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Abstract

Abnormal cell membrane metabolism is associated with many neuropsychiatric disorders.

Free phosphomonoesters and phosphodiesters, which can be detected by in vivo 31P mag-

netic resonance spectroscopy (MRS), are important cell membrane building blocks. How-

ever, the quantification of phosphoesters has been highly controversial even in healthy

individuals due to overlapping signals from macromolecule membrane phospholipids (MP).

In this study, high signal-to-noise ratio (SNR) cerebral 31P MRS spectra were acquired from

healthy volunteers at both 3 and 7 Tesla. Our results indicated that, with minimal spectral

interference from MP, the [phosphocreatine (PCr)]/[phosphocholine (PC) + glyceropho-

sphocholine (GPC)] ratio measured at 7 Tesla agreed with its value expected from biochem-

ical constraints. In contrast, the 3 Tesla [PCr]/[PC+GPC] ratio obtained using standard

spectral fitting procedures was markedly smaller than the 7 Tesla ratio and than the

expected value. The analysis suggests that the commonly used spectral model for MP may

fail to capture its complex spectral features at 3 Tesla, and that additional prior knowledge is

necessary to reliably quantify the phosphoester signals at low magnetic field strengths when

spectral overlapping is significant.

Introduction
31P magnetic resonance spectroscopy (MRS) allows the evaluation of several important aspects

of brain energetics and metabolism, from levels of 31P-containing metabolites to metabolic

fluxes associated with adenosine triphosphate (ATP)-generating enzymes. Since the 1970s,

many studies have also used 31P MRS and functional 31P MRS techniques to investigate a

broad range of both normal brain functions and neuropsychiatric disorders [1–5]. These 31P

MRS studies have provided considerable insight into the role of mitochondrial metabolism

and cell membrane synthesis in normal physiology and disease development as well as thera-

peutic interventions.

Phospholipids are known to have a phosphodiester (PDE) structure whose major reso-

nances overlap with the resonances of free PDE and phosphomonoester (PME). The in vivo
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phospholipid signals are very pronounced at low magnetic fields [6, 7]. These signals, often

referred to as membrane phospholipids (MP), originate from 31P-containing macromolecules,

including phospholipid bilayers. They decrease with increasing magnetic field strength [7–9].

At 7 Tesla and higher magnetic field strengths, the signals of glycerophosphocholine (GPC),

glycerophosphoethanolamine (GPE), phosphocholine (PC), and phosphoethanolamine (PE)

are well resolved, with little or no spectral interference from the much reduced MP signals [8,

9]. However, at the more commonly used 3 Tesla or lower field strengths, large MP signals

have consistently been observed [10, 11]. Typically, spectral fitting techniques are necessary to

extract the individual components of PDE, PME, and inorganic phosphates (Pi). With proton

decoupling, the MP signals at 1.5 Tesla were found to be broad and highly asymmetrical [10].

High resolution 31P nuclear magnetic resonance (NMR) studies of lipid extracts of animal

brain also revealed multiple 31P signals resonating at different frequencies [12]. Nevertheless, it

has been customary to use a single symmetrical peak centered at 2.3 ppm to fit the in vivo MP

resonances. This is of concern because many pathological conditions involving abnormal cell

membrane metabolism may alter the composition of the MP signals and, by inference, their

lineshape [13].

The detrimental effects of the strong macromolecule signals on accurate quantification of

short echo time proton MRS spectra using the LCModel have recently been recognized [14].

Because the separation between small metabolite molecules and macromolecules by spectral

fitting relies on differences in their linewidths, the broad linewidths of the composite PDE and

PME signals at 1.5–3 Tesla may make it difficult to reliably remove spectral contamination

from MP. As an example, the reported PDE/ATP ratio in brain ranged from 0.4 to 4.0, as mea-

sured in healthy adult volunteers using 1.5–3 Tesla [10, 15–20]; a span of this order of magni-

tude cannot be reconciled by potential differences in MRS techniques, T1 saturation, nuclear

Overhauser enhancement, or variations in spatial distribution of phosphoesters.

In this work we acquired high signal-to-noise ratio (SNR) cerebral 31P MRS spectra from

healthy subjects at both 3 and 7 Tesla. We found that the [PCr]/[PC+GPC] ratio extracted

from 7 Tesla 31P MRS spectra of healthy subjects is consistent with biochemical constraints

from the literature. In comparison, the 3 Tesla [PCr]/[PC+GPC] ratio obtained using standard

spectral fitting procedure is significantly smaller than the expected value. Our results suggest

that the commonly used spectral model of MP may not be suitable for quantifying the overlap-

ping phosphoester signals at low magnetic field strengths.

Materials and methods

The human study was performed under the protocol NCT01266577 that was approved by the

National Institutes of Health (NIH) Institutional Review Board (IRB). Written consent forms

were obtained from all participants.

