophora pulchella, Gomphonema olivaceum) to species competing well under a

resource limitation in late-successional communities (Cocconeis placentula, Gomphonema par-
vulum) [43–45]. Intra-species competition can be expected to play an important role in the

nutrient-limited situation commonly occurring during late summer in freshwater and brack-

ish environments [46]. Our data showed that total nitrogen significantly decreased in summer

and autumn compared to spring. This could reflect changes in nutrient stoichiometry which

might be driving differences in seasonal species abundances. Besides competition under

Table 3. Species that contribute the most to community dissimilarity (based on Bray-Curtis measure) between the three sampling seasons (spring, summer and

autumn). Average dissimilarity (Av. dissim), contribution percentage (contrib %) and cumulative percentage are shown.

Taxon Av. dissim Contrib. % Cumulative %

Cocconeis placentula 10.21 12.28 12.28

Rhoicosphenia abbreviata 7.55 9.07 21.36

Tabularia fasciculata 3.94 4.74 26.10

Gomphonema parvulum 3.86 4.64 30.74

Nitzschia frustulum 2.98 3.58 34.33

Navicula perminuta 2.86 3.44 37.76

Ctenophora pulchella 2.74 3.29 41.06

Navicula recens 1.90 2.29 43.35

Diatoma tenuis 1.87 2.24 45.59

Navicula gregaria 1.79 2.16 47.75

Gomphonema olivaceum 1.76 2.11 49.86

Nitzschia fonticola 1.53 1.84 51.70

Mastogloia pumila 1.46 1.76 53.47

Diatoma moniliformis 1.27 1.52 54.99

Navicula tripunctata 1.09 1.31 56.31

https://doi.org/10.1371/journal.pone.0199343.t003
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resource limitation, inter-specific interactions, such as grazing, are also important factors driv-

ing seasonal shifts in species abundances [14].

As a result of these changes in species abundances, optima and tolerances of species are dif-

ferent if the samples are collected in spring, summer or autumn, even when salinity did not

show statistically significant changes between the seasons (Fig 3). The species collected in sum-

mer tend to have higher optima estimation, the ones collected in autumn tend to have lower

optima while the ones collected in spring showed both, higher or lower optima than the ones

provided by the ¨all-season¨ model. Further investigation is needed in order to confirm if this

Fig 3. Optima (dots) and tolerances (error bars) of the species that contributed the most to community dissimilarity in the four models: Spring, summer, autumn

and all (the three seasons combined).

https://doi.org/10.1371/journal.pone.0199343.g003
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Fig 4. Variance partitioning of the training dataset (spring, summer, autumn and all combined). The independent and shared components

of variance explained by the measured environmental variables and the ratio λ1/λ2 as a measure of the explanatory strength of salinity is also

shown.

https://doi.org/10.1371/journal.pone.0199343.g004

Table 4. Correlations between salinity and the rest of environmental variables in the different models and datasets (spring, summer, autumn, all seasons and valida-

tion). P values are shown for significant Pearson correlations. Temp = temperature; O2 = Dissolved oxygen; tN = Total nitrogen; Tp = Total phosphorus; Secchi = Secchi

depth; Cond = conductivity; Chl a = chlorophyll a.

TEMP O2 NO3 NH4 tN tP pH SECCHI COND SO4 Chl a
SPRING 0.15 0.06 -0.003 0.20 -0.05 0.03 -0.20 -0.17 0.59 0.64 -0.14

n = 32 p<0.001 p<0.001

SUMMER -0.54 -0.33 0.02 0.12 0.24 0.36 -0.16 -0.38 0.58 0.67 0.22

n = 32 p = 0.001 p = 0.04 p = 0.03 p<0.001 p<0.001

AUTUMN -0.4 -0.34 -0.01 0.21 0.02 0.08 -0.12 -0.32 0.64 0.81 0.15

n = 32 p = 0.02 p = 0.04 p<0.001 p<0.001

ALL -0.16 -0.19 -0.003 0.16 0.07 0.15 -0.09 -0.26 0.60 0.70 0.1

n = 96 p = 0.01 p<0.001 p<0.001

VALIDATION 0.07 0.27 0.41 0.23 0.36 -0.08 -0.09 -0.08 0.97 0.54

n = 90 p = 0.01 p<0.001 p<0.001 p<0.001

https://doi.org/10.1371/journal.pone.0199343.t004
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Table 5. Performance statistics for weighted averaging partial least squares (WA-PLS) based diatom salinity inference models for spring, summer, autumn and all

season models.

