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AI‑based localization 
and classification of skin disease 
with erythema
Ha Min Son1, Wooho Jeon1, Jinhyun Kim2, Chan Yeong Heo3, Hye Jin Yoon1, Ji‑Ung Park 
2* & Tai‑Myoung Chung1*

Although computer‑aided diagnosis (CAD) is used to improve the quality of diagnosis in various 
medical fields such as mammography and colonography, it is not used in dermatology, where 
noninvasive screening tests are performed only with the naked eye, and avoidable inaccuracies 
may exist. This study shows that CAD may also be a viable option in dermatology by presenting a 
novel method to sequentially combine accurate segmentation and classification models. Given an 
image of the skin, we decompose the image to normalize and extract high‑level features. Using 
a neural network‑based segmentation model to create a segmented map of the image, we then 
cluster sections of abnormal skin and pass this information to a classification model. We classify each 
cluster into different common skin diseases using another neural network model. Our segmentation 
model achieves better performance compared to previous studies, and also achieves a near‑perfect 
sensitivity score in unfavorable conditions. Our classification model is more accurate than a baseline 
model trained without segmentation, while also being able to classify multiple diseases within a single 
image. This improved performance may be sufficient to use CAD in the field of dermatology.

Computer-aided diagnosis (CAD) is a computer-based system that is used in the medical imaging field to aid 
healthcare workers in their  diagnoses1. CAD has become a mainstream tool in several medical fields such as 
mammography and  colonography1,2. However, in dermatology, although skin disease is a common disease, one in 
which early detection and classification is crucial for the successful treatment and recovery of patients, dermatolo-
gists perform most noninvasive screening tests only with the naked eye. This may result in avoidable diagnostic 
inaccuracies as a result of human error, as the detection of the disease can be easily overlooked. Furthermore, 
classification of a disease is difficult due to the strong similarities between common skin disease symptoms. 
Therefore, it would be beneficial to exploit the strengths of CAD using artificial intelligence techniques, in order 
to improve the accuracy of dermatology diagnosis. This paper shows that CAD may be a viable option in the 
field of dermatology using state-of-the-art deep learning models.

The segmentation and classification of skin diseases has been gaining attention in the field of artificial intel-
ligence because of its promising results. Two of the more prominent approaches for skin disease segmentation 
and classification are clustering algorithms and support vector machines (SVMs). Clustering algorithms generally 
have the advantage of being flexible, easy to implement, with the ability to generalize features that have a similar 
statistical variance. Trabelsi et al.3 experimented with various clustering algorithms, such as fuzzy c-means, 
improved fuzzy c-means, and K-means, achieving approximately 83% true positive rates in segmenting a skin 
disease. Rajab et al.4 implemented an ISODATA clustering algorithm to find the optimal threshold for the seg-
mentation of skin lesions. An inherent disadvantage of clustering a skin disease is its lack of robustness against 
noise. Clustering algorithms rely on the identification of a centroid that can generalize a cluster of data. Noisy 
data, or the presence of outliers, can significantly degrade the performance of these algorithms. Therefore, with 
noisy datasets, caused by images with different types of lighting, non-clustering algorithms may be preferred; 
however, Keke et al.5 implemented an improved version of the fuzzy clustering algorithm using the RGB, HSV, 
and LAB color spaces to create a model that is more robust to noisy data. SVMs have gained attention for their 
effectiveness in high-dimensional data and their capability to decipher “…subtle patterns in noisy and complex 
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datasets”6. Lu et al.7 segmented erythema in the skin using the radial basis kernel function that allows SVMs 
to separate nonlinear hyperplanes. Sumithra et al.8 combined a linear SVM with a k-NN classifier to segment 
and classify five different classes of skin lesions. Maglogiannis et al.9 implemented a threshold on the RGB value 
for segmentation and used an SVM for classification. Although more robust than clustering algorithms, SVMs 
are more reliant on the preprocessing of data for feature extraction. Without preprocessing that allows a clear 
definition of hyperplanes, SVMs may also underperform.

