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In all eukaryotes, the mechanistic target of rapamycin (mTOR) signaling emerges as a master regulator of homeostasis, which
integrates environmental inputs, including nutrients, energy, and growth factors, to regulate many fundamental cellular
processes such as cell growth and metabolism. mTOR signaling functions through two structurally and functionally distinct
complexes, mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2), which correspond to two major branches of signal
output. While mTORC1 is well characterized for its structure, regulation, and function in the last decade, information of
mTORC2 signaling is only rapidly expanding in recent years, from structural biology, signaling network, to functional impact.
Here we review the recent advances in many aspects of the mTORC2 signaling, with particular focus on its involvement in the
control of cell metabolism and its physiological implications in metabolic diseases and aging.

1. Introduction

Mechanistic target of rapamycin (mTOR) is an evolution-
arily conserved Ser/Thr kinase that belongs to the
phosphatidylinositol-3-kinase-related kinase (PIKK) family.
mTOR functions through two structurally and functionally
distinct complexes, mTORC1 and mTORC2 [1]. Although
the two mTOR complexes share three conserved subunits,
mTOR, mLST8 (mammalian lethal with SEC13 protein 8,
also known as GβL), and DEPTOR (DEP domain containing
mTOR-interacting protein), they also contain complex-
specific components. While mTORC1 comprises Raptor
(regulatory-associated protein of mTOR) and PRAS40
(proline-rich Akt substrate of 40 kDa), mTORC2 distinc-
tively contains Rictor (rapamycin-insensitive companion of
mTOR) and mSin1 (mammalian stress-activated protein
kinase-interacting protein 1) as well as Protors-1 and -2
(protein observed with Rictors-1 and -2, respectively) [2]
(Figure 1(a)). In addition to this compositional difference,

the two complexes also differ in their response to rapamycin
with mTORC1 activity being acutely inhibited by rapamycin
while mTORC2 only responding to long-term treatments [3].

mTOR signaling has been considered as a master
regulator of homeostasis, which controls many anabolic
and catabolic processes in response to nutrient availability
[1]. This is especially well established in mTORC1 signaling
through its regulation of anabolic process. Notably, recent
studies with the utilization of new pharmacological tools
and genetic models demonstrate that mTORC2 also plays
fundamental roles in regulating cell metabolism [4].

In this review, we will summarize the recent advances
in mTORC2 signaling, including the structure and function
of its subunits, its upstream regulators, and downstream
effectors. Particularly, the emphasis will be given to the
current understanding of mTORC2 in cellular metabolism,
including glucose, lipids, amino acids, nucleotides, and
reactive oxygen species (ROS), and their impact in metabolic
disorders and longevity.
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2. The mTORC2 Signaling

2.1. Composition of mTORC2. mTORC2 is composed of
several protein subunits, of which four are considered as
core, essential components: mTOR and mLST8 shared in
both mTOR complexes and Rictor and mSin1 specific to
mTORC2 (Figure 1(b)).

mTOR is the catalytic subunit of the mTOR complexes,
composed of over 2500 amino acids and evolutionarily con-
served in eukaryotes, from yeast to human [1]. Structurally,
the N-terminal half of the mTOR protein contains more than
30 tandem prototypical HEAT (Huntingtin, EF3A, ATM,
and TOR) repeats forming two α-solenoids, followed by a
FAT (FRAP, ATM, and TRRAP) domain and a FRB
(FKBP12/rapamycin binding) domain, which is linked to
the kinase domain, ending with the FATC (FAT C-terminus)
domain at the C-terminus (Figure 1(b)) [5]. The kinase
domain of mTOR has a bilobal structure that is in an intrin-
sically active conformation, with a catalytic mechanism
remarkably similar to canonical protein kinases [6]. How-
ever, its active site is usually recessed due to the FRB domain
and an inhibitory helix protruding from the catalytic
cleft, indicating that its accessibility is strictly regulated
[6]. This regulation points to substrate recruitment as a
major mechanism controlling the kinase activity.

mLST8 is another highly conserved subunit shared
between the two mTOR complexes [7]. The entire protein
of 326 amino acids is composed of seven WD40 repeats,
which fold into a β-propeller that generally serves as a
scaffold for protein interactions. Although mLST8 stably
binds to the kinase domain of mTOR in both mTOR
complexes, it appears to differentially regulate the kinase
activity in the two complexes. Although deletion of mLST8
has no clear effect on mTORC1 activity and integrity, its
absence completely abolishes mTORC2 activity, indicating
that it is essential for mTORC2 function, not mTORC1 [8].

Rictor is a defining member of mTORC2, containing over
1700 amino acids [3, 9]. Despite of its large size, no clearly
identifiable domains or motifs can be mapped to it except
several sections that are conserved from yeast to human [3].
Nonetheless, Rictor contains several armadillo-like helical
repeat clusters in its N-terminal portion, which extensively
interact with mTOR and have a profound impact on
mTORC2 assembly [10, 11]. The importance of Rictor in
mTORC2 is determined by the observation that depletion
of Rictor disrupts mTORC2 assembly and activity, suggest-
ing that it plays a vital role in the integrity and stabilization
of mTORC2 [12].

