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Abstract

We simultaneously investigated the genetic landscape of ankylosing spondylitis, Crohn's disease, 

psoriasis, primary sclerosing cholangitis and ulcerative colitis to investigate pleiotropy and the 

relationship between these clinically related diseases. Using high-density genotype data from more 

than 86,000 individuals of European-ancestry we identified 244 independent multi-disease signals 

including 27 novel genome-wide significant susceptibility loci and 3 unreported shared risk loci. 

Complex pleiotropy was supported when contrasting multi-disease signals with expression data 

sets from human, rat and mouse, and epigenetic and expressed enhancer profiles. The 

comorbidities among the five immune diseases were best explained by biological pleiotropy rather 

than heterogeneity (a subgroup of cases that is genetically identical to another disease, possibly 

due to diagnostic misclassification, molecular subtypes, or excessive comorbidity). In particular, 

the strong comorbidity between primary sclerosing cholangitis and inflammatory bowel disease is 

likely the result of a unique disease, which is genetically distinct from classical inflammatory 

bowel disease phenotypes.

Introduction

Genome-wide association studies have revealed overlap in the genetic susceptibility to 

human diseases that affect a range of tissues. This overlap is most notable in immune-

mediated diseases
1,2 including the clinically related conditions ankylosing spondylitis (AS), 

Crohn's disease (CD), psoriasis (PS), primary sclerosing cholangitis (PSC) and ulcerative 

colitis (UC). Co-morbidity of these conditions in the same individual and increased risk of 

any of these conditions in family members have been extensively documented
3,4. Recently a 

large-scale discovery-driven analysis of temporal disease progression patterns using data 

from an electronic health registry covering the whole population of Denmark revealed 

substantial population-wide co-morbidity
5
. This raises the possibility of a hidden molecular 
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taxonomy that differs from the traditional classification of disease by organ or system. 

Cross-disease genetic studies provide an opportunity to resolve overlapping associations into 

discrete pathways and explore details of apparently shared etiologies.

In this study, we combined Immunochip genotype data for 52,262 cases and 34,213 controls 

of European ancestry, the currently largest available genetic data sets in five clinically 

related seronegative immune-driven phenotypes (AS, CD, PS, PSC and UC) to explore the 

extent of sharing of genetic susceptibility loci. The aims of this cross-phenotype study were 

to: 1) identify subsets of the 5 phenotypes with shared genetic risk loci using a cross-

phenotype meta-analysis approach, 2) to identify additional susceptibility loci, 3) to 

investigate co-morbidity and pleiotropy amongst these phenotypes and 4) to improve the 

understanding of shared pathways and biological mechanisms common to subsets of the 

phenotypes studied.

Results

Cross-phenotype association analysis

We analyzed Immunochip genotype data of 52,262 cases from AS (8,726), CD (19,085), PS 

(6,530), PSC (3,408) and UC (14,413) and 34,213 healthy controls (Supplementary Table 
1) using variants with a minor allele frequency >0.1% to examine the shared and distinct 

genetic etiology between these diseases (see Methods). By utilizing Immunochip-only data, 

we were able to perform a uniform and central quality control of all batches, thus reducing 

potentially existing batch effects (see Methods). Next, we utilized a recently published 

subset-based meta-analysis approach (SBM)
6
 to exhaustively explore all subsets of disease 

combinations for the presence of association signals. The method identifies the best subset 

of non-null studies, while in parallel accounting for multiple testing and a fixed control 

group (see Methods). By performing primary SBM analyses, we identified 166 genome-

wide significant (PSBM<5×10−8) loci outside the major histocompatibility complex (MHC, 

chromosome 6 region at 25–34 Mb) (Supplementary Fig. 1). Three of these 166 loci 

(rs2042011 at MIR1208; rs2812378 at CCL21/FAM205A; rs1893592 at UBASH3A) have 

not been reported previously for any of the five diseases under study and thus are novel 

shared risk loci. SNP associations at UBASH3A (chr21q22.3) and CCL21 (9p13.3) have 

been reported previously for other autoimmune disorders
7,8. These three novel loci would 

have been missed using single disease analyses alone. To avoid any loss of power, where 

variants are only associated with a single phenotype, we looked up single disease vs. control 

subsearches on any SNPs that achieved PSBM<5×10−7 in the primary analysis. Using this 

SBM-directed approach, we identified 27 novel genome-wide significant disease 

associations (Pdisease<5×10−8) including 17 novel genome-wide significant loci for AS, 6 

loci for CD, and 4 loci for PSC (Figure 1, Supplementary Table 2, Supplementary Fig. 2). 24 

out of these 27 associations were also genome-wide significant in the primary SBM analyses 

(PSBM<5×10−8) thus leading to a total of 169 non-MHC risk loci. In order to identify 

additional independent association signals within the 169 non-MHC risk loci, we performed 

a stepwise conditional SBM analysis following a recently published stepwise conditional 

SBM fine-mapping approach
9
 (see Methods). In total, we identified 244 independent 

association signals with 187 signals being shared by at least two diseases for the five 
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diseases under study (Supplementary table 3; Supplementary Fig. 3, 4 and 5). We estimated 

the heritability explained by these 244 variants for each disease (Figure 2) and for all pair-

wise disease comparisons (Supplementary Fig. 6). The ten pair-wise comparisons of 

disease-associated alleles show diverse patterns of sharing with respect to size and direction 

of allelic effects and the number of unique associations (Supplementary Fig. 6).

Functional annotation of associated variants

We functionally annotated the 244 risk alleles from the 169 distinct loci (see Methods). For 

210 associations signals (86.1%) the lead variant was within 10 kb of a known gene and 34 

signals were classified as intergenic regions (>10 kb distant to a gene) (Supplementary 
Table 4). The analysis identified 16 coding variants (14 missense, 1 frameshift and 1 splice 

donor) in genes that were previously implicated in immune-mediated diseases 

(Supplementary Table 5). Eight of these variants (located in PTPN22, GPR35, MST1, 

CD6, two in NOD2, TYK2 and CARD9) have been associated before with one of the traits 

included in this study, and six (GCKR, two in IFIH1, SH2B3, SMAD3, TYK2) with another 

phenotype, either listed in the GWAS catalog
10

 or in Immunobase. Two of the genes 

carrying a coding variant (TLR4, PRKCQ) have previously been suggested as candidate loci, 

but robust association signals were lacking yet (Supplementary Table 5).