7 Tesla 31P MRS

In vivo 31P MRS experiments were performed on a Siemens Magnetom 7 Tesla scanner (Sie-

mens Healthcare, Erlangen, Germany). A 1H and 31P coil assembly was built in-house (Fig

1A), comprising a circular 31P coil (diameter = 7.0 cm), a quadrature half-volume proton coil,

and a slotted radio frequency (RF) shield. These RF devices were mounted on three vertically

stacked, thin, semi-cylindrical plastic tubes. A 31P surface coil was mounted on the outer sur-

face of the upper tube (outer diameter = 20.3 cm). A 1H frequency blocking L-C tank circuit

was placed at the middle point of the 31P circular loop. The proton coil, which consisted of two

overlapped octagon loops with nominal length/width of 12.3 cm, was mounted on the outer

surface of the middle tube (outer diameter = 20.3 cm), and the slotted RF shield was mounted
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on the inner surface of the lower tube (inner diameter = 22.2 cm). Each proton loop had a sin-

gle-tuned 1H cable trap constructed using an RG-316 cable. A 1H/31P dual-tuned cable trap,

built inside an RF-shielded box, was connected to the 31P coil. The coil assembly was con-

nected to the 7 Tesla scanner via an interface box (Quality ElectroDynamics, Mayfield Village,

Ohio, USA) that included transmit-receive switches, pre-amplifiers, RF filters for both chan-

nels, and a quadrature combiner for the proton channel.
31P MRS data were acquired from six healthy volunteers (mean age: 30 years; age range: 22–

48 years). A voxel of 5 x 5 x 5 cm3 located right above the 31P coil (Fig 1B) was selected for per-

forming B0 shimming in the occipital lobe using the Siemens 3D shim tool with correction of all

first- and second-order shims and five third-order shims. Shimming results were evaluated by

measuring the water linewidth (full width at half height) from the 5 x 5 x 5 cm3 voxel using pro-

ton MRS with a point resolved spectroscopy (PRESS) sequence. Water linewidth was found to

be 13.9 ± 1.2 Hz (n = 6). 31P spectra were acquired using the Siemens excite-acquire sequence:

hard pulse = 250 μs, number of data points = 1024, and spectral width (SW) = 5 kHz. The trans-

mit frequency was set to the frequency of PCr at 0 ppm. Two repetition time (TR) were used to

evaluate the effect of T1 saturation. At TR = 3 seconds, the number of averages (NA) was 64, and

at TR = 30 seconds, the NA was 32 (n = 6 for both TRs). The transmit voltage for 31P was pre-

optimized in vivo to obtain maximum signal-to-noise ratio for a given TR.

3 Tesla 31P MRS

In vivo 31P MRS scans were also performed on a Siemens Skyra 3 Tesla scanner (Siemens

Healthcare, Erlangen, Germany). A 3 Tesla 1H and 31P coil assembly was built in-house that

had the same geometrical layout as the 7 Tesla coil assembly described above except that the

coils were tuned to 3 Tesla frequencies and there was no RF shield. The coil assembly was con-

nected to the 3 Tesla scanner via an interface box (Stark Contrast MRI Coils Research,

Erlangen, Germany). Eight heathy volunteers (mean age = 29 years, age range: 21–45 years)

Fig 1. A 7 Tesla radio frequency (RF) coil assembly and its relative position to the human head. (A) The circular
31P surface coil, the 1H coil (two overlapping octagonal loops), and the RF shield were mounted on the bottom surface

of the upper, middle, and lower tubes, respectively. Each proton loop had a 1H cable trap constructed using an RG-316

cable. A 31P cable trap, built inside an RF shielded box, was connected to the 31P coil. (B) Gradient echo localizer image

from a healthy volunteer showing the relative position of the 31P surface coil (red arc, 7.5 cm dia.) and the shim voxel

(5 x 5 x 5 cm3 box in while color).

https://doi.org/10.1371/journal.pone.0248632.g001
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were recruited and scanned. The same shimming procedure used in the 7 Tesla MRS was

applied to optimize field homogeneity of a 4 x 4 x 4 cm3 voxel prescribed above the 31P surface

coil without the third order corrections. Water linewidth was found to be 15.5 ± 0.9 Hz

(n = 8). 31P spectra were acquired using the Siemens excite-acquire sequence: hard

pulse = 500 μs, number of data points = 1024, and SW = 5 kHz. The transmit frequency was

set to the frequency of PCr at 0 ppm. At TR = 2 seconds, the NA was 128, and at TR = 25 sec-

onds, the NA was 64 (n = 8 for both TRs). The 31P RF power at 3 Tesla was calibrated in the

same way as in the 7 Tesla experiments.