mSin1, encoded by the MAPKAP1 (mitogen-activated
protein kinase-associated protein 1) gene, is another specific
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Figure 1: The protein composition of mTORC1 and mTORC2. (a) Schematic showing main molecular components and signals sensed by
mTORC1 and mTORC2 (in the rectangles) and the processes they regulate to control cell growth and survival. With high sensitivity to
rapamycin, mTORC1 senses oxygen, glucose, amino acids, energy, and growth factors to regulate cell growth by inhibiting autophagy and
promoting several anabolic reactions, including synthesis of protein, lipids, and nucleotides. mTORC2 is insensitive to acute rapamycin
treatment but responds to growth factors and insulin to regulate lipid and glucose metabolism, as well as survival and proliferation. (b)
Schematic representation of mTORC2 core components. Domains of known function or structural motifs are indicated. Description of the
abbreviations listed is contained within this review.
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component of mTORC2, discovered by its interaction with
Rictor [13, 14]. mSin1 is highly conserved in vertebrates
and contains four possible domains (Figure 1(b)). The N-
terminal TORC region is responsible for the interaction with
mTOR and Rictor as its natural isoform without this region
fails to constitute mTORC2 [14]. The C-terminal region
contains a pleckstrin homology (PH) domain, which seems
to be not necessarily required for mTORC2 assembly and
activity but may function for its membrane localization
[14]. The central region is the most conserved section and
hence called conserved region in the middle (CRIM), which
is linked to a RAS-binding (RB) domain at its C-terminal
(Figure 1(b)). Structure analysis indicates that CRIM is an
ubiquitin-like domain with a prominent acidic loop that is
primarily responsible for the recruitment of mTORC2
substrates [15]. Therefore, mSin1 is considered to mainly
function for substrate recruitment and selection, and the
exact mechanisms, however, await for further investigation.

2.2. Structure of mTORC2. Human mTORC2 has an overall
structural organization similar to that of mTORC1 and
TORC2 of Saccharomyces cerevisiae [10, 11, 16]. It is a rhom-
bohedron in shape formed by dimerization of two sets of the
key subunits in the mTOR complexes, which are shaped in
pseudo-2-fold symmetry and a prominent central cavity with
the dimer of mTOR and mLST8 as a core [11]. In addition,
the principal site for mTOR interacting with Rictor in this
architecture is the same site occupied by Raptor in
mTORC1, thereby sterically excluding Raptor incorporation
in mTORC2. However, the current studies can only resolve
the interaction between the N-terminal regions of mTOR
and Rictor proteins in high resolution, whilst the interactions
between the catalytic domain of mTOR and C-terminal part
of Rictor and mSin1 have not been clearly determined due to
their high flexibility and mobility [10, 11]. Although the
structure of mTORC2 shares several features with that of
mTORC1, the two complexes diverge remarkably in their
overall size, the surface area of the protomer interface,
the volume and shape of the central cavity, and, more
importantly, the accessibility of the kinase domain. These
differences are likely resulted from the distinct molecular
compositions and have profound impact on the functions
and regulations of the two complexes, rendering mTORC2
insensitive to rapamycin [11, 16]. The determination of the
high-resolution mTORC2 architecture at its catalytic kinase
domain is required to further decipher the structural organi-
zation, regulation, and activation of this important kinase.

2.3. Effectors of mTORC2. mTORC2 has a pleiotropic effect
on cellular properties by means of activating/phosphorylat-
ing its downstream effectors, which are currently recognized
to be mainly the members of the AGC kinase family, includ-
ing PKB (protein kinase B, also called Akt), PKC (protein
kinase C), and SGK1 (serum- and glucocorticoid-induced
kinases 1) (Figure 2(a)) [17]. Upon activation by mTORC2,
these AGC kinases also regulate multiple downstream
targets, leading to cascading effects that impact on cell
behavior and functions.

2.3.1. Akt. Akt, a family of three members (Akt1, Akt2, and
Akt3), is the most characterized effector of mTORC2 and a
key factor downstream of PI3K signaling, which has impor-
tant roles in cell survival, proliferation, and growth. Akt is
located in cytosol in the absence of stimuli and is recruited
to the plasma membrane via the interaction between its
PH domain and phosphatidylinositol (3,4,5)-trisphosphate
(PtdIns(3,4,5)P3) that is generated by PI3K activation.
This leads to Akt phosphorylation at two residues, in the
case of Akt1, T308 in the activation loop (A-loop) by
PDK1 (phosphoinositide-dependent protein kinase 1) and
S473 in hydrophobic motif (HM) by mTORC2 to ensure
a full activation of Akt [18, 19]. Although Akt-S473 can
also be phosphorylated by other kinases such as integrin-
linked kinase (ILK) and DNA-dependent protein kinase
(DNA-PK) in a cell/tissue-dependent manner [20, 21], it
is predominantly phosphorylated by mTORC2 as deleting
any of the mTORC2 key components results in dramatic
abrogation of this phosphorylation [8, 12, 13]. Interestingly,
although phosphorylation of both Akt-T308 and -S473 is
required for a full activation of Akt, defective Akt-S473
phosphorylation affects only a subset of Akt targets in vivo,
such as FoxO1/3a (forkhead box O1 and O3a), while other
Akt targets, including TSC2 (tuberous sclerosis complex 2)
and GSK3 (glycogen synthase kinase 3), and its downstream
effector mTORC1 remain unaffected [13].

In addition to Akt-S473, mTORC2 has also been identi-
fied as the kinase for the phosphorylation of Akt-T450 in
its turn motif (TM) to ensure proper folding and maturation
of the Akt protein [22, 23]. Intriguingly, mTORC2 appears to
phosphorylate Akt-T450 by a different mechanism from that
of phosphorylating Akt-S473. Akt-S473 is phosphorylated by
a canonical posttranslational mechanism and can be resem-
bled by in vitro kinase assay with immunoprecipitated
mTORC2, whereas Akt-T450 phosphorylation is thought to
be performed by a cotranslational mechanism involving
ribosomes and cannot simply be achieved by in vitro kinase
assay [23, 24].

2.3.2. PKC. PKC is a protein family of 11 members, which are
categorized into three classes: the conventional (c) PKC (α,
β1, βII, and γ), the novel (n) PKC (δ, ε, θ, and η/Λ), and
the atypical (a) PKC (ζ and ι/λ) [25]. Both cPKCs and nPKCs
are identified as mTORC2 substrates, being phosphorylated
by mTORC2 at their HM and TM motifs [22, 23, 26, 27].
Among them, PKCα is the first identified and the most char-
acterized substrate of mTORC2 and plays an important role
in regulating actin cytoskeleton function, thereby affecting
cell shape and mobility [3, 9]. However, the precise mecha-
nisms by which mTORC2 phosphorylates PKCα remain
ambiguous as neither HM nor TM phosphorylation of PKCα
could be achieved by in vivo kinase assay with immunopreci-
pitated mTORC2 [23]. Furthermore, the functions of these
phosphorylations in PKCα are also not very clear, but
they have a role in protein stabilization and solubility, thus
affecting PKC activity [28].