We further checked for variants in high LD (r2>0.8) with the identified variants using 1000 

Genomes haplotypes and found that in total 46 of the identified signals were highly 

correlated with 57 coding variants (48 missense, 2 stop_gain, 3 splice region variants, 1 

frameshift, 3 regulatory variants, Supplementary Table 5). We found that 40 of the 57 

coding variants, from 30 loci, had been described in previous GWAS or Immunochip studies 

involving one of the traits included in this study or another phenotype. Additionally, a 

further 9 variants have been mentioned as candidate variants in autoimmune disease 

publications. 8 coding variants (7 missense, 1 stop/gain, and all in high LD with our lead 

variants), located in EFNA1, FCGR2A, HSPA6, C7orf72, FAM118A, respectively, have not 

been described before in relation to any immune-mediated phenotype.

eQTL analysis in peripheral blood

Analyses of cis-eQTL microarray data from whole peripheral blood samples of an 

independent control cohort comprising 2,360 unrelated individuals
11,12

 (see Methods) 

identified cis-effects for 132 (PFDR<0.05; Supplementary Table 6) out of the 244 disease-

associated SNPs from Supplementary Table 3a. Five of these represent the best eQTL SNP 

and another five represent best secondary eQTL SNPs independent from the best eQTL 

SNPs at a given locus.

Pathway, cell type, and annotation enrichment analyses

We tested for enrichment between SNPs in associated loci and various types of genomic 

annotations using GoShifter
13

. We used 620 different annotations from the NIH Roadmap 

Epigenomics
14

 and Fantom5
15

 projects to look for enrichment of histone modifications and 

expressed enhancers, respectively (Supplementary Table 7 and 8). Results from the SBM 

association analysis were separated into groups to include all 244 identified variants, 

variants shared amongst 3 or more phenotypes, and those associated with a phenotype 
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(Supplementary Table 9). For the Roadmap enrichment analysis, using a threshold of 

P<10−3, the inflammatory bowel disease (IBD) and PS phenotype subsets showed 

enrichment for H3K27ac modifications in CD3 primary cells and for H3K27ac in adipose 

tissue, respectively (Supplementary Table 10). The ‘all variant’ (n=244) analysis showed 

enrichment for H3K4me3 (for which the largest number of cell types were analyzed by the 

Roadmap consortium and which highlights transcribed promoters and TSS
16

) in HUES64 

cell line as undifferentiated cells, CD34+ cells (bone marrow cells) and Natural Killer Cells 

(CD56). The Fantom5 data analysis shows enrichment for enhancers expressed in T cells 

(CD and ‘all_variants’ group) and also Natural Killer cells for CD. However, only the latter 

(T cells, ‘all_variants’ group) met the significance threshold of 0.05/620=8.06×10−5 needed 

for Bonferroni correction.

To test which candidate genes from the associated loci (Supplementary table 3a) are highly 

expressed in which tissues and to define disease relationships at the expression level, we 

conducted pathway and tissue/cell type enrichment analyses using DEPICT
17

, with 77,840 

microarray expression profiles from human, rat and mouse and 209 tissue/cell type 

annotations
18

 (see Methods). Even when correcting for the biased Immunochip gene 

content, our DEPICT results confirmed that the genes from the 169 herein-reported non-

MHC genome-wide significant susceptibility loci show greatest relevance for the regulation 

of immune response pathways (Supplementary Fig. 7) and the hematopoietic system 

(Supplementary Fig. 8).

We further generated a protein-protein-interaction (PPI) network (111 gene nodes and 65 

edges, see Supplementary Fig. 9) based on five prioritized gene sets of AS, CD, PS, PSC 

and UC SNP sets, respectively (Supplementary Table 9), from DEPICT analyses and a 

reference PPI data from ConsensusPathDB
19

 (see Methods). We observed that 36 gene 

nodes from this PPI network were connected in one single large component 

(Supplementary Fig. 9). Then we evaluated the potential role of these genes for their 

“druggability” by linking genes within this core network to drugs using Drugbank (see 

Methods). Since the nature and effect of the interaction between the drug and the encoded 

protein is mostly unknown, e.g some drugs we identified have effects opposite to the what 

we aim for, we performed a manual literature search to assess which of the identified drugs 

show evidence or could potentially be promising for any of the diseases under study by 

using PubMed (last search July 1st 2015) and ClinicalTrials.gov. All drugs were selected 

based on evidence from phase I/II/III randomized clinical trials (RCTs) or published animal 

studies. Nine drug target genes overlap with the 36 genes from the core network (Figure 3). 

Although further investigations are necessary, we propose that target genes/drugs selected by 

this approach could represent promising candidates for novel drug discovery for treatment of 

AS, CD, PS, PSC and UC. For example, novel CCR2-antagonists such as MLN-1202, and 

CCR5-antagonists INCB9471 and AMD-070 are potential new drugs for treatment of AS, 

CD, PS, PSC and UC.

Bayesian multinomial regression for model selection

To compare different disease models for each of the 244 risk variants while accounting for 

the different sample sizes per diseases, we used Bayesian multinomial regression. The aim is 
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to estimate the posterior probability (Probmodel) for each disease model conditional on the 

genotype and phenotype data that was observed (see Methods). A disease model is a set of 

diseases that a given locus is associated (i.e. has a non-zero log odds ratio) with, e.g. 

“associated with CD and UC, but not with AS, PS or PSC” is one disease model. There are a 

total of 32 possible disease models for the 5 phenotypes, which includes the null model 

(“not associated with any disease“). The Bayesian setting naturally handles the different 

uncertainties on the effect sizes for each disease due to their different sample sizes and 

powers.