31P MRS spectral fitting

Raw data were first preprocessed using an IDL (Harris Geospatial Solutions, Boulder, CO,

USA) program to zero the first two (TR = 2, 3 seconds) or three (TR = 25, 30 seconds) complex

data points in free induction decay for baseline suppression. The chemical shift of phosphocre-

atine (PCr) was set to 0 ppm. The data were subsequently phase-corrected and saved in the Sie-

mens RDA raw data format. The RDA data were then processed using the jMRUI software

package with the Amares routine [21] and prior spectral knowledge of 31P metabolites [21–

24]. The 31P basis set consisted of α-, β-, γ-adenosine triphosphate (α-, β-, γ-ATP), nicotin-

amide adenine dinucleotide (NAD), PCr, MP, GPC, GPE, intracellular inorganic phosphate

(Pi), extracellular inorganic phosphate (Pi extra), PC, PE, and uridine diphosphate glucose

(UDPG). Four different spectral models of MP (Lorentzian, Gaussian lineshapes, fixed and

freely adjustable linewidths) were evaluated to assess the effects of MP on 31P MRS data quanti-

fication. For MP fitting with fixed linewidths, the fixed linewidth values were calculated from

the median of the freely fitted MP linewidths.

[PCr]/[GPC+PC]

The choline singlet at 3.2 ppm observed in the proton MRS spectrum of healthy volunteers

originates almost entirely from the trimethylamine group of PC and GPC [10, 25], given that

the concentrations of choline, acetylcholine, and phosphatidylcholine in their free forms are

negligibly low at the sensitivity level of proton MRS [26–28]. That is,

½tCho� ¼ ½GPCþ PC� ð1Þ

where tCho is total choline. The ratio of total creatine (tCr) to total choline ([tCr]/[tCho]) and

[PCr]/[GPC+PC] can be obtained from proton and 31P MRS data, respectively, without abso-

lute quantification. Because of Eq 1,

ð½PCr�=½GPCþ PC�Þ=ð½tCr�=½tCho�Þ ¼ ½PCr�=½tCr� ð2Þ

The creatine kinase equilibrium is tightly regulated, with [PCr]� [Cr] predicted by the crea-

tine kinase equilibrium constant and in vitro assays [10, 29]. The methylene proton signals of

PCr and creatine (Cr) resonate at 3.93 and 3.91 ppm, respectively, in the proton MRS spectra.

MRS studies of rodent brain performed at very high magnetic field strengths (� 9.4 Tesla) pro-

vided visual confirmation that the spectrally resolved PCr and Cr methylene protons were of

similar intensity. Previous studies noted that the [PCr]/[tCr] ratio in the cerebral cortex was

0.46–0.59 from the spectrally resolved PCr and Cr in proton MRS spectra acquired at 9.4–16.4

Tesla [30–32], with an average value of 0.53. From the above analysis, the expected [PCr]/

[GPC+PC] ratio is given by

½PCr�=½GPCþ PC� � 0:53�½tCr�=½tCho� ð3Þ

Because the reported phosphoester levels of healthy volunteers in the 31P MRS literature vary

PLOS ONE 31P MRS of cerebral phosphoesters

PLOS ONE | https://doi.org/10.1371/journal.pone.0248632 March 18, 2021 4 / 16

https://doi.org/10.1371/journal.pone.0248632


over an order of magnitude (0.4–4.0) [10, 15–20], the relationship given by Eq 3 may be used

as an approximate internal standard to check 31P spectral fitting of data acquired from healthy

volunteers.

Results

7 Tesla 31P MRS

Typical 7 Tesla in vivo 31P spectra from the occipital lobe of human brain are shown in Fig 2,

where spectrum (A) was acquired with TR = 3 seconds and NA = 64, and (B) with TR = 30 sec-

onds and NA = 64. Resonances of PE (6.8 ppm), PC (6.2 ppm), Pi (4.8 ppm), GPE (3.5 ppm),

GPC (2.9 ppm), MP (2.3 ppm), PCr (0 ppm), γ-ATP (-2.5 ppm), α-ATP (-7.6 ppm), NAD,

UDPG Pβ (-9.8 ppm), and β-ATP (-16.2 ppm) were detected. The signal of oxidized NAD

(NAD+, -8.2 and -8.4 ppm) and reduced form of NAD (NADH, -8.1 ppm) were collectively

labeled as NAD. Notably, the MP signals at 2.3 ppm were quite weak and spectrally resolved

from GPC at 2.9 ppm. The intensity variations between the two TR settings were expected

from the known T1 values of 31P-containing metabolites [33]. An example of jMRUI fitting of

a 7 Tesla 31P spectrum acquired with TR = 30 seconds is shown in Fig 3, where the MP signals

at 2.3 ppm were modeled using a Gaussian curve with freely adjustable linewidth. Table 1 lists

the corresponding concentrations of 31P-containing metabolites (normalized to [γ-ATP])

extracted from jMRUI fitting for both TR = 3 seconds and 30 seconds (see S1–S4 Figs in Sup-

plementary Materials for additional examples of jMRUI fitting of 7 Tesla spectra and a com-

parison of spectral analysis results using the four different spectral models of MP described in

Materials and Methods). From the jMRUI analysis results given in Table 1, [PCr]/[PC+GPC]

was found to be 2.4 ± 0.3 (TR = 3 seconds, n = 6) and 2.6 ± 0.3 (TR = 30 seconds, n = 6). The

[MP]/[γ-ATP] ratio was found to be 0.13 ± 0.09 (TR = 3 seconds, n = 6) and 0.03 ± 0.04

(TR = 30 seconds, n = 6), consistent with the small MP signals observed at 2.3 ppm in Fig 2.