2.3.3. SGK1. SGK1 is also phosphorylated and activated by
mTORC2 at its S422 of HM, similar to that of Akt [29],
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and mSin1 has been shown to have a role in this phosphory-
lation, mediating the interaction between mTORC2 and
SGK1 [30]. mTORC2-targeted SGK1 activation functions to
regulate sodium transport as well as cell survival [31].

2.4. Regulation of mTORC2. The regulation of mTORC2 is
much understudied and less understood than that of
mTORC1 [1]. Nonetheless, increasing evidence in the last
decade, particularly recent years, has emerged that mTORC2
activity could be affected by many factors via various
mechanisms, which might directly or indirectly affect the

localization, function, and stability of mTORC2 components
as well as substrate availability.

2.4.1. Membrane Localization and mTORC2 Activation. The
plasma membrane plays an important role in mTORC2
activation, and a proportion of mTORC2 is located at
the plasma membrane of mammalian cells to activate
Akt [32, 33]. However, how mTORC2 is activated at the
plasma membrane has been a mystery. It has been long
thought that growth factors are the major signals to activate
mTORC2 by means of the PI3K pathway (Figure 2(b)).
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Figure 2: The signaling network of mTORC2. (a) Schematic representation of AGC kinases downstream of mTORC2. The major positions
for phosphorylation are indicated. (b) As ligands, growth factors bind to the membrane receptor, receptor tyrosine kinase (RTK), which
activates PI3K to phosphorylate PIP2 to PIP3 at the plasma membrane. PTEN (phosphatase and tensin homolog) dephosphorylates PIP3
and is a key negative regulator of PI3K signaling. PIP3 or other unknown factors activate mTORC2 in distinct manners to promote the
phosphorylation of conserved motifs in several AGC kinases (Akt, PKC, and SGK1). For maximal activation, Akt is phosphorylated at
T308 and S473 by PDK1 and mTORC2, respectively, and subsequently promotes the activation of mTORC1, which is characterized by
phosphorylation of several downstream effectors, including S6K, 4E-BP1, and ULK1. There are several other upstream regulators which
can also regulate mTORC2 activity, including amino acids, ROS, ribosome, TSC complex, and GTPases, through distinct mechanisms.
Description of the abbreviations listed is contained within this review.
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Upon PI3K activation by insulin or other growth factors,
PtdIns(4,5)P2 is phosphorylated to PtdIns(3,4,5)P3 to
enable its binding to mSin1-PH, which subsequently
releases the mSin1-PH inhibition on the mTOR kinase
domain to activate mTORC2 activity. This interaction also
enables the recruitment of mTORC2 to the plasma mem-
brane where it meets and phosphorylates Akt that is also
recruited to the plasma membrane via the Akt-PH
domain [34]. However, a recent study, using biochemical
labelling and imaging approaches, showed that the plasma
membrane-associated mTORC2 is constitutively active
and is independent of growth factor/PI3K signaling and
that only the recruitment of substrate Akt to the plasma
membrane requires the activation of PI3K [35]. Nevertheless,
the mTORC2 activity at endosomes is sensitive to PI3K,
suggesting the existence of spatially distinct mTORC2
subpopulations in response to growth factors. These studies
raise further questions on whether and how environmental
cues, such as growth factors, regulate mTORC2 activity.

2.4.2. Component Modification and mTORC2 Activation. In
response to upstream signals, mTORC2 components are sus-
ceptible to PTMs (posttranslational modifications), including
phosphorylation, acetylation, and ubiquitination, which
might serve to fine tune mTORC2 assembly, disassembly,
activation, inactivation, or, perhaps, substrate recruitment.

The mTOR protein is phosphorylated at T2173 of the
ATP-binding site in the kinase domain in an Akt-
dependent manner, which impairs mTORC2 activity, thus
functioning as a negative feedback to control mTORC2
activity [36]. The mTOR protein is also phosphorylated
at S2481, and this phosphorylation is shown to depend
on the intactness of mTORC2 activity but is unclear about
its function, which is thus mainly used as a marker of
mTORC2 [37]. The phosphorylation of mTOR at S2448
is thought to be associated with mTORC1 rather than
mTORC2 [37].

The mTORC2 activity is also regulated by ubiquitination
of mLST8 and DEPTOR. The K63-linked polyubiquitination
of mLST8 by TRAF2 E3 ubiquitin ligase disrupts mTORC2
formation, thereby reducing mTORC2 activity. In contrast,
deubiquitination of mLST8 by OTU domain-containing
protein 7B (OTUD7B) deubiquitinase promotes its interac-
tion with mSin1, facilitating the formation of mTORC2 and
enhancing its activity [38]. DEPTOR, an inhibitory subunit
of both mTOR complexes, is phosphorylated by mTOR
and casein kinase 1 (CK1) in response to growth factor
stimulation, which results in its degradation and mTOR
activation [39–41].

Moreover, the mTORC2 scaffold protein Rictor also
contains multiple modifiable sites, which might impact on
mTORC2 activity. Rictor-T1135 has been found phosphory-
lated by S6K1, but whether this phosphorylation has any
effect on mTORC2 activity remains controversial [42, 43].
In addition, Rictor has also been reported to be phosphor-
ylated by GSK3 at S1235 or T1695. Although both appear
to negatively affect mTORC2 activity, they function
through distinct mechanisms [44, 45]. The phosphorylation
of Rictor-S1235 interferes with the interaction between

mTORC2 and the substrate Akt, whilst the phosphorylation
of Rictor-T1695 promotes FBXW7-mediated degradation of
Rictor [44, 45]. Furthermore, acetylation of Rictor at multiple
sites between residues 1040–1140 has been reported to
activate mTORC2 [46, 47].