We found 66 signals (59 non-MHC loci) with a best Probmodel≥60% including 14 Loci (with 

closest genes SH2B3, UBE2L3, TNP2, IL2RA, DNMT3B, CXCR2, CDKAL1, CARD9, 

MST1, ZMIZ1, ETS1) with Probmodel≥0.8 (Supplementary Table 3b) when assuming that 

each sharing model is given the same probability (uniform prior across all models, see 

Methods). However, because previous studies suggested that the structure of sharing of 

susceptibility is non-uniform
2
, we calculated posteriors for each model for each risk variant 

under six different priors and took a vote of the highest posterior models under each prior 

(see Methods). Then we counted how many priors voted for that model, and calculated the 

minimum, maximum and mean posterior (MeanProbmodel) for each risk variant 

(Supplementary Table 3c). Based on this consensus-finding process of merging results 

from six different priors, we identified 34 signals (31 non-MHC loci) with a best 

MeanProbmodel≥60% including 12 Loci (with closest genes SH2B3, IL2RA, IFIH1, NFKB1, 
TYK2) with Prob≥0.8 suggesting that we correctly identified the disease model (Table 1). 

Out of the 34 associations with MeanProbmodel≥0.6, 25 signals have 5 diseases involved, 6 

signals have four diseases and 3 signals are unique to a single disease. Some of these disease 

sets show different directions of effect (risk versus protective), heterogeneity of odds ratios 

(P<0.01), or both, for the diseases being involved (Table 1 and Supplementary Fig. 6).

Distinguishing pleiotropy from heterogeneity

Statistically significant temporal co-morbidity (disease A followed by disease B within a 5-

year time frame of disease A, or vice versa) amongst the five diseases studied was confirmed 

for 8 out of 10 possible pairs of diseases (P<0.05/823606=1.21×10−9) after screening 

823,606 directed pairs of diagnoses from an electronic health registry covering the whole 

population of Denmark
5
 (Supplementary Table 11, see Methods). Consistent with 

previous reports, we further observed high comorbidity rates among our patients 

(Supplementary Table 12), i.e. patients had more than one disease at the time of last 

diagnosis. This may occur due to pleiotropy (sharing of risk alleles between disease A and 

disease B) or heterogeneity (a subgroup of disease A cases has a higher loading of risk 

alleles for disease B). Heterogeneity can occur as the result of many different scenarios 

including diagnostic misclassifications, molecular subtypes, and excessive comorbidity. We 

evaluated whether pleiotropy or heterogeneity best explained the high comorbidity rates 

amongst the five diseases studied using BUHMBOX
20

 (see Methods). BUHMBOX detects 

heterogeneity by calculating the cross-locus correlation of disease B-associated loci among 

disease A cases; a non-zero correlation is indicative of heterogeneity
20

. We calculated the 

statistical power of BUHMBOX to detect various proportions of sample heterogeneity for all 

disease pairs (Online Methods). For 18 out of 20 pairs of diseases, we had >50% power to 
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detect 20% sample heterogeneity (Supplementary Table 13, Supplementary Figure 10). 

Since BUHMBOX has high power for these pairs, non-significant BUHMBOX results 

strongly suggest that the genetic risk score (GRS) association is likely due to pleiotropy 

rather than heterogeneity.

First, to quantify genetic sharing for each of the 20 possible pairs of five diseases, we used a 

GRS approach (see Methods). We calculated GRSs for disease B (using known risk alleles, 

weighted by effect size) for all individuals in the disease A sample, and tested the 

association of the GRSs with disease A status using logistic regression. The GRSs test for 

enrichment of disease B alleles in disease A cases, and are expected to be significant both in 

the presence of pleiotropy and heterogeneity. As expected, we observed highly significant 

associations between disease B GRSs and disease A status for almost every possible pair 

(Supplementary Table 14), which demonstrated strong sharing of risk alleles between the 

different immune-mediated diseases.

We then tested if this observed genetic sharing was due to true pleiotropy or heterogeneity 

using BUHMBOX
20

. In the setting of pleiotropy, pleiotropic disease B risk alleles are shared 

across all disease A cases, whereas in heterogeneity, only a subset of disease A cases share 

disease B risk alleles. This leads to cross-locus correlations between disease B-associated 

loci being positive in the presence of heterogeneity, but not in the case of pleiotropy. 

BUHMBOX calculates the cross-locus correlation between disease B-associated loci in 

disease A cases, and determines if they are significantly non-zero. We calculated cross-locus 

correlations for all 20 disease-pairs (see Methods). We did not observe significant inter-

locus correlations (Supplementary Table 14), despite high statistical power for many pairs 

(Supplementary Table 13 and Supplementary Fig. 10). Our findings suggest that the 

overall GRS association between the five immune diseases investigated is likely due to 

pleiotropy.

Immunochip-wide co-heritability analysis

In order to estimate Immunochip-wide pleiotropy (the genetic variation and covariation 

between pairs of diseases in liability that is tagged by SNPs represented on the 

Immunochip), we applied univariate and bivariate linear mixed model heritability 

methods
21,22

 (see Methods). The relationships between disorders are expressed as SNP-

based coheritabilities (Figure 4). When excluding SNPs from the MHC region, genetic 

correlation was highest between CD and UC (rG=0.78 ± 0.015 s.e., in concordance with 

previous estimates
23

), PSC and UC (rG=0.64 ± 0.027 s.e.), moderate (rG<0.5) between AS 

and CD (rG=0.49 ± 0.023 s.e.), AS and UC (rG=0.47 ± 0.026 s.e.), CD and PSC (rG=0.35 

± 0.030 s.e.), AS and PSC (rG=0.33 ± 0.035 s.e.), AS and PS (rG=0.28 ± 0.035 s.e.), CD and 

PS (rG=0.27 ± 0.029 s.e.), and low (rG<0.25) between PS and PSC (rG=0.18 ± 0.042 s.e.), 

and PS and UC (rG=0.16 ± 0.034 s.e.) (see Supplementary Fig. 11,12 and Supplementary 