3 Tesla 31P MRS

Typical 3 Tesla 31P spectra acquired from a healthy volunteer are shown in Fig 4 at TR = 2 sec-

onds (A) and 25 seconds (B); each spectrum was averaged with NA = 128. Resonances of PE,

Fig 2. Typical 7 Tesla 31P spectra of a healthy volunteer. A 7 Tesla spectrum at (A) TR = 3 seconds, NA = 64 and (B)

TR = 30 s, NA = 32 x 2. PE: phosphoethanolamine; PC: phosphocholine; Pi: inorganic phosphate; GPE:

glycerophosphoethanolamine; GPC: glycerophosphocholine; MP: membrane phospholipids; PCr: phosphocreatine; α-,

β-, γ-ATP, α-, β-, γ-adenosine triphosphate; NAD: nicotinamide adenine dinucleotide; UDPG: uridine diphosphate

glucose.

https://doi.org/10.1371/journal.pone.0248632.g002
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PC, Pi, GPE, GPC, PCr, NAD, and α-, β-, and γ-ATP were detected although the individual

components of PME and PDE were not spectrally resolved. In contrast to the nearly flat base-

line at 7 Tesla seen in Figs 2 and 3, a prominent baseline was observed in the 1–7 ppm region

in the 3 Tesla 31P MRS spectra (Fig 4). From TR = 2 seconds to TR = 25 seconds, the relative

increase in signal intensities of 31P metabolites measured at 3 Tesla was similar to the 7 Tesla

results. An example of jMRUI fitting of a 3 Tesla 31P spectrum acquired with TR = 25 seconds,

where the MP signal at 2.3 ppm was also modeled using a Gaussian curve, is shown in Fig 5.

The corresponding concentrations of 31P-containing metabolites (normalized to [γ-ATP])

extracted from jMRUI fitting of the 3 Tesla spectra are listed in Table 2 for both TR = 2 sec-

onds and 25 seconds. The [PCr]/[PC+GPC] ratio extracted from our 3 Tesla data was 1.1 ± 0.1

(TR = 2 seconds, n = 8) and 1.3 ± 0.3 (TR = 25 seconds, n = 8). The fitted [MP]/[γ-ATP] ratio

Fig 3. jMRUI analysis of a typical 31P spectrum acquired at 7 Tesla. The original spectrum was from Fig 2B with

TR = 30 seconds, NA = 64. The individual spectral components, the overall fit and fit residual were also shown. A

Gaussian curve with freely adjustable linewidth was used to fit the MP signal at 2.3 ppm. PCr: phosphocreatine; α-, β-,

γ-ATP: α-, β-, γ-adenosine triphosphate; NAD+: oxidized nicotinamide adenine dinucleotide; UDPG: uridine

diphosphate glucose; NADH: reduced form of nicotinamide adenine dinucleotide; Pi: inorganic phosphate; Pi extra:

extracellular inorganic phosphate; GPE: glycerophosphosethanolamine; GPC: glycerophosphocholine; PE:

phosphoethanolamine; PC: phosphocholine; MP: membrane phospholipids.

https://doi.org/10.1371/journal.pone.0248632.g003
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was found to be 0.77 ± 0.27 (TR = 2 seconds, n = 8) and 0.43 ± 0.22 (TR = 25 seconds, n = 8) at

3 Tesla, which is substantially greater than the values detected at 7 Tesla. Notably, the 3 Tesla

[PCr]/[PC+GPC] ratio extracted from spectral analysis using LCModel [24] was similar to our

jMRUI results obtained at the same field strength. For additional examples of 3 Tesla spectral

fitting and a comparison of spectral analysis results using the four different spectral models of

MP at 3 Tesla see S5–S8 Figs in Supplementary Materials.

Fig 6 compares [31P metabolite]/[γ-ATP] ratios measured at 3 and 7 Tesla with long TRs

and freely adjustable linewidths for MP. Student t-tests were performed for the values averaged

over the four spectral models of MP (see Table 3). Although there was a general agreement

among the upfield signals (PCr, α-, β-, γ-ATP, and NAD) across field strengths and MP line-

shape models, significant differences were seen between 3 and 7 Tesla downfield [31P metabo-

lite]/[γ-ATP] ratios. The differences between the fitted 3 and 7 Tesla downfield [31P

metabolite]/[γ-ATP] ratios remain highly significant after Bonferroni corrections of the p val-

ues are made.

Table 1. 31P metabolite concentration ratios determined at 7 Tesla (n = 6).