Transfer function WA-PLS components r2
(apparent) r2

(leave one out) RMSE RMSEP p values

SPRING 1 0.84 0.7 0.18 0.25 <0.001

SUMMER 2 0.96 0.87 0.09 0.18 0.002

AUTUMN 1 0.90 0.78 0.17 0.26 <0.001

ALL 2 0.92 0.86 0.14 0.19 0.004

https://doi.org/10.1371/journal.pone.0199343.t005

Fig 5. Diatom salinity inference models (WA-PLS) showing the relationship between observed and predicted salinity under leave-one-out cross validation for

spring, summer, autumn and ¨all-seasons¨ combined.

https://doi.org/10.1371/journal.pone.0199343.g005
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seasonality effect can be generalized for the variable chloride and how the seasonality effect

will be regarding the optima estimation of other environmental variables. In our dataset, such

differences in the contribution to seasonal community dissimilarity were observed for Cocco-
neis placentula and Rhocoisphenia abbreviata with optima ranging from 1300–2800 and 900–

1600 mg/l mg/l chloride based on autumn and spring models, respectively.

The effect of seasonality investigated here emphasizes a crucial aspect negatively affecting

the accuracy of transfer functions. That is, that almost in every environmental variable mea-

sured, an important fraction of explained variation is shared with other environmental vari-

ables [11]. In our study, even when salinity has the highest contribution to the total percentage

of explained variation, still around half of it is shared with other environmental variables, such

as sulphates, conductivity, secchi depth, total phosphorus and temperature. As it is expected,

high correlation between salt ions (chloride and sulphates) and between ions and conductivity

were found in all training sets (spring, summer and autumn). Especially prone to be affected

by secondary variables is the training data collected in summer and autumn where chloride

concentration is significantly related to nutrient variables (total phosphorus), temperature and

secchi depth (Table 4). In summer, phosphorus released from the sediment increases due to

sulfate induced phosphorus mobilization [47], and this is reflected in the positive correlation

between ions and total phosphorus. As a consequence of increased water nutrients, visibility is

also affected. Both, the spring dataset and the dataset that combines the three seasons, are less

prone to the effect of secondary variables (e.g. nutrients) and showed lower correlation with

potentially nuisance variables. Moreover, the ¨all-season¨ model showed the highest percent-

age of explained variation by salinity (Fig 4). This model also improves the non-linear distor-

tions at the end of the gradients (edge effects) that are an inherent problem of all unimodal-

based calibration methods using weighted averaged estimations [7,36,39,48] (Fig 5). Although

the weighted inverse deshrinking regression incorporated in WA-PLS reduces the edge effect,

it has its own problems by “pulling” the predicted values towards the mean of the calibration

set resulting in an inevitable bias with some over-estimation at low values and some under-

estimation at high values, as it is evident from S1 Fig [36,39,49]. In the ¨all-season¨ model this

bias is reduced because the salinity signal is stronger (the total explained variation by salinity is

much higher as compared to the other variables) and also because the number of samples has

increased from 32 to 96 (which improved species optima estimation). The dataset size of the

¨all-season¨ model falls into the range of� 100 suggested by Wilson (1996) [50] for the

Fig 6. Relative abundances (percentages) of the most common species along the salinity gradient in the complete dataset (all-seasons).

https://doi.org/10.1371/journal.pone.0199343.g006

Seasonality modulates predictive skills of diatom based models

PLOS ONE | https://doi.org/10.1371/journal.pone.0199343 November 20, 2018 12 / 19

https://doi.org/10.1371/journal.pone.0199343.g006
https://doi.org/10.1371/journal.pone.0199343


greatest improvement of the RMSEP. To verify whether the good performance of the ¨all-sea-

son¨ model resulted from the higher sample number as compared to the other models, we also

built the all-season model by randomly selecting one sample out of the three seasons in all

sampling locations. The result of the model performance is the same: r2
leave-one-out = 0.86;

RMSEP = 0.19.