Table 15). For correlation values including MHC variants see Supplementary Table 15. As 

a negative control, we conducted coheritability analyses between each immune-mediated 

disease under study and longevity, bipolar disorder, major depressive disorder and 

schizophrenia Immunochip studies (Supplementary Fig. 13). No coheritability was 

observed with the non-immune-mediated diseases studied here.
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Discussion

By combined assessments of Immunochip genotyping datasets from 52,262 patients with 

five closely associated conditions (AS, CD, PS, PSC and UC; all seronegative inflammatory 

diseases as per clinical definition) and 34,213 healthy controls we were able to delineate the 

genetic overlap between the conditions. A key outcome of the overlap analysis is that despite 

the profound pleiotropy, clear demarcations of the genetic risk for the individual conditions 

exist. Implicit to this, hence conflicting an existing paradigm where a causal relationship 

between IBD and the involved extra-intestinal conditions exists
24,25

, our modeling rather 

supports (a) the presence of shared pathophysiological pathways as the basis for the clinical 

co-occurrence and (b) the hypothesis that patients with concomitant syndromes are 

genetically distinct from patients without concomitant syndromes.

Our cross-disease association framework also enabled the identification of novel coding 

variants and known eQTLs. One newly identified missense variant for CD, rs4986790, is 

located at exon three of toll-like receptor 4 (TLR4), which is an important mediator of innate 

immunity. This SNP has been shown to modulate TLR4 effector functions either by 

interfering with the binding capacity of TLR4 with its ligands or by controlling the 

extracellular deposition of functional TLR4
26,27

. Another newly identified missense SNP for 

CD, rs2236379, which has not been previously associated with other disease traits, is located 

at exon nine of PRKCQ encoding protein kinase C-theta (PKC-θ). PKC-θ is essential in the 

signaling cascades that lead to NFkB, AP-1 and NFAT activation
28

 and is also critical for 

stabilizing Th17 cell phenotype by selective suppression of the STAT4/IFN-c/T-bet axis at 

the onset of differentiation
29

. Furthermore, PKC-θ inhibition enhances Treg function and 

protects Treg from inactivation by TNF-α, restores activity of defective Treg from rheumatoid 

arthritis patients, and enhances protection of mice from inflammatory colitis
30

. We also 

found that one of the AS/UC secondary signals rs61802846 is in perfect LD (r2=1.0) with a 

stop-gain SNP rs9427397, resulting in a premature stop codon in FCGR2A. This appears to 

be distinct (r2=0.12) from the known IBD-associated missense variant in FCGR2A 
rs1801274

1,31
. Among the 10 strongest eQTL SNPs (PFDR<0.05; Supplementary Table 6, 

Supplementary Fig. 4) are the intronic SNP rs3766606 (at PARK7 shared by PS (risk) and 

CD,UC (protective)), the intronic variant rs2910686 (at ERAP2 shared by AS,CD,UC (risk 

only)), the intronic SNP rs1893592 (at UBASH3A shared by PSC, UC (protective)), the 

missense SNP rs12720356 (at TYK2 shared by AS,CD,UC (risk) and PS (protective)), and 

the intronic variant rs679574 (at FUT2 shared by AS,CD,PS and PSC (risk only)).

Most “shared” loci exhibit complex patterns of multi-disease associations suggesting 

multiple types of pleiotropy
32

. Through subsequent Bayesian multinomial regression 

modeling, we identified 31 loci with 34 independent associations (Table 1) for which we 

determined a specific disease model constellation with high certainty 

(MeanProbmodel≥60%). For example, at 12q24.12 (Locus 119; SH2B3) the single lead-SNP 

rs3184504 (Prob=0.98) is associated with decreased risk of AS (ORAS=0.92) but increased 

risk of the other diseases (ORCD=1.06; ORPS=1.06; ORPSC=1.19; ORUC=1.05), and has 

been associated before with >10 other phenotypes in the GWAS catalog
10

, thus suggesting 

that 12q24.12 is a common risk locus with heterogenous effect sizes for multiple complex 

diseases.
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In addition to contrasting the genetic landscape of AS, CD, PS, PSC and UC, we 

investigated comorbidity and pleiotropy amongst these phenotypes. GRS and cross-locus 

correlation analyses
20

 suggest that the increased comorbidity rates among our patients are 

due to biological pleiotropy rather than heterogeneity. In other words, an individual with a 

pleiotropic risk variant is more likely to acquire both diseases. Among all non-zero 

comorbid rate pairs, the pair of PSC and IBD is particularly noticeable for its high frequency 

of comorbidity (Supplementary Table 12). PSC patients suffer from a highly increased 

frequency (62-83%) of IBD
33

 (called PSC with concomitant IBD, or PSC-IBD, although 

IBD is most often classified as UC). Interestingly, despite the high prevalence of IBD in PSC 

the loci encoding IL23R and IL10 (both of which are strongly associated with CD and UC) 

did not show any evidence of association with PSC. However, we found that many PSC risk 

variants are shared with UC and have similar effects both in terms of magnitude and 

direction (Supplementary Fig. 6). It is unlikely that pleiotropy with UC accounts for the 

comorbid IBD seen in PSC on its own, given the exceedingly higher prevalence of IBD in 

PSC patients compared to the population prevalence of UC. We therefore questioned 

whether PSC-IBD is a unique disease distinct from UC, or whether PSC-IBD is the result of 

UC that is prevalent among PSC patients due to a causal relationship between the two 

diseases (i.e. UC causes subsequent development of PSC, or vice versa). If the PSC-IBD 

phenotype is the result of a causal relationship between UC and PSC, there would be a 

subgroup of PSC cases with a higher loading of UC risk alleles (or vice versa). We tested 

UC loci in PSC cases with BUHMBOX, and found no evidence of a UC-driven subgroup 

(Supplementary Table 14) despite high power (99.9% power given the hypothesis that 62% 

of PSC are affected by UC). We also tested PSC loci in UC cases with BUHMBOX 

(Supplementary Table 14); while the result was negative (P=0.48), the test was 

underpowered to detect subtle heterogeneity proportions. Although we cannot completely 

rule out a causal relationship between PSC and UC at this time, we expect that these 

findings will become clearer as additional PSC-associated loci are identified in future 

studies, improving power to detect heterogeneity. At present, our findings are most 

consistent with the hypothesis that PSC-IBD is a unique disease that shares some genetic 

factors with UC, but is distinct from classical IBD phenotypes
4,34

. This hypothesis is further 

supported by the observation that PSC-IBD shows significant clinical differences from 

classical IBD, and requires specialized management; compared to IBD, PSC-IBD has a 

higher rate of pancolitis with ileitis and rectal sparing, as well as a higher incidence of 

colorectal cancer
34

.