31P Metabolite Ratios TR = 3 seconds TR = 30 seconds

Mean, SD Mean, SD

[PE]/[γ-ATP] 0.51, 0.04 0.59, 0.02

[PC]/[γ-ATP] 0.22, 0.02 0.19, 0.03

[Pi]/[γ-ATP] 0.40, 0.03 0.33, 0.03

[GPE]/[γ-ATP] 0.16, 0.01 0.19, 0.02

[GPC]/[γ-ATP] 0.25, 0.01 0.28, 0.03

[MP]/[γ-ATP] 0.13, 0.09 0.03, 0.04

[PCr]/[γ-ATP] 1.14, 0.11 1.22, 0.12

[NAD]/[γ-ATP] 0.18, 0.04 0.19, 0.05

[PCr]/[PC+GPC] 2.42, 0.27 2.60, 0.29

A Gaussian spectral model with freely adjustable linewidth was used to model MP.

TR: repetition time; PE: phosphoethanolamine; PC: phosphocholine; Pi: inorganic phosphate (intracellular inorganic

phosphate plus extracellular inorganic phosphate); GPE: glycerophosphoethanolamine; GPC:

glycerophosphocholine; MP: membrane phospholipids; PCr: phosphocreatine; γ-ATP: γ-adenosine triphosphate;

NAD: nicotinamide adenine dinucleotide.

https://doi.org/10.1371/journal.pone.0248632.t001

Fig 4. Typical 3 Tesla 31P spectra of a healthy volunteer. A 3 Tesla spectrum at (A) TR = 2.5 seconds, NA = 128 and

(B) TR = 25 seconds, NA = 128. PE: phosphoethanolamine; PC: phosphocholine; Pi: inorganic phosphate; GPE:

glycerophosphoethanolamine; GPC: glycerophosphocholine; MP: membrane phospholipids; PCr: phosphocreatine; α-,

β-, γ-ATP: α-, β-, γ-adenosine triphosphate; NAD: nicotinamide adenine dinucleotide.

https://doi.org/10.1371/journal.pone.0248632.g004
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Comparison with Eq 3

The total creatine to total choline ratio [tCr]/[tCho] has been well documented in a large num-

ber of in vivo proton MRS and chemical shift imaging studies, and results from various studies

broadly agree [34, 35]. Because the volume of brain tissue measured by 31P MRS is usually

large, we averaged tCr and tCho values from the existing literature [34, 35] and arrived at

[tCr]/[tCho]� 4.8 for cerebral cortex of healthy adult volunteers (see Table 4). The [PCr]/

[GPC+PC] ratio expected from Eq 3 is therefore approximately 0.53�4.8 = 2.5.

In short echo proton MRS, spectral fitting of the macromolecule baseline using LCModel

was found to be strongly influenced by SNR and linewidth [14]. Despite the large number of
31P MRS studies reported in the literature, our comparison was limited to studies of healthy

Fig 5. jMRUI analysis of a typical 31P spectrum acquired at 3 Tesla. The original spectrum was from Fig 4B with

TR = 25 seconds, NA = 64. The individual spectral components, the overall fit and fit residual were also shown. A

Gaussian curve with freely adjustable linewidth was used to fit the MP signal at 2.3 ppm. PCr: phosphocreatine; α-, β-,

γ-ATP: α-, β-, γ—adenosine triphosphate; NAD+: oxidized nicotinamide adenine dinucleotide; UDPG: uridine

diphosphate glucose; Pi: inorganic phosphate; Pi extra: extracellular inorganic phosphate; GPE:

glycerophosphosethanolamine; GPC: glycerophosphocholine; PE: phosphoethanolamine; PC: phosphocholine; MP:

membrane phospholipids.

https://doi.org/10.1371/journal.pone.0248632.g005
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volunteers that measured PCr, GPC, and PC intensities using a large voxel or localization by

surface coil for maximum SNR [10, 33, 36, 37]. General agreement was observed between the

experimental [PCr]/[PC+GPC] ratios measured at 7 Tesla and that expected from Eq 3

(Table 5). Thus, it appears that one of the key advantages of 7 Tesla is that PE, PC, GPE, GPC,

and MP can be spectrally resolved due to the dramatically reduced MP intensity and increased

chemical shift dispersion at the much higher magnetic field strength.

For lower magnetic field strengths, proton decoupling is needed to improve spectral resolu-

tion of 31P MRS to resolve the phosphoesters acquired from large tissue volumes [10]. Due to

safety concerns and nonstandard hardware requirements, few previous studies attempted pro-

ton decoupling. In particular, the 1.5 Tesla studies listed in Table 5 employed proton decou-

pling, nuclear Overhauser enhancement, and MP baseline removal with PE, PC, GPE, and

GPC peaks fully resolved. The [PCr]/[PC+GPC] ratios obtained from those 1.5 Tesla studies

agreed reasonably well with our 7 Tesla and Eq 3 results.