Phosphorylation of mSin1 has also been shown to have
an effect mTORC2 activity but with disputed results. In one
report, mSin1-T86/T398 were shown to be phosphorylated
by S6K or Akt, resulting in inhibited mTORC2 activity
[48], whilst in other reports, Akt-mediated mSin1-T86 phos-
phorylation was shown to enhance mTORC2 [49, 50]. The
reason for this discrepancy remains unclear. In addition,
mSin1-S260 was shown to be phosphorylated by mTOR
under energy-sufficient condition to stabilize mSin1, thus
enhancing mTORC2 activity [51].

2.4.3. Other Factors. In addition to the above regulators, some
other factors are also emerging to have a role in the regula-
tion of mTORC2 activity, such as ribosomes, small GTPases,
TSC complex, and amino acids (AAs). It is revealed that
mTORC2 activity requires well-assembled intact ribosomes
and that the insulin-stimulated PI3K pathway promotes their
physical interaction [52]. The involvement of ribosomes in
mTORC2 activation is supported by the finding of cotransla-
tional phosphorylation of Akt-T450 [24]. Therefore, ribo-
somes might serve as a scaffolding platform that facilitates
mTORC2 to phosphorylate some of its targets. However,
the precise mechanism by which mTORC2 is activated by
association with ribosomes remains to be elucidated. TSC
complex and small GTPases (e.g., Rhy1, Rit, and Rac1)
have been demonstrated to positively regulate mTORC2
activity by physically interacting with mTORC2 components
[53–55]. Moreover, mTORC2 activity can be activated by
glutamine depletion mediated by Sestrin2 with an unestab-
lished underlying mechanism [54, 56].

3. mTORC2 in Cell Metabolism

3.1. Glucose Metabolism. Emerging evidence suggest that
mTORC2 plays an important role in glucose metabolism
and homeostasis (Figure 3(a)). mTORC2 signaling affects
many aspects of glucose metabolism, including glucose
uptake, glycolysis, gluconeogenesis, and oxidative phosphor-
ylation [57–63].

3.1.1. Glucose Uptake. The regulation of glucose uptake is a
key determinant of glucose metabolism [64]. Tissue-specific
Rictor-knockout mice exhibit compromised glucose uptake
in the liver, adipose tissue, and muscle while the underlying
mechanisms seem to be divergent and tissue type dependent
[58–61]. In the muscle, deletion of Rictor results in the failure
of Akt-mediated AS160 phosphorylation in response to insu-
lin stimulation, which subsequently decreases the plasma
translocation of GLUT4, a glucose transporter [59]. In the
liver, the decreased glucose uptake in Rictor-null cells is
mainly resulted from a reduction in the expression and activ-
ity of glycolysis rate-limiting enzyme glucokinase (GK) [61].
In adipose tissue, mTORC2 contributes to glucose uptake
mainly by regulating either hexokinase (HK, isoenzyme of
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Figure 3: mTORC2 in cell metabolism. (a) mTORC2 promotes glucose metabolism via glycolysis and PPP (pentose phosphate pathway). In
response to growth factors, mTORC2 activates glucose catabolism through two main factors, Akt and c-Myc. Akt activates glycolysis at both
transcriptional and posttranslational levels. c-Myc enhances the expression of genes involved in glycolysis and PPP. Activated factors are
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mTORC2 promotes lipogenesis via Akt-dependent and -independent mechanisms. mTORC2 activates, via Akt, SREBP and ChREBP, two
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regulates amino acid transport by modulating activity of amino acid transporters, SLC7A5 and SLC38A2, and antiporter, xCT. In
addition, mTORC2 activates glutamine transporters, SLC1A5 and SLC38A5, via c-Myc to promote glutamine uptake. By activating
glycolysis, mTORC2 increases the production of 3-phospholycerate and pyruvate, which can be used to synthesize serine and alanine.
mTORC2 promotes glutaminolysis via c-Myc, which transforms glutamine to glutamate and aspartate. Purine synthesis can be stimulated
by mTORC2 through Akt-mediated activation of transketolase. Description of the abbreviations listed is contained within this review.
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GK) or GLUT4 [57, 58, 60]. In brown adipose tissue (BAT),
mTORC2 activates cytosolic HK activity through an Akt-
S473 phosphorylation-associated mechanism, which has no
effect on GLUT1 and GLUT4 translocation [60], while, in
white adipose tissue (WAT), mTORC2 stimulates the plasma
membrane translocation and gene expression of a glucose
transporter, GLUT1 or GLUT4, in an Akt-independent
manner [58, 60].

3.1.2. Glycolysis. mTORC2 also regulates glucose metabo-
lism by facilitating glycolysis. In Rictor-knockout liver,
glycolysis is significantly reduced due to the downregula-
tion of glycolytic genes, including GK, liver-type pyruvate
kinase (L-PK), and carbohydrate response element-binding
protein (ChREBP), and the decreased enzymatic activity of
GK [61]. However, this Rictor deficiency seems to have no
effect on overall glycolysis in the whole body [63]. In
contrast, adipose-specific Rictor ablation causes decreased
glycolysis in fat as well as in the whole body, possibly result-
ing from decreased HK activity [57, 58, 60]. mTORC2 is able
to increase HK activity and glycolysis via Akt-dependent and
-independent mechanisms [62]. In glioblastoma, mTORC2
upregulates the expression of glycolytic genes, including
HK, by increasing the levels of transcription factor c-Myc.
Mechanistically, mTORC2 phosphorylates and inactivates
HDAC (histone deacetylase), leading to the increase of
FoxO1 and FoxO3 acetylation. The acetylation in FoxOs
attenuates their transcriptional activity and reduces the
expression of miR-34-c that suppresses c-Myc expression
[65]. Therefore, mTORC2 may also promote glycolysis
through multiple mechanisms depending on tissue/cell types.