Our results from testing of enrichment between multi-disease signals and large-scale 

expression data sets, epigenetic and expressed enhancer profiles further reflect this excessive 

pleiotropy and mainly highlight perturbations in immune response pathways and blood cell 

tissues. However, we could not pinpoint which genomic features and which cells a variant 

influences. We hypothesize that larger gene expression data sets for the disease-relevant 

tissues and cell types from affected individuals should be generated to allow for high-

resolution and more eQTL studies since eQTLs are often cell-specific
35

. Further, the 

discovery of multiple further genetic associations increases the power of such analyses to 

define pathways and cell types involved in specific diseases.
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In summary, we performed the largest systematic cross-disease genetic study for chronic 

immune-mediated diseases to-date. Using novel cross-phenotype analytic methodologies we 

identified 17 novel genome-wide significant susceptibility loci for AS, 6 loci for CD and 4 

loci for PSC, and 3 novel yet unreported risk loci for the diseases under study. With this, the 

number of known AS, IBD, and PSC risk loci increased to 48, 206, and 20, respectively. Due 

to lower coverage at unselected regions on Immunochip, imputed GWAS data would further 

increase statistical power to identify novel shared associations outside established risk loci in 

future studies. Future cross-disease studies of a wider range of phenotypes, in combination 

with more sophisticated fine-mapping studies on individual diseases and specific layers of 

multi-omics data sets are needed to provide another layer of information for a potential new 

disease classification based on molecular genetic profiles. While most cross-disease studies 

employ patient panels that were manually curated for single phenotypes and often rely on 

questionnaire data, future studies could employ even larger collections of hospitalized 

patients, for which exhaustive electronic medical patient records and array data exists. 

Moreover, longitudinal data from electronic health charts could pinpoint further 

comorbidities that should be included in a more systematic next-generation cross-disease 

approach.

Online Methods

Study subjects

All DNA samples included in the study (Supplementary Table 1) were genotyped using the 

Illumina Immunochip custom genotyping array
40

, a targeted high-density genotyping array 

with comprehensive coverage of 1000 Genomes Project SNPs
41

 within 186 autoimmune 

disease-associated loci. CD/UC case and control cohorts were collected from 15 countries 

across Europe, North America and Australia and have previously been described
1
. Initially, 

19,761 Crohn's disease cases, 14,833 ulcerative colitis cases and 28,999 controls of 

European ancestries from the International Inflammatory Bowel Disease Genetics 

Consortium (IIBDGC) were included in the study. Genotyping of the IIBDGC cohorts was 

performed in 31 different batches (34 batches before quality control) across 11 different 

genotyping centers. The initial AS case-control collection (2 main batches) consisted of 

10,417 cases and 12,338 controls of European ancestry and were described previously.
36

 All 

AS case genotyping was performed at one centre (University of Queensland Diamantina 

Institute, Translational Research Institute, Brisbane, Australia). 6,577 Psoriasis case and 

15,085 control samples (2 main batches) were collected from 13 countries across Europe 

and North America
37

. Recruitment of 3,789 PSC patients and 25,079 controls (2 main 

batches) was performed in 14 countries in Europe and North America.
38

 Since most control 

samples we shared between different disease consortia, we identified the set of non-

overlapping (unique) control samples (Supplementary Table 1). 2019 schizophrenia cases, 

1140 bipolar cases and 589 major depressive disorder cases were collected from different 

centers in Germany in the context of the MooDs consortium. All samples have been 

genotyped at the Life&Brain center in Bonn.

Written, informed consent was obtained from all study participants and the institutional 

ethical review committees of the participating centers approved all protocols.
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Immunochip genotype calling and quality control

Initial genotype calling was performed with the Illumina GenomeStudio GenTrain 2.0 

software and the custom generated cluster file of Trynka et al. (based on an initial clustering 

of 2,000 UK samples and subsequent manual readjustment of cluster positions)
40

. Based on 

normalized intensity information, we removed samples detected as intensity outliers (>4 

s.d.). Based on initial genotype data, we further removed samples with <90% callrate using 

PLINK
42

. To identify ethnicity outliers (ie subjects of non-Europeans ancestry), we 

performed principal component analysis (PCA) with Eigenstrat
43

 and a set of 210 HapMap 

founder samples
44

 and projected Immunochip samples on the principal components axes on 

the basis of a set of 14,484 independent (minor allele frequency (MAF)>0.05) SNPs 

excluding X- and Y-chromosomes, SNPs in LD (leaving no pairs with r2>0.2), and 11 high-

LD regions as described by Price et al.
45

. OptiCall genotype recalling was performed with a 

Hardy-Weinberg equilibrium P-value threshold of 10−15 for each batch, Hardy-Weinberg 

equilibrium blanking disabled and a genotype call threshold of 0.7. Hardy-Weinberg 

equilibrium was calculated with conditioning on predicted (European) ancestry, and related 

individuals were removed from this calculation.

After genotype calling a unified quality control procedure was conducted across 40 

genotyping batches. We tested for significantly different allele frequencies of variants across 

the batches from a particular disease or the control group (with at most one batch being 

removed) with a false discovery rate (FDR) threshold of 0.01 (Supplementary Fig. 14). 

Variants that had >2% missing data, a minor allele frequency <0.1% in either of the different 

disease sets or in controls, had different missing genotype rates in affected and unaffected 

individuals (PFisher<10−5) or deviated from Hardy-Weinberg equilibrium (with a false 

discovery rate (FDR) threshold of 10−5 in controls (a) across the entire collection with at 

most one batch being removed (Supplementary Fig. 15a) or (b) falling below in two single 

batches (Supplementary Fig. 15b) were excluded. Samples that had >2% missing data and 

overall increased/decreased heterozygosity rates were removed (Supplementary Fig. 16). 