Owing to the disadvantages of these traditional approaches, convolution neural networks (CNNs) have gained 
popularity because of their ability to extract high-level features with minimal  preprocessing10. CNNs can expand 
the advantages of SVMs, such as robustness in noisy datasets without the need for optimal preprocessing, by 
capturing image context and extracting high-level features through down-sampling. CNNs can interpret the 
pixels of an image within its own image-level context, as opposed to viewing each pixel in a dataset-level context. 
However, although down-sampling allows CNNs to view an image in its own context, it degrades the resolution of 
the image. Although context is gained, the location of a target is lost through down-sampling. This is not a prob-
lem for classification, but causes some difficulty for segmentation, as both the context and location of the target 
are essential for optimal performance. To solve this, up-sampling is needed, which works in a manner opposite 
to that of down-sampling, in the sense that it increases the resolution of the image. While down-sampling takes 
a matrix and decreases it to a smaller feature map, up-sampling takes a feature map and increases it to a larger 
matrix. By learning to accurately create a higher-resolution image, CNNs can determine the location of the 
targets to segment. Thus, for segmentation, we use a combination of down-sampling and up-sampling, whereas 
for classification, we use only down-sampling. To further leverage the advantages of CNNs, skip-connections 
were introduced, which provided a solution to the degradation problem that occurs when CNN models become 
too large and complex. We implement skip-connections in both segmentation and classification models. In the 
segmentation model, blocks of equal feature numbers are connected between the down and up-sampling sections. 
In the classification model, these skip-connections exist in the form of inverted residual blocks. This allows our 
models to grow in complexity without any performance degradation.

In this paper, we present a method to sequentially combine two separate models to solve a larger problem. In 
the past, skin disease models have been applied to either segmentation or classification. In this study, we sequen-
tially combine both models by using the output of a segmentation model as input to a classification model. In 
addition, although past studies of non-CNN segmentation models used innovative preprocessing methods, recent 
CNN developments have focused more on the architecture of the model than on the preprocessing of data. As 
such, we apply an innovative preprocessing method to the data of our CNN segmentation model. The methods 
described above lack the ability to localize and classify multiple diseases within one image; however, we have 
developed a method to address this problem. Our objective is two-fold. First, we show that CAD can be used 
in the field of dermatology. Second, we show that state-of-the-art models can be used with current computing 
power to solve a wider range of complex problems than previously imagined. We begin by explaining the results 
of our experimentation, followed by a discussion of our findings, a more detailed description of our methodol-
ogy, and finally, the conclusions that can be drawn from our study.

Results and discussion
Figure 1 shows the schematic flow of our study. We started with the original image. We preprocessed this image 
by decomposing it into its hemoglobin and melanin constituents. These images were then input to the U-Net 
to generate the segmented output. We drew contours around each cluster and used a convex hull algorithm to 
draw rectangles around these clusters and crop them as individual images. These cropped images were used as 
input to the EfficientNet, which generated a prediction along with the confidence rate.

Table 1 shows the results of the test data for segmentation on our Dermnet dataset. The K-means clustering 
algorithm showed sub-optimal performance, owing to its limitations with noisy data. The SVM method showed 
a significant improvement in performance, that was attributed to the advantages of using SVMs to extract infor-
mation from decomposition, rather than clustering algorithms. Even without the extra information, the U-Net 
trained without decomposition outperformed the previous two methods in terms of sensitivity. The U-Net model 
was also trained with decomposition and showed the highest sensitivity rate.

In our results, we focused on the sensitivity metric because our objective was to assess the viability of using 
CAD with skin images. Although our U-Net model was not as good as the SVM model in terms of the specificity 
rate, it showed the best sensitivity rate, thus satisfying the objective of our study. In addition, we included the Dice 
coefficient and Hausdorff distance to demonstrate the performance of our methods with greater transparency. 
Our method showed clear improvements considering these alternative metrics. A major contributing  factor7 
to the underperformance of other methods is that performance of the SVM algorithm deteriorated when the 
images contained differences in lighting and shade. The K-means clustering  method3 was also affected by the 
lighting and shade in the images. As our data had a significant mix of shade and lighting, the CNN was able to 
generalize the data better by learning to use the context of the image.