3.1.3. Gluconeogenesis. Gluconeogenesis is a glucose pro-
duction process that utilizes pyruvate to produce glucose.
Although sharing several enzymes with glycolysis imple-
ments reversible reactions, gluconeogenesis also has its
specific enzymes that catalyze key irreversible steps
(Figure 3(a)). For example, phosphoenolpyruvate carboxy-
kinase (PEPCK) catalyzes the formation of phosphoenol-
pyruvate (PEP); fructose 1,6-bisphosphatase converts
fructose 1,6-bisphosphatase to fructose 6-phosphate and
glucose-6-phosphatase (G6Pase), finally turning glucose
6-phosphate to glucose. Gluconeogenesis is important for
maintaining blood glucose levels during starvation and is
reciprocally regulated with glycolysis [66]. In contrast to
glycolysis, mTORC2 functions to suppress gluconeogene-
sis, and therefore, in the absence of Rictor, the mice
exhibit hyperglycemia due to increased gluconeogenesis
[58, 61, 63]. The effect of mTORC2 on gluconeogenesis
mainly results from the upregulation of several key gluco-
neogenic enzymes, such as G6Pase and PEPCK, through
Akt-mediated FoxO1-phosphorylation, which leads to
nuclear exclusion of FoxO1 and reduction of its transcrip-
tional activities [67, 68]. In addition, mTORC2-mediated
Akt activation is also responsible for the phosphorylation
and inhibition of PGC1α (peroxisome proliferator-
activated receptor gamma coactivator 1-alpha), a transcrip-
tion coactivator involved in activating gluconeogenic gene
expression [69].

3.1.4. Oxidative Phosphorylation. It is noteworthy that both
mTORC2 effectors of Akt and c-Myc have inhibitory effect
on oxidative phosphorylation via activation of HK2 and
pyruvate dehydrogenase kinase 1 (PDK1), respectively
[62, 70, 71]. Indeed, Rictor-deficient cells and mice exhibit
elevated mitochondrial respiration. Moreover, activated Akt
signaling stimulates the oxidative to glycolytic metabolic shift
in the muscle [72].

Taken together, mTORC2 regulates glucose metabolism
by promoting glucose uptake and glycolysis and inhibiting
gluconeogenesis and oxidative phosphorylation.

3.2. Lipid Metabolism. Increasing evidence demonstrates that
mTORC2 also plays a pivotal role in lipid metabolism by
increasing lipogenesis while suppressing lipolysis and fatty
acid β-oxidation (Figure 3(b)) [73]. In liver-specific Rictor-
knockout mice, both hepatic and serum triglyceride levels
exhibited a reduction [61], while in adipose-specific Rictor-
knockout mice, only serum triglycerides were decreased
[57, 58]. Nonetheless, both knockout strains showed altered
lipid composition and metabolism [57, 58, 61].

3.2.1. Lipogenesis. Rictor deficiency results in reduced
lipogenesis, which is not only due to decreased glucose
uptake (discussed above) but also due to decreased
expression of genes encoding lipogenic enzymes, such as
acetyl-CoA carboxylase (ACC), ATP-citrate lyase (ACL),
fatty acid synthase (FAS), and stearoyl-CoA desaturase
(SCD1) [58, 61, 63, 74]. Two transcription factors, ChREBP
and SREBP1c (sterol regulatory element-binding protein
1c), regulate the expression of these key lipogenic enzymes
[75, 76], and mTORC2 has been reported recently to be an
upstream regulator of ChREBP and SREBP1c and therefore
lipogenesis [58, 61].

In adipose-specific Rictor-knockout mice, ChREBP
expression is decreased, and this reduction can be rescued
by restoration of glucose uptake and glycolysis, suggesting
that mTORC2 positively regulates ChREBP expression
through modulating glucose flux and metabolism [77, 78].
ChREBP protein can undergo multiple different posttransla-
tional modifications, which can impact on its nuclear locali-
zation and transcriptional activity [78]. It is thought that
high glucose concentration leads to the dephosphorylation
of ChREBP, enabling its nuclear entry, thus enhancing its
transcriptional activity. Furthermore, ChREBP has two
isoforms from alternative promoters, a canonical abundant
α isoform and a novel β isoform. Glucose flux activates the
α isoform, which induces the expression of the less abundant
but more active β isoform to activate the gene expression
of lipogenic enzymes [77]. Interestingly, Rictor-knockout
adipose tissue exhibits reduced ChREBP-β expression
without altering ChREBP-α protein levels [58], implying
that mTORC2 affect ChREBP expression and activity proba-
bly through affecting ChREBP-α protein modification.

Unlike ChREBP, mTORC2-mediated SREBP1c activa-
tion is through a glucose uptake-independent mechanism
[61, 74]. In both liver-specific and Myf5 lineage-specific
Rictor-knockout mice, it showed reduced expression of
SREBP1c, which may account for the changes detected in
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lipogenesis [61, 74]. In both studies, downregulation of
SREBP1c expression by mTORC2 deficiency appeared to be
associated with the defect in Akt-S473 phosphorylation
as expression of Akt-S473D could rescue the expression
in SREBP1c and the phenotype in lipogenesis [61, 74].
However, another study argued that mTORC2-mediated
regulation of SREBP1c is through an Akt-independent
mechanism [63]. Therefore, this discrepancy might require
further studies to clarify.

The pentose phosphate pathway (PPP) is a metabolic
pathway parallel to glycolysis and is considered as a major
source of NADPH (nicotinamide adenine dinucleotide phos-
phate), which is required for reducing power during de novo
lipid biosynthesis [79]. mTORC2 is involved in the regula-
tion of PPP similar to that of glycolysis by promoting the
expression of G6PD and PGD as discussed above. Therefore,
it is likely that the connection between mTORC2 and PPP
might contribute to lipogenesis and anabolic cell growth
and proliferation.