Although spectral fitting can extract individual components of MRS signals, sufficient prior

knowledge is crucial when significant spectral overlapping is present. Because the ground

truth lineshape of MP at 3 Tesla is unknown, a single symmetrical MP basis peak centered at

2.3 ppm is unlikely to fully capture the complex MP signals. The 3 Tesla [PCr]/[PC+GPC]

ratios extracted using both LCModel [24] and jMRUI ([24], and Tables 2 and 5 of the current

study) were ~50% of the value expected from Eq 3; thus, both are markedly smaller than the

[PCr]/[PC+GPC] ratios determined from studies with spectrally resolved phosphoesters

(Tables 1 and 5).

Discussion

This study, which found that the [PCr]/[PC + GPC] ratio measured at 7 Tesla, but not 3 Tesla,

agreed with values expected from biochemical constraints. The results suggest that a single

symmetrical peak may fail to capture the complex spectral features of MP at 3 Tesla, and that

additional prior knowledge is necessary to reliably quantify the downfield 31P signals at low

magnetic field strengths when spectral overlapping is significant.

Table 2. 31P metabolite concentration ratios determined at 3 Tesla (n = 8).

31P Metabolite Ratios TR = 2 seconds TR = 25 seconds

Mean, SD Mean, SD

[PE]/[γ-ATP] 0.78, 0.06 0.86, 0.09

[PC]/[γ-ATP] 0.37, 0.04 0.31, 0.06

[Pi]/[γ-ATP] 0.82, 0.14 0.66, 0.12

[GPE]/[γ-ATP] 0.36, 0.03 0.38, 0.07

[GPC]/[γ-ATP] 0.56, 0.05 0.63, 0.09

[MP]/[γ-ATP] 0.77, 0.27 0.43, 0.22

[PCr]/[γ-ATP] 1.09, 0.17 1.22, 0.12

[NAD]/[γ-ATP] 0.15, 0.07 0.23, 0.05

[PCr]/[PC+GPC] 1.16, 0.16 1.33, 0.26

A Gaussian spectral model with freely adjustable linewidth was used to model MP.

TR: repetition time; PE: phosphoethanolamine; PC: phosphocholine; Pi: inorganic phosphate (intracellular inorganic

phosphate plus extracellular inorganic phosphate); GPE: glycerophosphoethanolamine; GPC:

glycerophosphocholine; MP: membrane phospholipids; PCr: phosphocreatine; γ-ATP: γ-adenosine triphosphate;

NAD: nicotinamide adenine dinucleotide.

https://doi.org/10.1371/journal.pone.0248632.t002
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The first two or three data points of the FIDs were discarded in this study, a practice com-

monly used in processing 31P MRS data in order to suppress the broad baseline (e.g., [33]).

Since the spectral width of our study is 5 kHz, this is equivalent to adding a time delay of 400–

600 μs before recording the FIDs. This procedure has no significant effect on quantification of

MP as the time delay corresponds to signals with kHz linewidths.

Abnormal levels of PME and PDE—both of which are cell membrane building blocks—

have been associated with many neuropsychiatric disorders [38, 39]. In particular, the PDE/

PME ratio was found to be elevated in cancer patients and to fall with effective treatment [5];

Fig 6. Comparison of [31P metabolite]/[γ-ATP] ratios measured at 3 Tesla and 7 Tesla. 3 Tesla spectra (TR = 25 seconds) and 7 Tesla

spectra (TR = 30 seconds) were fitted with freely adjustable linewidths for MP. Blue: 3 Tesla, fitted using Gaussian lineshape; orange: 3 Tesla,

fitted using Lorentzian lineshape; grey: 7 Tesla, fitted using Gaussian lineshape; yellow: 7 Tesla, fitted using Lorentzian lineshape.

https://doi.org/10.1371/journal.pone.0248632.g006

Table 3. Student t-test results for 3 Tesla (n = 8) and 7 Tesla (n = 6) 31P metabolite ratios.

31P Metabolite Ratios� p-value¶

[PE]/[γ-ATP] 6.2 E-06

[PC]/[γ-ATP] 7.4 E-05

[Pi]/[γ-ATP] 7.7 E-08

[GPE]/[γ-ATP] 2.5 E-05

[GPC]/[γ-ATP] 1.3 E-06

[MP]/[γ-ATP] 6.6 E-05

[PCr]/[γ-ATP] 7.8 E-01

[NAD]/[γ-ATP] 1.9 E-01

[PCr]/[PC+GPC] 4.1 E-06

�Calculated by averaging fitting results obtained from the four different spectral models of MP.
¶Student t-tests (two-tailed, unpaired) without Bonferroni corrections. PE: phosphoethanolamine; PC:

phosphocholine; Pi: inorganic phosphate (intracellular inorganic phosphate plus extracellular inorganic phosphate);

GPE: glycerophosphoethanolamine; GPC: glycerophosphocholine; MP: membrane phospholipids; PCr:

phosphocreatine; γ-ATP: γ-adenosine triphosphate; NAD: nicotinamide adenine dinucleotide.

https://doi.org/10.1371/journal.pone.0248632.t003
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the PDE/PME ratio has also been considered a marker of MP turnover equilibrium, which is

altered in many diseases, including cancer [10, 38]. Furthermore, cell line and tumor model

studies have found that PC/GPC and PE/GPE ratios, which appear to be significantly higher in

primitive neuroectodermal tumors [4], may serve as indicators of malignancy.