For robust duplicate/relatedness testing (IBS/IBD estimation) and population structure 

analysis, we used a pruned subset of 14,484 independent SNPs (see text above). Pair-wise 

percentage IBD values were computed using PLINK. By definition, Z0: P(IBD=0), Z1: 

P(IBD=1), Z2: P(IBD=2), Z0+Z1+Z2=1, and PI_HAT: P(IBD=2) + 0.5 * P(IBD=1) 

(proportion IBD). One individual (the one showing greater missingness) from each pair with 

PI_HAT>0.1875 was removed.

To resolve within-Europe relationships and to test for population stratification, the remaining 

QCed 52,262 cases and 34,213 unique controls were tested using the PCA method, as 

implemented in FlashPCA
46

. PCA revealed no non-European ancestry outliers 

(Supplementary Fig. 17a-c). We computed Tracy-Widom statistics to evaluate the 

statistical significance of each principal component identified by PCA and identified the top 

seven axes of variation being significant at PTW<0.05 (Supplementary Table 16). 130,052 

QCed polymorphic variants with MAF>0.1% and 52,262 cases and 34,213 unique controls 

were available for analysis.
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Cross-phenotype association analysis

We conducted primary association analysis based on subsets (ASSET) methodology
6
. Even 

after adjusting for the large number of comparisons, the SBM method maintains similar 

type-I error rates as for standard meta-analysis. This method offers a substantial power 

increase (sometimes approaching between 100-500%
6
) compared to standard univariate 

meta-analysis approaches, where the (heterogeneous) effect of a specific SNP is not 

exclusively restricted to a single disease. Under the assumption that association signals from 

shared risk loci based on positional overlap are tagging same causal variant for different 

diseases, the (unconditioned) subset-based meta-analysis (SBM) approach improves power 

compared to standard fixed-effects meta-analysis methodology. For the situation that distinct 

variants within shared susceptibility region may confer independent effects for individual 

diseases, the conditional SBM approach is well suited to reveal these independent (often 

multi-disease) associations signals (see stepwise subset-based conditional logistic 

regression).

The subset-based meta-analysis is a generalized fixed-effects meta-analysis and explores all 

possible subsets of diseases (or a restricted disease set if specified) for the presence of true 

association signals, while adjusting for the multiple testing required and a fixed control 

group shared by all diseases. To control for potential population stratification, we adjusted 

association test statistics by means of principal component analysis (PCA) using the top 

seven axes of variation (Supplementary Table 16). Adjusted two-tailed PSBM values (risk 

versus protective) were obtained using the discrete local maxima (DLM) method estimating 

tail probabilities of the Z score test statistic that is maximized over a grid of neighboring 

subsets
6,47

. The maximum (in absolute value) of the subset-specific Z statistics is a 

conservative variable selector in the sense that for large samples, it will select only non-null 

studies, but it is not guaranteed to select all of the non-null studies
6
. The genomic inflation 

factor (λ) calculated using 1,820 “null”-SNPs (outside the MHC region) associated with 

reading and writing ability, psychosis and schizophrenia was 1.082 (λ1000 for an equivalent 

study of 1,000 cases and 1,000 controls=1.002), indicating minimal evidence of residual 

population stratification in the overall data set of 52,262 cases and 34,213 controls.

Where a particular SNP is only associated with a single disease, the standard meta-analysis 

methodology has slightly higher power than the subset-based approach. To avoid loss of 

statistical power in such settings, we looked up every SNP with PSBM<5×10−7 within and 

outside the 166 non-MHC susceptibility loci, to see if gws (Pdisease<5×10−8) was achieved in 

any of the five single disease vs. control subsearches. Univariate association statistics 

(restricted to a single disease data sets versus the fixed control group) were obtained using 

the same DLM method. The increased statistical power of the single association test 

(Pdisease) in comparison to original individual disease Immunochip analyses
1,36-38,48

 is likely 

due to the fact that the larger sample-sized Immunochip data here (except for AS) was used 

as a screening tool instead of using it as a replication data set after screening smaller sized 

GWAS discovery data sets. The large number of novel AS loci can largely be attributed to an 

approximately 2.5× increased size control cohort compared to the original AS Immunochip 

study (13,578 controls in the original study vs. 34,213 controls in the current study). After 

“subtracting” the novel trans-ancestry CD/UC loci from the inflammatory bowel disease 
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(IBD) trans-ancestry study
49

, 27 of 35 new gws non-MHC risk loci remain for the five 

diseases under study. Using an alternative method we identified more pleiotropic loci shared 

between UC and CD (Supplementary table 17, see Conjunctional False Discovery Rate 
analysis below).

Stepwise subset-based conditional logistic regression

Single and multiple disease-associated (independent) lead-SNPs were selected through 

stepwise regression to condition away lead-SNPs one at a time until no associations remain 

following a recently published stepwise conditional SBM fine-mapping approach
9
. It is an 

effective method for separating independent signals and assumes that LD between the 

independent causal variants is low. Significance was defined by Bonferroni correction of the 

number of LD-independent marker on the Immunochip (0.05/37,377 = 1.34×10−6).

Cluster plot inspection

Immunochip intensity cluster plots of all genome-wide significant SNP markers 

(PSBM<5×10−7 and Pdisease<5×10−8; PSBM<5×10−8) from Supplementary Tables 2 and 3 
were manually inspected by three different persons using Evoker

50
 to ensure that they were 

well clustered.

Bayesian multinomial regression for model selection

To compare different disease models at each locus we used Bayesian multinomial 

regression. A disease model is a list of diseases that a given locus is associated (i.e. has a 

non-zero log odds ratio) with, e.g. “associated with CD and UC, but not with PS, AS or 

PSC” is one disease model, as is “associated with all diseases”. There are a total of 32 

possible disease models for the 5 phenotypes, which includes the null model (“not 

associated with any disease“). Our aim is to infer the posterior probability for each of these 

disease models, conditional on the genotype and phenotype data we have seen. We do this 

under a Bayesian setting, as it naturally handles the different uncertainties on the effect sizes 

for each disease due to their different sample sizes and powers. The methods we describe 

below are implemented in the open source Trinculo software package.