3.2.2. Lipolysis and Fatty Acid β-Oxidation. In consistence
with its positive effect on lipogenesis, mTORC2 suppresses
lipolysis and fatty acid β-oxidation. Rictor-deficient mice
exhibit increased serum glycerol and free fatty acids (FFA),
which possibly resulted from the sustained activation of
protein kinase A- (PKA-) dependent lipolysis, and the
elevated expression of fatty acid oxidation-related genes,
including acyl-CoA oxidase (ACO), carnitine palmitoyl-
transferase 1 (CPT1), and peroxisome proliferator-activated
receptor alpha (PPARα) [57, 58, 61, 80]. Although elevated
FFA is not necessarily associated with insulin resistance
[81], increasing adipose lipolysis could increase hepatic
glucose production and cause insulin resistance [82].

3.3. Other Metabolisms

3.3.1. Amino Acid Metabolism. Amino acids are essential
nutrients as the building block of proteins and carbon/
nitrogen sources of many metabolic pathways. Increasing
evidence has emerged that mTORC2 is an important
regulator participating in the amino acid metabolism
(Figure 3(c)).

In response to insulin or EGF (epidermal growth factor)
stimulation, mTORC2 regulates amino acid uptake by
increasing FoxO-dependent c-Myc transcription and transla-
tion, which in turn upregulates the expression of glutamine
transporters, SLC1A5 (SN1) and SLC38A5 (SN2) [65]. In
addition, mTORC2 could also regulate amino acid metabo-
lism by posttranslationally altering transporter/antiporter
activity [83, 84]. For example, mTORC2 regulates cell surface
abundance of specific transporter isoforms SLC7A5 and
SLC38A2 without affecting their global protein expression
[84], and mTORC2 phosphorylates of serine 26 and inhibits
cystine-glutamate antiporter xCT-mediated cystine uptake
and glutathione synthesis [83]. Moreover, mTORC2 can
stimulate glutamine metabolism via c-Myc. c-Myc transcrip-
tionally represses miR-23a and miR-23b, resulting in greater
expression of mitochondrial glutaminase, thereby upregulat-
ing glutaminolysis [65, 71, 85]. Increased glutaminolysis can

provide α-ketoglutarate and amidogen for the synthesis of
nonessential amino acids [86]. Similarly, mTORC2 pro-
motes the generation of pyruvate and 3-phosphoglycerate
through glycolysis, which would provide carbon skeleton
for nonessential amino acid synthesis [87]. Although spec-
ulative, mTORC2 inhibits autophagic and proteasomal
protein turnover [88], the alteration of which may also
participate in amino acid homeostasis [89].

3.3.2. Nucleotide Metabolism. mTORC2-activated glucose
metabolism can provide nucleotide synthesis with essential
materials [90]. First, mTORC2 stimulates glycolysis and thus
supplies 3-phosphoglycerate and pyruvate, which serve as
the precursors of serine, glycine, aspartate, glutamate, and
glutamine synthesis. Along with CO2 and ATP, glycolysis
provides the carbon/nitrogen units and energy for both
purine and pyrimidine de novo synthesis. Second, mTORC2
directs glucose flux into the pentose phosphate pathway
(both oxidative and nonoxidative phases). This guarantees
the sufficient production of ribose-5-phosphate and thus
phosphoribosyl pyrophosphate (PRPP), which forms the
ribose unit of the nucleotide. In addition, the pentose phos-
phate pathway gives rise to an abundant pool of NADPH as
the reducing power for desoxyribonucleic acid production.
Consistently, a systematic translational analysis reveals that
Rictor protein accumulates significantly during the S phase
of the cell cycle rather than G1 and mitosis [91]. This sug-
gests that mTORC2 may play an important role in providing
dNTPs for DNA synthesis during the S phase.

mTORC2 positively regulates transketolase activity
for purine synthesis via Akt-mediated phosphorylation
[92]. Transketolase catalyzes the formation of ribose-5-
phosphate from the nonoxidative pentose phosphate
pathway, which is then transformed to PRPP for purine
synthesis. It is of great importance that this discovery
mechanistically links mTORC2-mediated glucose metabo-
lism and nucleotide synthesis. This implies that mTORC2
contributes to nucleotide synthesis via providing essential
substrates. Moreover, essential amino acids are indispensable
for the activation of mTORC2 and purine synthesis. This also
indicates that the existence of essential amino acids may
manifest an energy-sufficient state so that cells can put lots
of energy and materials into nucleotide production. Recent
studies reveal the mechanism of how mTORC1 is involved
in nucleotide synthesis [93]. The two mTOR complexes
may coordinate to facilitate nucleotide synthesis.

3.3.3. ROS Metabolism. Aside from being activated by ROS,
mTORC2 is, in turn, involved in ROS metabolism by regulat-
ing GSH (glutathione) and NADPH synthesis [71]. GSH
pool is the important cellular redox buffer to protect the cell
from oxidative damage, and NADPH can maintain the GSH
in the reduction state. At the cost of glutamine, lowered
mTORC2 activity facilitates cystine uptake via cystine-
glutamate antiporter, which is then incorporated into GSH
[83]. Although paradoxical, mTORC2 can regulate cellular
content of glutamate, glycine, and cysteine, which form
GSH. As for NADPH, mTORC2 facilitates its production
through the pentose phosphate pathway. However, except
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for the antioxidant, it is not clear whether ROS scavenging
enzymes are also under regulation of mTORC2. Even
though the relationship between mTORC2 and ROS
metabolism remains unclear, evidence is gathering, and the
prospect is promising.

4. Impact of mTORC2-Mediated
Metabolism on Diseases

mTORC2 signaling plays an important role in metabolic
regulation, the dysregulation of which is closely related to
human diseases, including T2DM (type 2 diabetes mellitus),
cancer, and aging (Figure 4).