In any classification problem, it is important to set the baseline performance. We set our baseline to be the 
accuracy rate of the data without segmentation. The original image was input into the EfficientNet without going 
through the U-Net to determine the baseline accuracy rate. We compared this to the accuracy rate of the model 
trained to classify segmented images. Figure 2 shows the accuracy rates for the classification of our Dermnet 
dataset. We observed similar accuracy in the baseline model with and without contextual segmentation. The 
performance did not decrease when compared with the baseline. Thus, as we gained knowledge of the location 
of the disease without degrading the performance, we may say that the classification model was successfully 
implemented.
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Figure 1.  Schematic flow. From left to right, the original is first decomposed into hemoglobin and melanin 
images. All three images are input to the U-Net which outputs a black-and-white mask image. This mask 
image is used to draw contours each cluster. A convex hull algorithm is applied to crop each cluster. Each 
cluster is input to the EfficientNet, which generates a prediction alongside the confidence rate. An open- source 
implementation of the U-Net (v0.1.2) is available at: https ://githu b.com/qubve l/segme ntati on_model s.pytor ch.

Table 1.  Performance metrics for segmentation with dermnet images.

Method Sensitivity Specificity Dice Coef Hausdorff distance

K-means method 0.6148 0.6324 0.5165 10.487

SVM method 0.8200 0.8100 0.7123 8.138

U-Net method without decomposition 0.8953 0.7205 0.7215 8.153

U-Net method with decomposition 0.9589 0.7682 0.8126 7.165
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Figure 2.  Accuracy rate for classification. The x-axis represents the Top-n accuracy metric, while the y-axis 
represents accuracy. The blue line is the accuracy of the model trained without segmentation. Images did not 
enter the U-Net before entering the EfficientNet. The gray line represents the accuracy of the model trained with 
segmentation. Images were segmented and cropped through the U-Net before entering the EfficientNet. The red 
line represents the accuracy of the model trained with segmentation and refined data. Images were segmented, 
cropped, and verified to ensure that segmentation had been done correctly before entering the EfficientNet. An 
open- source implementation of the EfficientNet (v0.7.0) is available at https ://githu b.com/lukem elas/Effic ientN 
et-PyTor ch.

https://github.com/qubvel/segmentation_models.pytorch
https://github.com/lukemelas/EfficientNet-PyTorch
https://github.com/lukemelas/EfficientNet-PyTorch
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However, we were also aware that the accuracy may have decreased due to false positives caused by areas such 
as the lips, which have similar characteristics to erythema. Hence, a separate model was trained with refined 
data, where we went through each image and excluded those that were incorrectly segmented. This improved 
accuracy substantially, as shown in Figure 2. In addition, Table 2 shows additional metrics of the area under the 
curve (AUC), specificity, sensitivity, and F1-score. These values are weighted averages according to the number 
of data contained in each class. The AUC and specificity scores are high across all methods owing to the positive 
correlation of these metrics with the number of classes in a classification problem. Therefore, the more meaning-
ful metrics in this dataset are the sensitivity and F1-score. The refined segmentation method demonstrated the 
highest performance considering these metrics, similar to the trend shown with the accuracy metric.

This was a result of an improved performance when there is a smaller area to search for the disease. Because 
we segmented only the abnormal areas of the skin, the EfficientNet model showed better performance compared 
to images with a larger ratio of normal skin. Thus, we can learn about the location of the disease that is present in 
an image and improve performance by training a CNN model to focus on particular subsections of the images. 
Figure 3 shows a visual representation of this claim using an implementation of the Grad-CAM  method11. 
Activation, which is the intensity with which a model focuses on an area, is represented on a rainbow colormap. 
Red represents areas of highest activation, while violet represents areas of lowest activation. When trained with 
unsegmented data, our model focused on an area larger than that of abnormal skin. The area of activation was 
highest around the erythema, although there were other areas of high activation. In these cases, the model 
utilized the shapes of body parts for classification. This decreases performance because skin disease can appear 
in virtually any part of body and there is a lack of data required to form an association between the probability 
of a skin disease based on the body part. When trained with contextually segmented data, however, our model 
correctly focused only on erythema. The area of activation was highest around the erythema, while areas of low 
activation were demonstrated elsewhere. Not only does this add validity to our reported results, but this is also a 
justification for the inclusion of the segmentation phase before the classification phase because there were clear 
improvements in all metrics regarding the use of the U-Net before the EfficientNet.