The Bayesian multinomial logistic regression software calculates a marginal likelihood for 

each model, integrating out uncertainty in the effect size, as

Where β is a vector of log-odds ratios for each disease. The likelihood Pr(D | M) is given by 

the multinomial logistic likelihood. The prior distribution on the effect sizes is given by β|M 
~ MVN(0,ΣM), where ΣM is the prior covariance matrix for model M. To enforce 

phenotypes that are not associated with the disease, we set ΣM
ij = 0 if either phenotype i or j 

is not associated with the locus. We use Newton's method to calculate the maximum a 
posteriori estimate (MAP) for the parameters, and calculate the marginal likelihood using a 

Laplace approximation around the MAP.

We calculate the posterior probability for each model as
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The method thus requires two priors: the model covariance matrices ΣM and the per-model 

priors Pr(M). We analyze each variant using six different sets of priors, two different forms 

of the covariance matrix prior and three different forms of the per-model prior. For the 

covariance prior we use a) a simple independent covariance matrix where ΣM
ii = 0.2 if 

phenotype i is included in the model, and all other ΣM
ij = 0 and b) an empirical covariance 

prior where a single covariance matrix  is learned by maximum likelihood assuming all 

loci are associated with all diseases (i.e. maximizing the product of the marginal likelihoods 

across all loci under the “associated with all phenotypes” model). For the per-model priors, 

we use a) a uniform prior across all models, b) a uniform prior across the number of 

phenotypes associated with the locus (so all models where there are the same number of 

associations sum to 1/6) with equal weight to each model with the same number of 

phenotypes and c) an empirical prior distribution on the number of phenotypes associated 

with the locus, inferred by maximum likelihood.

We calculated posteriors for each model for each risk variant under the six different priors. 

For each risk variant we then took a vote of the highest posterior models under each prior, 

such that we select whichever model was considered best by the largest number of priors. 

We also recorded how many priors voted for that model, and how much posterior each prior 

gives to the winning model.

If SNPs represent secondary independent association signals due to the results from stepwise 

conditional SBM analysis, then they were tested conditional on all other identified genome-

wide significant independent signals within the same locus. Within the Bayesian logistic 

regression, we included the genotype at the lead SNP (and further preceding independent 

signals) as a covariate in the model.

Disease correlation measure and temporal comorbidity

To determine significant temporal co-occurrences (disease-pairs) for the five inflammatory 

diseases under study, we screened an independent data set covering ICD10 diagnose codes 

from 6,631,920 people of the entire Danish population in the period from 1996 to 2014
5
. We 

used relative risk (RR) to measure the strength of the correlation between a pair of diagnoses 

(diagnosis A followed by diagnosis B). RR estimates and associated P-values were 

calculated using a sampling approach as described in the original study
5
. In brief, given a 

pair, diagnosis A followed by diagnosis B, RR of a temporal association was calculated as 

the ratio of the observed number of patients who had A then B within 5 years and the 

number of randomly matched control patients would get B within 5 years from a matched 

discharge. Each matched control has same age (birth decade) and gender as the case and has 

a discharge of same type (inpatient, outpatient or emergency room) within the same 

calendar-week as the case's A diagnosis (from which the 5 years to develop B is started). 

The significance threshold of P=0.05/823606=1.21×10−9 was applied using Bonferroni 

correction for testing 823,606 directed pairs in the original study
5
.
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Distinguishing pleiotropy and heterogeneity

We used BUHMBOX v0.38 (Breaking Up Heterogeneous Mixture Based On Cross-locus 

correlations)
20

 to evaluate whether the sharing of risk alleles observed across pairs of 

diseases (disease A and disease B) was driven by true pleiotropy where there is pervasive 

sharing of risk alleles between two diseases, or by heterogeneity where a subgroup of 

disease A cases has a higher loading of risk alleles for disease B. The BUHMBOX approach 

has been described in detail elsewhere
20

. Briefly, a genetic risk score (GRS) approach is 

used to detect significant sharing of risk loci between disease A and disease B. If such 

genetic sharing is detected using GRSs, the BUHMBOX test statistic – which identifies 

heterogeneity by calculating the cross-locus correlation of disease B-associated loci among 

disease A cases – is applied to verify whether these associations are due to heterogeneity 

(e.g. sample misdiagnosis, excessive comorbidity) as opposed to biological pleiotropy. In the 

setting of pleiotropy, pleiotropic disease B risk alleles are shared across all disease A cases, 

whereas in heterogeneity, only a subset of disease A cases share disease B risk alleles. This 

leads to cross-locus correlations between disease B-associated loci being positive in the 

presence of heterogeneity, but not in the case of pleiotropy. To strictly control for false 

positives, BUHMBOX uses LD-pruning, the top seven principal components from PCA, and 

delta-correlations between cases and controls.

First, to quantify pleiotropy for each of the 20 possible pairs of five diseases, we calculated 

GRSs using known independent risk loci for disease B for each case and control in the 

disease A sample (based on disease B risk alleles, weighted by effect size) and tested the 

association of these GRSs with disease A status using logistic regression adjusted for the top 

seven principal components from PCA. The GRS P-values therefore test for enrichment of 

disease B risk alleles in disease A, and are expected to be significant both in the presence of 

pleiotropy and heterogeneity. We obtained the list of known associated loci from the 

previous literature
1,36-38

 for AS, CD, PS, PSC and UC.

Next, we evaluated the presence of heterogeneity by applying BUHMBOX
20

 to each of the 

20 pairs of diseases. We estimated the statistical power of BUHMBOX to detect a certain 

proportion of sample heterogeneity by simulation (Supplementary Table 13, 
Supplementary Figure 10), using the effect sizes and allele frequencies of the disease B 

loci and randomly simulating the number of cases and controls in the disease A sample.