4.1. T2DM. T2DM is a metabolic disorder, characterized by
dysregulation of carbohydrate, lipid, and protein metabolism
as a result of impaired insulin secretion, insulin resistance,
or both combined [94]. Insulin resistance, a fundamental
mechanism causing T2DM, results in disturbed glucose
homeostasis with increased glucose production in the liver
and decreased glucose uptake in the muscle and adipose
tissue. As a convergent node in insulin signaling cascade
and a master regulator of homeostasis, deregulation of
mTOR signaling, including mTORC2, impairs insulin signal
transduction and its biological actions, leading to metabolic
disorders, including T2DM. This has been clearly demon-
strated in the studies of Rictor-knockout mice. Although
germ-line deletion of Rictor in mice resulted in embryonic
lethal at mid-gestation probably due to defects in placenta
and fetal vascular development [8, 95], mice with tissue-
specific Rictor-knockout in the liver, muscle, or adipose tis-
sue all exhibited severe insulin resistance [57, 59, 61, 63]. This

could be attributed to the fact that mTORC2 suppresses glu-
coneogenesis in the liver while promoting glucose uptake in
the muscle and adipose tissue as discussed above. Therefore,
disturbance in mTORC2 signaling may underlie the abnor-
mality of glucose metabolism in T2DM, leading to hypergly-
cemia. Furthermore, mTORC2 could also contribute to
T2DM through acting on pancreatic β cells as many
mTORC2 downstream targets, including Akt, PKCα,
FoxO1/3, and MST1 (mammalian sterile 20-like kinase 1),
are essential for β-cell survival and insulin production [96].
Indeed, it has been reported that patients with T2DM have
dramatically reduced mTORC2 activity in pancreatic β cells
[97]. Therefore, mTORC2 is very important for maintaining
overall glucose metabolism and homeostasis in response to
nutrient fluctuations and metabolic demand.

In addition to glucose, lipid metabolism is also altered
in T2DM. Independent studies suggest that adipose tissue-
specific knockout of Rictor leads to decreased lipogenesis
and increased lipolysis in adipose tissue, which appear to
result in hepatic insulin resistance and hepatic steatosis
in these mice [57, 58, 80]. The dysregulation of lipid
metabolism in adipose tissue has also been associated
with insulin resistance in humans [98]. Mechanistically,
fat-specific ablation of Rictor may contribute to insulin
resistance through multiple ways. First, Rictor deficiency
in adipose tissue reduces the glucose uptake in this tissue,
leading to a shortage of glucose supply, which reduces
lipogenesis and increases the risk of hepatic insulin resis-
tance [77, 99]. Second, it also increases lipolysis, leading
to increased circulating FFAs, which then accumulate in
tissues and impair insulin signaling [100]. Finally, Rictor
ablation causes decreased lipid synthesis and altered lipid

mTORC2

Rictor

Pancreatic �훽 cells

Cell mass ↓
Insulin secretion ↓

Skeletal muscle

Glucose uptake ↓
Insulin resistance ↑

Liver

Insulin resistance ↑
Gluconeogenesis ↑

Cell proliferation ↑
Glycolysis ↑

Akt, c-Myc

Adipose tissue

Insulin resistance ↑

Lifespan ↑

Cancer

Longevity

Glucose uptake ↓

Lipid synthesis ↓
Lipolysis ↓

Warburg effect ↑

Cell proliferation ↓

Figure 4: Impact of mTORC2-mediated metabolism on T2DM, cancer, and aging. In T2DM, the suppression of mTORC2 leads to
gluconeogenesis in the liver and impaired glucose uptake in the muscle and adipose tissue, leading to insulin resistance. In pancreatic β
cells, mTORC2 dysfunction also leads to reduced β-cell mass, proliferation, and impaired insulin secretion. In many types of cancers,
mTORC2 activation promotes glucose uptake and glycolysis, which may contribute to the altered glucose metabolism and Warburg Effect,
which fuels cell proliferation. In mammals, mTORC2 activity promotes longevity in males without established mechanism.
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composition in adipose tissue, which may disrupt the synthe-
sis of active lipid to improve insulin sensitivity [101].

4.2. Cancer. Deregulation of mTORC2, particularly hyperac-
tivation, has been commonly observed in many types of
human cancers. Mutations and aberrant amplifications of
mTORC2 core components are two main factors contribut-
ing to its hyperactivation. For example, mutations in the
mTOR-FAT domain decrease mTOR binding to the inhibi-
tor DEPTOR, thereby conferring the hyperactivation of both
mTOR complexes [102]. In addition, Rictor has also been
identified to be highly mutated [102] and abnormally
overexpressed through genetic and epigenetic regulations
[103] in a variety of cancer types. The exact functions of
these abnormalities in tumorigenesis and treatment await
identification. Nonetheless, mTORC2 regulates AGC kinase
family proteins, such as Akt and PKC, for their stabilization
and activity, which have important roles in the cell prolifera-
tion, survival, and migration, thereby having a crucial role in
cancer [2].

In terms of metabolism, mTORC2 activation promotes
glucose uptake, facilitates glycolysis, and inhibits oxidative
phosphorylation, which may contribute greatly to the alter-
ation of glucose metabolism in cancer cells, known as the
Warburg Effect, conferring to a high rate of cell prolifera-
tion [71, 79]. Furthermore, mTORC2-mediated lipogenesis
is identified to promote hepatocellular carcinoma, particu-
larly by stimulating sphingolipid and glycerophospholipid
synthesis, which fuels cancer cell growth and energy
production [104].

In addition, Rapamycin derivatives have been applied to
cancer treatment in clinical trials with limited efficiency,
which is thought to be due to the limitation to inhibit
mTORC2 [2]. As such, the second-generation ATP-
competitive inhibitors against mTOR kinase have entered
clinical trials [105]. These mTOR kinase inhibitors show
greater inhibitory effects on both complexes and are more
effective in inhibiting cancer cell growth [106]. Moreover,
dual mTOR/PI3K kinase inhibitors have been developed in
order to fully suppress Akt and 4EBP1 activation [107].
Recently, selective inhibition of mTORC2 signaling by a
nanoparticle-based RNAi therapy showed being able to effec-
tively block breast cancer cell growth and survival [108]. All
these suggest that mTORC2 might be a good therapeutic
target for cancer treatment.