Table 2.  Performance metrics for classification with dermnet images.

Method AUC Specificity Sensitivity F1-score

Without segmentation 0.8207 0.9642 0.4748 0.4092

Contextual segmentation 0.8104 0.9652 0.4185 0.3876

Refined contextual segmentation 0.8802 0.9513 0.6141 0.6079

Figure 3.  Grad-CAM results for unsegmented and segmented images in our Dermnet dataset. The top row 
shows the original input images. The left image shows the unsegmented image and the right image shows the 
segmented image. The bottom row shows the result of Grad-CAM11. The left image of Grad-CAM for the 
unsegmented image shows that the EfficientNet model focused on a larger surface other than erythema. The 
right image of Grad-CAM for the segmented image shows than that the EfficientNet model correctly focused 
mostly on erythema.
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Table 3 shows the results of the test data for segmentation on our three independent dermatoscopic image 
datasets—ISIC201612,  ISIC201713, and  HAM1000014. These datasets are some of the few publicly available datasets 
that had segmentation maps and classification labels. We use these datasets to verify our methods with data from 
independent sources. One major difference with the dermatoscopic image datasets is that they are obtained using 
a special dermatoscopic device. This eliminates noise in the form of background and non-skin areas, in addition 
to limiting the number of disease and fixing the location of skin disease within an image. This was shown to 
decrease the significance of our method.

With the ISIC2016 and ISIC2017 datasets, the performance of the less-complex K-means clustering algorithm 
and SVM method showed similar trends to that of our Dermnet dataset. The performance was sub-optimal, 
owing to the noise present in the form of varying skin and lesion colors. With the HAM10000 dataset, however, 
the K-means clustering algorithm outperformed the SVM method in terms of the specificity and Hausdorff 
distance. This performance is a result of a more statistically similar training and testing set, as they were user-
defined and created after stratifying the labels. Regardless of this, the less complex methods showed sub-optimal 
performances with all datasets.

Across all three datasets, the U-Net models outperformed previous models in all metrics. One interesting 
tendency is the small performance discrepancy between the U-Net models with and without decomposition. 
The U-Net model without decomposition occasionally outperformed the U-Net with decomposition. This was 
attributed to the skin lesion being mostly fixed at the center of the image. The hemoglobin and melanin constitu-
ents aid the U-Net model to ignore areas of non-skin and to focus on areas of skin with abnormal intensities. 
Therefore, this did not add significant information.

Table 4 shows the results of the test data for classification on the three dermatoscopic image datasets. With 
the ISIC2016 dataset, the Without Segmentation method showed the highest performance in all metrics. With 
the ISIC2017 dataset, the Refined Contextual Segmentation method showed the highest performance by a mini-
mal margin. With the HAM10000 dataset, the Without Segmentation method showed the highest performance 

Table 3.  Performance metrics for segmentation with dermatoscopic datasets.

Method Sensitivity Specificity Dice Coef Hausdorff distance

ISIC2016

K-means method 0.5422 0.8249 0.5439 9.960

SVM method 0.7229 0.8602 0.6939 8.243

U-Net method without decomposition 0.9708 0.9175 0.9060 5.085

U-Net method with decomposition 0.9562 0.9422 0.9198 4.764

ISIC2017

K-means method 0.5709 0.7734 0.4926 10.567

SVM method 0.7650 0.7576 0.5967 9.388

U-Net method without decomposition 0.8971 0.8969 0.8188 5.392

U-Net method with decomposition 0.9043 0.9076 0.8199 5.338

HAM 10,000

K-means method 0.5500 0.9300 0.6381 6.807

SVM method 0.7256 0.8389 0.6674 8.381

U-Net method without decomposition 0.9542 0.9530 0.9121 4.683

U-Net method with decomposition 0.9569 0.9504 0.9166 4.621

Table 4.  Performance metrics for classification with dermatoscopic datasets.