Despite the importance of these markers, 31P MRS studies in many neuropsychiatric disor-

ders that involve phosphoesters have obtained mixed results. For example, many 31P MRS

studies reported disturbances in phospholipid metabolism in Alzheimer’s disease that corre-

lated with pathological biomarkers [40]; in contrast, other studies [1] found no changes in

metabolite concentrations or ratios in patients compared with controls in whole axial sections

of the brain and no correlation between 31P MRS indexes and severity of dementia. Notably, it

is likely that contamination by MP has contributed to many of the mixed findings.

In the present study, the low [PCr]/[PC+GPC] ratio measured at 3 Tesla is consistent with

significant spectral contamination by MP that inflates its denominator while PCr is affected

very little due to its narrow linewidth and to the large resonant frequency separation between

PCr and MP. Therefore, when the [PCr]/[PC+GPC] ratio extracted from the 31P MRS spectra

of healthy volunteers is conspicuously smaller than the value expected from Eq 3, MP contami-

nation should be suspected. Caution is needed if the same spectral fitting procedure is to be

applied to data acquired from patients since their MP lineshape may have been altered under

Table 4. Literature values used to calculate the expected cerebral [PCr]/[GPC+PC] ratio using Eq 2.

Metabolite concentration ratios References

[PCr]/[tCr] = 0.59 [31]

[PCr]/[tCr] = 0.53 [32]�

[PCr]/[tCr] = 0.46 [30]

[tCr]/[tCho] = 7.85/1.70 = 4.62 [34]†

[tCr]/[tCho] = (8.39+6.39)/(1.44+1.70) = 4.71 [35]§

[tCr]/[tCho] = (8.36+6.27)/(1.35+1.58) = 4.99 [35]¶

�Measured from hippocampus
†Medians of the reported concentrations
§Unweighted average as described in ref. [35]. The values from pure gray and pure white matter were averaged
¶Weighted average as described in ref. [35]. The values from pure gray and pure white matter were averaged.

https://doi.org/10.1371/journal.pone.0248632.t004

Table 5. Comparison of [PCr]/[PC+GPC] ratios.

[PCr]/[PC+GPC] References

2.5 Current Study (Eq 3)

2.5 10 (1.5 Tesla, 1H-decoupled, MP removed, averaged over young and elderly adults)

2.3 36 (1.5 Tesla, 1H-decoupled, MP removed)

2.3 37 (1.5 Tesla, 1H-decoupled, MP removed)

2.7 33 (7 Tesla)

2.6 ± 0.3 Current study (7 Tesla, TR = 30 s, n = 6)

2.4 ± 0.3 Current study (7 Tesla, TR = 3 s, n = 6)

1.3 24 (3 Tesla, LCModel and jMRUI)�

1.3 ± 0.3 Current study (3 Tesla, TR = 25 s, n = 8)

1.2 ± 0.2 Current study (3 Tesla, TR = 2 s, n = 8)

GPC: glycerophosphocholine; PC: phosphocholine; PCr: phosphocreatine.

�[PCr]/[PC+GPC] ratio was estimated from Fig 4 in ref. [24].

https://doi.org/10.1371/journal.pone.0248632.t005
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pathological conditions. It also should be noted that Eq 3 is derived for healthy subjects. When

data from healthy controls are unavailable additional experiments including complementary
1H MRS studies of patients are needed to validate spectral fitting procedures at 3 Tesla or

lower magnetic field strengths.

The advent of 7 Tesla clinical scanners provides an opportunity to revisit many of the early

controversies because not only is MP signal intensity greatly reduced at 7 Tesla, it is also spec-

trally resolved from GPE and GPC. Furthermore, PE, PC, GPC, and GPE are all resolved at 7

Tesla with reasonable B0 shimming without the need to perform proton decoupling. Despite

these advantages, most 31P clinical studies are expected to continue to be conducted on the

more prevalent 3 Tesla scanners and without proton decoupling for the foreseeable future.

Importantly, our analysis of spectral fitting with symmetrical MP models suggests that addi-

tional prior knowledge is required to avoid significant contamination of downfield signals, as

evidenced by the lower [PCr]/[PC+GPC] ratios obtained from both LCModel [24] and jMRUI

(see Tables 2 and 5) analyses of 3 Tesla 31P data.