Functional annotation of associated variants

The variants identified in this study were annotated using the Ensembl variant effect 

predictor (VEP)
51

 (release-77) to determine genomic position annotations, including the 

closest gene, and functional consequences (using the most severe consequence due to 

SIFT
52

 and Polyphen
53

). The —assembly flag was set to GRCh37 and added the —pick flag 

to retrieve the most severe consequence for the variants. The UpDownDistance plugin was 

used to retrieve the nearest gene id within 10kb of the variant. TSS distance was retrieved 

using the TSSDistance plugin. We also included the —regulatory flag to annotate where a 

variant overlaps a regulatory feature. The DNA hypersensitivity sites (DHS) and promoter 

annotations were taken from 1KGP annotations
54

.
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To determine whether any of the lead variants were in high LD (r2>0.8) with a functional 

variant, the 1000 genomes project v3 EUR haplotypes were used (1000 genomes Phase III 

20130502 release). Pairwise LD was calculated between the lead SNPs and all other SNPs 

within this dataset using Plinkv1.09
55

. Only variants that occurred in 1000 genome dataset 

were included in this analysis. The GWAS-catalog
10

 was used to identify whether any lead 

variants or variants in high LD (r2>0.8) with the lead variants had been previously reported 

in other GWAS studies. Immunobase and Europe Pubmed Central were also used to 

determine whether variants had been previously associated with an auto-immune phenotype.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 27 novel genome-wide significant disease associations (Pdisease<5×10−8) for ankylosing 
spondylitis (AS), Crohn's disease (CD), psoriasis (PS), primary sclerosing cholangitis (PSC) and 
ulcerative colitis (UC)
Single disease analyses were performed only on SNPs that achieved PSBM<5×10−7 in the 

primary (unconditioned) cross-disease subset-based association meta-analysis (SBM) 

approach (see Main Text). We identified 17 novel genome-wide significant susceptibility 

loci for AS, 6 loci for CD and 4 loci for PSC (Supplementary table 2). Corresponding P-

values and ORs for each novel association are shown separately for each disease. With this, 

the number of known AS, IBD, and PSC risk loci increased to 48, 206, and 20, respectively. 

For 22 out of 27 gws associations, lead SNPs from the SBM approach (PSBM<5×10−8) and 

the single disease lookups (PSBM<5×10−7 and Pdisease<5×10−8) are identical, in five 

instances we have different lead SNPs between SBM and the single disease analyses 

(Supplementary table 2).

−log10 P-value: −log10 P-values (Pdisease) from Immunochip analysis (Supplementary 
Table 2) with regard to the physical location of markers; direction of triangle denotes 

direction of disease-individual effect; OR: odds ratio from the five single disease vs. control 

subsearches (OR(disease) in Supplementary Table 2). Large circles denote nominal 

significant disease-individual P-values (Pdisease<0.05); CAF cases/controls: case/control 

minor allele frequency; If available, the nearest gene within 10kb of the variant is depicted.
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Figure 2. Heritability explained per risk variant from 244 independent multi-disease association 
signals identified through cross-disease subset-based association meta-analysis
(a) Cumulative fraction of explained variance in disease liability (heritability) for each 

disease (see Methods). The loci are ordered from largest to smallest individual contribution. 

In total, 7.38, 10.30, 5.72, 2.53, and 5.95 percent of the heritability of ankylosing spondylitis 

(AS), Crohn's disease (CD), psoriasis (PS), primary sclerosing cholangitis (PSC) and 

ulcerative colitis (UC), respectively, is explained by the 169 loci outside the extended MHC 

region (for a maximum of 244 independent signals from Supplementary Table 3a). When 

adding known risk alleles from the major histocompatibility complex (MHC)
36-39

 to the 169 

loci, the cumulative variance increases to 27.82, 10.88, 12.20, 5.48 and 7.66 percent for AS, 

CD, PS, PSC and UC, respectively.

(b) Example of a pair-wise comparison of heritability explained per risk variant between PS 

and UC. See Supplementary Figure 6 for all ten pair-wise comparisons. Even if disease-

associations account for approximately the same amount of variance explained in disease 

liability, e.g. as seen here for PS and UC, the pattern of sharing is complex in terms of size 

and direction of effect. Each box represents an independently associated SNP for the given 

disease. The size of each box is proportional to the amount of heritability for that variant. 

The colors of the boxes denote whether the difference in variance explained is due to 

different direction of effect (risk versus protective), significant heterogeneity of odds ratios 

(P<0.01) or both.
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Figure 3. Identification of drug targeting genes from a core disease protein-protein interaction 
network
We evaluated the potential role of genes in drug discovery by linking genes from a core 

protein-protein-interaction (PPI) network (Supplementary Figure 9) to drugs using 

Drugbank (see Methods). All drugs were selected based on evidence from phase I/II/III 

randomized clinical trials (RCTs) or published animal studies. Nine drug target genes 

overlap with the genes from the core network. (a) Connections between biological genes 

from core PPI (red), and drugs (blue) used for treatment of AS, CD, PS, PSC and UC 

(yellow). (b) Connections between biological genes from core PPI (red), and drugs (blue) 

used for treatment of other inflammatory disease and traits (yellow).
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Figure 4. Estimation of Immunochip-wide pleiotropy (excluding the MHC region) between the 
five diseases under study
Proportion of genetic variance in liability (SNP-based heritability) and proportion of genetic 

covariance in liability between diseases (SNP-based coheritability) with 95% error bars (see 

Supplementary Table 15a; estimates including MHC SNPs see Supplementary Table 
15b). Disease-associated SNP markers from Supplementary Table 3a (at a maximum of 244 

independent signals from 169 non-MHC risk loci, see also Supplementary Figure 6) 
explain 42.2% of AS-, 79.63% of CD-, 39.6% of PS-, 29% of PSC- and 55% of UC-

Immunochip-wide SNP-heritability (excluding the MHC region) on the liability scale, 

respectively. As the Immunochip densely tags common variants but at the cost of losing 

genome-wide coverage, the estimated SNP-heritabilities are lower bounds for genome-wide 

SNP-heritabilities.
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