When we tested the performance of the models using the completely independent valida-

tion dataset, we also found that the ¨all-season¨ model performed the best. In the reconstruc-

tions all models tend to underestimate the values at the high end of the gradient, and the

underestimation is in increasing order from the summer, spring and autumn models (due to

the decreasing trend in optima estimation). However, the underestimation of the high salinity

values is the lowest in the ¨all-season¨ model. As a result, this model provides the most realistic

reconstruction even though some edge effects remain (Fig 7).

The reasons for this offset are several:

i. the effect of secondary variables in the training sets. The significant correlation between

salinity and potential nuisance variables in summer and autumn (total phosphorus, secchi

depth and temperature) lies between 0.32–0.54 R2 values (Table 4). According to Juggins

(2013), for training sets that exhibit a correlation 0.2< R <0.5 to a nuisance variable, a

change in the latter can produce spurious fluctuations in the reconstructed variable typically

greater than 10 units (regarding a simulated environmental variable ranging from 1 to 100).

In addition, even a low correlation to a nuisance variable (R<0.2) affects the reconstruction

in at least 10 units. This corresponds to 0.1 of the gradient length studied in Juggins [11]

which in this study will be equivalent to�880 mg/l of chloride change. In the independent

validation we have found a bias of less than 500 mg/l chloride in around 68%-77% of the

observations in the four models and a bias between 2000–4000 mg/l chloride in around 12%

(autumn model) - 4.5% (¨all-season¨ model) of the observations.

ii. the ratio λ1/λ2 in the validation dataset is lower than in the models (λ1/λ2validation = 0.88;

S2 Fig). The significant correlation between salinity and nuisance variables in the validation

dataset (total nitrogen and dissolved oxygen- Table 4) could be the reason of this lower

ratio and of obscuring the effect of chloride in the distribution of diatom communities.

When transfer functions are used to perform palaeoenvironmental reconstructions, the

strength of the relationship between the species and the modelled variable is not known.

We have in the other hand, ways of reducing the error of prediction by taking seasonality

effects in to account when developing diatom based transfer functions.

iii. there are always some species mismatches between the transfer function and the recon-

struction data which lessen the accuracy of palaeoenvironmental reconstructions. In our

study, indicators of high salinity in the models (Mastogloia pumila, Rhopalodia brebissonii,
Navicula arenaria) were not present or very scarce in the validation dataset. This could be

due to problems in the taxonomic identification (e.g. species of the genus Navicula), differ-

ences in the number of individuals identified between the model and the reconstruction

datasets, or due to ecological factors not taken into account (dispersal, grazing, etc). In

addition, brackish species usually have very wide tolerances due to the fact that these spe-

cies are well adapted to the fluctuating environmental conditions in shallow brackish habi-

tats [51]. An example are species of the genus Diatoma [52]. Other species such as

Rhoicosphenia abbreviata and Cocconeis placentula were present in the whole salinity gra-

dient. These are pollution tolerant species [53] that do not respond to the salinity changes

considered in this study and thus, may also introduce noise in the reconstructed values.

This could be the reason why the greatest bias in model performance occur in the high end
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of the gradient. High salinity observations (>2000 mg/l chloride) represent only 12% of all

the samples in the validation dataset and euhalobe or polyhalobe diatoms may be under-

represented. With the general aim to collect representative community data, not only the

taxonomic identification but also the quality of the indicator may have a considerable

impact in (palaeo) environmental reconstructions. It has been suggested that species with

very wide tolerances to the environmental variable of interest may therefore be eliminated

for transfer functions to increase model performance [54]. This is a very interesting field of

research and deserves further investigation, so that appropriate recommendations can be

made towards further standardization.