4.3. Aging. Aging is a natural process, commonly accompa-
nied by a progressive loss of physiological functions and
increased susceptibility to age-associated diseases, including
cardiovascular diseases, neurodegenerative diseases, infec-
tious diseases, and cancers, thus ultimately limiting the
health and lifespan [109]. The velocity of aging is affected
by a large number of environmental or genetic factors, such
as nutrition sensing, DNA damage, stem cell maintenance,
energy, and oxidative metabolism [110], and three sets of
key proteins have been reported to modulate aging pro-
cess: mTOR signaling, insulin/IGF (insulin-like growth
factor) signaling (IIS), and sirtuin family proteins [111].
Using genetic or pharmacological intervention, mTOR

was discovered as a regulator of lifespan in Caenorhabditis
elegans [112], Drosophila melanogaster [113], and Saccha-
romyces cerevisiae [114] as well as mice [115]. Inhibition
of mTOR by rapamycin showed 9–14% increase in the
maximum lifespan of both male and female mice [115],
indicating the importance of mTOR signaling in longevity.

Given the long administration of rapamycin in these
mice, its effect could be the inhibition of both mTOR
pathways, suggesting that mTORC2 might also have a role
in aging. However, exact functions of mTORC2 remain
unknown. In a separate study using mouse models in which
Rictor has been reduced or deleted conditionally [116], it
showed that the lifespan is significantly decreased in males
with deficient Rictor but not in females and that the dele-
terious effect on lifespan was independent of the glucose
intolerance resulting from Rictor deletion. Other studies of
longevity on mTORC2 substrates yield conflicting results.
In Caenorhabditis elegans, mTORC2-SGK1 activation affects
the lifespan through two pathways and generates opposing
outcomes depending on the cellular and environmental
contexts [117]. In mice with heterozygous Akt1, it showed
an increase in the lifespan [118].

Taken together, it suggests that mTORC2 signaling
has important functions in regulating aging and aging-
associated diseases, but the roles they play are complex
and influenced by other factors.

5. Conclusion and Perspective

With the exciting progress accomplished over the last few
years, it becomes clearer than before that mTORC2 signaling
plays vital roles in tissue homeostasis and human health.
These are implemented by its function as a crucial signaling
hub, in response to both environmental and intracellular
changes, to regulate several signaling networks and many
essential cellular functions, such as cell proliferation,
survival, migration, and metabolisms. However, our under-
standing of mTORC2 is far from complete. There are still
several important questions awaiting to be addressed.

5.1. mTORC2 Localization and Structure. Unlike mTORC1,
mTORC2 have been observed to localize at several dis-
tinct membranous compartments, e.g., plasma membrane,
mitochondria, ER (endoplasmic reticulum), and MAM
(mitochondria-associated ER membrane) [119]. However,
why mTORC2 have so many subcellular distributions and
whether mTORC2 at different compartments sense different
inputs and regulate distinct substrates remain unclear. It is
possible that mTORC2 utilizes various subcellular localiza-
tions to different membranous structures as a general princi-
ple to enable its spatiotemporal activation by diverse signals
and mechanisms.

In addition, it remains incomplete in our understand-
ing of the mTORC2 structure, particularly association
between the mTOR kinase domain and other components
of mTORC2, such as Rictor and mSin1 [11, 120]. A better
elucidation of mTORC2 structure on this crucial part
might aid us to determine the molecular mechanisms by
which it is regulated and functions on its substrates.
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5.2. Regulation of mTORC2. Currently, the regulatory mech-
anism governing mTORC2 activation is fairly controversial.
Although growth factors have been recognized as the major
activating signal, little is known about how exactly they con-
trol mTORC2 [34, 35]. Moreover, does mTORC2 respond to
other environmental cues in addition to growth factors? For
example, the activation of TORC2 in yeast is not responsive
to growth factors, and instead, the lipid binding is a crucial
requirement [121]. The ligand engagement of Toll-like
receptor (TLR) is also able to activate mTORC2 [122, 123].
Furthermore, mTORC2 that localizes at the plasma mem-
brane is constitutively active in mammalian cells [35]. In this
context, could nutrients, cellular stress, or other metabolic
signals generated from the plasma membrane be the primary
regulator of mTORC2? The identification of upstream
regulators of mTORC2 might provide novel insights into
these uncertainties.

It should also be noted that several mTORC2
components undergo PTMs, including phosphorylation,
ubiquitination, acetylation, and palmitoylation, to regulate
mTORC2 stability and assembly. mTORC2 signaling net-
work is so intricately intertwined with multiple signal and
metabolic pathways. Crosstalk between these pathways may
extensively modulate mTORC2 [124].

5.3. Targets of mTORC2 Signaling. Although it has long been
regarded that mTORC2 exerts wide spectrum effects on
cellular properties through members of the AGC kinase
family, the exact mechanisms for mTORC2 governing their
activation are incompletely understood. For example, why
does mTORC2 phosphorylate Akt-HM and -TM through
different mechanisms, and is ribosome required for both?
Why is the immunoprecipitated mTORC2 only able to
phosphorylate the Akt-HM but not the PKCa-HM in
in vitro kinase assays? Moreover, many proteins, in addition
to the three AGC kinases, have been found to be modified
in a mTORC2-dependent manner, such as HDAC [65],
ChREBP-α [58], and Smad2/3 [125]. However, it is
unclear whether this is a direct or indirect modification as
it is largely unknown the mechanism by which mTORC2
recruits its substrates, which might depend on the localiza-
tion of mTORC2 and may also involve other factors.

Finding answers to these questions will greatly expand
our knowledge on mTORC2 biology, aiding the design
and development of mTORC2-specific agonists and inhib-
itors, which will also help the development of therapeutic
avenues to treat human metabolic diseases. The future will
undoubtedly continue to bring unexpected insight on this
remarkable pathway.
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