In addition to potential contamination by MP, other factors may also affect metabolite

quantification by 31P MRS. For example, nuclear Overhauser enhancement is not uniform

across the 31P signals [41]; specifically, in contrast to the nearly uniform T1 of most metabolites

detected by proton MRS [42], there is a large dispersion in T1s of 31P MRS signals [33, 43],

making their intensities sensitive to the commonly used TR values. Such variations may also

have contributed to the different quantification results reported in the 31P MRS literature. Fur-

thermore, although it is relatively easy to use the same MRS parameter settings for control and

patient groups to reduce variability, MP contamination is more worrisome as many diseases

may also alter MP signals, as may specific changes in cell membrane metabolism [13]. There-

fore, it is important to minimize or eliminate spectral contamination from MP signals when

free phosphoesters are of clinical interest.

Many metabolite ratios reported in Tables 1 and 2 may not be generalized because the cur-

rent study used surface transceiver coils to acquire 31P MRS spectra from a small number of

human subjects and no gradient-based spatial localization techniques were employed. Because

of the severe B1 inhomogeneity associated with surface coils the 31P signals are expected to be

affected by many factors specific to our experiments such as head size, size of the surface coil,

RF calibration, and placement of transmitter frequency. For example, many ratios reported in

Table 1 are significantly different from the corresponding values reported by a similar 7 Tesla

study that used a larger surface coil [33]. Nevertheless, it should be noted that the [PCr]/[PC

+GPC] ratio is insensitive to spatial location of 31P signals for the same tissue type due to the

intrinsic biological constraints contained in Eq [3]. As such it is expected that this internal

standard is relatively immune to many variations originated from the use of surface transceiver

coils.

Taken together, the results of the present study suggest that contamination by MP signals is

minimal at 7 Tesla because of the diminished intensity of MP and increased spectral resolution

at high magnetic fields. In contrast, the free phosphoester signals in 31P MRS spectra acquired

at low magnetic fields (� 3 Tesla) overlap with the large MP signals. Although MP lineshape

has been revealed to be highly asymmetrical at 1.5 Tesla with proton decoupling [35], the true

lineshape and spectral pattern of the complex MP signal at 3 Tesla remain undetermined. The

biochemical constraints described here suggest that fitting the MP signals at 3 Tesla using a

symmetrical peak centered at 2.3 ppm leads both to its underestimation and to a significant

overestimation of phosphoesters. In contrast, the [PCr]/[PC+GPC] ratio expected from Eq 3

agrees reasonably well with 1.5 Tesla data acquired with MP removal and 7 Tesla data, lending

confidence to characterization of membrane metabolism in brain disorders using 7 Tesla 31P

MRS without proton decoupling.
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Conclusion

When spectral interference from MP is minimized, the experimentally measured [PCr]/[PC

+GPC] ratios were found to be in reasonable agreement with the value expected from bio-

chemical constraints. The common practice of fitting the complex MP signal by a single sym-

metrical peak can lead to overestimation of phosphoester signals at low magnetic field

strengths including 3 Tesla.

Supporting information

S1 Fig. 31P spectral fitting of the 7 Tesla spectrum shown in Fig 2B with TR = 30 seconds.

A Gaussian curve with fixed linewidth of 160 Hz was used to fit the MP signal.

(TIF)

S2 Fig. 31P spectral fitting of the 7 Tesla spectrum shown in Fig 2B with TR = 30 seconds.

A Lorentzian curve with a freely adjustable linewidth was used to fit the MP signal.

(TIF)

S3 Fig. 31P spectral fitting of the 7 Tesla spectrum shown in Fig 2B with TR = 30 seconds.

A Lorentzian curve with a fixed linewidth of 320 Hz was used to fit the MP signal.

(TIF)

S4 Fig. 31P metabolite ratios extracted from 7 Tesla spectra at TR = 30 seconds. The MP sig-

nals were fitted using the four spectral models: Blue: Gaussian with a fixed linewidth of 160

Hz; orange: Gaussian with a freely adjustable linewidth; grey: Lorentzian with a fixed linewidth

of 320 Hz; yellow: Lorentzian with a freely adjustable linewidth.

(TIF)

S5 Fig. 31P spectral fitting of the 3 Tesla spectrum shown in Fig 4B with TR = 25 seconds.

A Gaussian curve with a fixed linewidth of 100 Hz was used to fit the MP signals.

(TIF)

S6 Fig. 31P spectral fitting of the 3 Tesla spectrum shown in Fig 4B with TR = 25 seconds.

A Lorentzian curve with a freely adjustable linewidth was used to fit the MP signals.

(TIF)

S7 Fig. 31P spectral fitting of the 3 Tesla spectrum shown in Fig 4B with TR = 25 seconds.

A Lorentzian curve with a fixed linewidth of 200 Hz was used to fit the MP signals.

(TIF)

S8 Fig. 31P metabolite ratios extracted from 3 Tesla spectra TR = 25 seconds. The MP sig-

nals were fitted using the four spectral models: Blue: Gaussian with a fixed linewidth of 100

Hz; orange: Gaussian with a freely adjustable linewidth; grey: Lorentzian with a fixed linewidth

of 200 Hz; yellow: Lorentzian with a freely adjustable linewidth.

(TIF)
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