Fig 7. Salinity reconstructions using the validation dataset for spring, summer, autumn and ¨all-seasons¨ WA-PLS model.

https://doi.org/10.1371/journal.pone.0199343.g007
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The results presented in this study highlight the risk of developing transfer functions based on

environmental variables and/or diatom samples collected in individual seasons, only. In palaeoco-

logical studies, sediment core samples contain diatom assemblages that have already been subject

to temporal and spatial integration. However, the development of the transfer function always

required a modern data set. Despite the high number of studies stressing the potential effect of

confounding environmental variables and the application of temporal dependent calibrations

[11,55,56] the effect of seasonality on the accuracy of diatom-based transfer functions has so far

received only little attention. Environmental datasets based on samples taken during one season

or calibrated against single measurement are very common [6,57,58] while in other cases sam-

pling time is not specified [3]. Potential inaccuracies and low predictive skills of models based on

single season data from sites with highly variable hydrology and water chemistry were proposed

already [56]. Examples include diatom calibration data sets that use environmental measurements

of annual means that do not necessarily reflect the specific concentrations present when diatoms

are growing [20]. Regarding the diatom data, it is common to find in the scientific literature sam-

ples that do not integrate seasonal variability. For example when diatom samples are collected

from substrates such as macrophytes, stones, pebbles or other hard substrates [7,59,60]. In addi-

tion, some of the data sets publicly available to use in transfer function development (European

Diatom Database) are also composed by a mixed samples taken from epipelic, epiphytic or plank-

ton samples, and used in several publications. If we compare the most accurate model (¨all-sea-

son¨) with the less accurate (autumn model) in our study, we found an underestimation of

chloride concentration about 42% and 70% respectively. The effect of seasonality is increasing the

error and uncertainty in the model estimation, in addition to the error caused by nuisance vari-

ables. The results of our study, and specifically from the independent validation, demonstrate the

importance of a comprehensive dataset that takes on board the differences in species abundances

due to seasonality to improve the accuracy of diatom based transfer functions.

Conclusions

Assuming that diatom inference models are invariant in space and time has important conse-

quences for the reliability of environmental reconstructions. The present study has shown that

seasonality modulates the predictive skills of diatom transfer functions by driving changes in the

abundance of the dominant species. Transfer function performance of a single season model (e.g.

spring, summer or autumn) is reasonably good in the model cross-validation. Nonetheless the val-

idation of the models with an independent dataset demonstrates that single season sampling leads

to strong underestimation of salinity due to the confounding effect of other environmental vari-

ables such as temperature, secchi depth, nutrients and dissolved oxygen. The strength of salinity

as the main environmental variable explaining the distribution of diatom communities is

enhanced in the ¨all-season¨ model. The ¨all-season¨ model combines all data and provides the

highest percentage of explained variation by salinity, increases the accuracy of species optima and

tolerance estimations, and reduces the non-linear distortions at the end of the gradients.

One of the basic requirements for quantitative palaeoenvironmental reconstruction is the

availability of a large, high-quality data set of modern species assemblages and contemporary

environmental data. Given the strong effect of seasonality on the composition of diatom

assemblages, the development of transfer functions capturing intra-annual variability of spe-

cies abundances and independent model validation is strongly recommended.

Supporting information

S1 Fig. Residuals vs observed salinity with corresponding R2 values in the four models:

Spring, summer, autumn and all season models. The overestimation of salinity at low end
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and an underestimation of salinity at the high end of the gradient is especially evident in the

spring and autumn models. When all seasons are combined, this edge effects are less promi-

nent and a more accurate performance results.

(JPG)

S2 Fig. Comparison of the percentage of unique and shared explained variation by salinity

in the different datasets (spring, summer, autumn, all seasons and validation datasets).

The ratio of λ1/λ2 is also shown for each case.

(JPG)
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