Method AUC Specificity Sensitivity F1-score

ISIC2016

Without segmentation 0.765 0.726 0.860 0.864

Contextual segmentation 0.719 0.641 0.826 0.833

Refined contextual segmentation 0.727 0.698 0.844 0.845

ISIC2017

Without segmentation 0.790 0.741 0.761 0.740

Contextual segmentation 0.750 0.744 0.726 0.723

Refined contextual segmentation 0.774 0.785 0.766 0.762

HAM 10,000

Without segmentation 0.891 0.933 0.866 0.871

Contextual segmentation 0.831 0.884 0.825 0.810

Refined contextual segmentation 0.871 0.919 0.873 0.866
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in all but one category. In short, with dermatoscopic images, models trained without segmentation learned to 
generalize skin lesions most effectively.

This was a result of an improved performance when the location of the skin lesion is mostly fixed. The seg-
mentation phase aids models to ignore areas of normal skin and to focus on areas of disease. With dermatoscopic 
images, this information is insignificant, as the location of the disease is static. Figure 4 shows a visual represen-
tation of this. The Grad-CAM images show that with both non-segmented and segmented images, the models 
correctly focused on the skin disease. Because of this, the segmentation phase only decreased the resolution of 
the image without providing useful information, thus decreasing the performance of the model.

The main contribution of our study is researching the viability of CAD in the field of dermatology. This is 
achieved through the increase in the classification performance of skin disease images, owing to the increase in 
performance of segmentation. However, our model is most effective with camera images of skin diseases with 
erythema, which is a limitation of our study. We chose to focus on camera images and erythema because these 
images are very accessible, and erythema is one of the most common symptoms of skin disease. In addition, 
currently we only classify diseases into 18 categories due to the limitations of the data. In the future, we plan to 
create a more comprehensive skin disease classification model, and this seems to be viable if enough data can be 
obtained. In addition, we plan to work on a method to help dermatologists with time-series analysis of patients. 
This seems viable with the accumulation of data through CAD.

Analysis methodology
Our 2-phase analysis model for localization and classification is shown via the pseudocode in Algorithm 1 and 
visually in Fig. 5. We decomposed the original image into its hemoglobin and melanin constituents using pre-
processing, to help our model extract valuable information from data that would have been otherwise unavailable. 
We provide these images as input to our segmentation model, the U-Net, which generated a segmented image. 
This segmented image was then analyzed for clusters, which were subsequently cropped and input to our clas-
sification model, the EfficientNet, which then produced a classified label, thus completing our analysis model.

The data for training and testing were obtained from Dermnet NZ, an archive of skin disease information 
launched and maintained by a group of dermatologists from New Zealand. The site provides open source images 
with labels. We selected 18 top-level categories (Table 5) each of which included enough data, besides including 
erythema as one of its common symptoms. Using a web crawler, we gathered a total of 15,851 images. Among 
the images obtained through Dermnet, the erythema of 100 images was masked by dermatologists, to be used 
as a ground truth. For segmentation, 60 images were used for training, and 40 images were used for testing. 
For classification, 13,473 images were used for training, and 2,378 images were used for testing. In addition, the 
test set for classification was split before segmentation cropping to prevent the subsections of one image from 
appearing in both the training and testing sets. Table 6 shows the distribution of data in greater detail. We chose 
the 100 images for segmentation in a balanced manner from each class, to minimize any bias that could occur 
during the classification phase.

One of the significant merits of the Dermnet dataset is that it was created and is maintained by a diverse 
group of dermatologists. The images in each top-level category are independent as they are images of different 
patients at distinct locations taken with varying devices. This is evident in the diverse resolutions, lighting, and 
aspect ratios of the images. Regardless, it would be optimal to possess a similar dataset from an entirely separate 
association to truly validate the performance of our model. However, as there are strict regulations regarding the 

Figure 4.  Grad-CAM results for unsegmented and segmented images in the ISIC2017 dataset. For both images 
of Grad-CAM, the EfficientNet model correctly focused mostly on erythema.
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Figure 5.  Two-phase analysis model. The original image primarily enters a preprocessing stage, where 
normalization and decomposition occur. Afterwards, the first step is segmentation, where cluster of abnormal 
skin are segmented and cropped. The second step is classification, where each cluster is classified into its 
corresponding class.

Table 5.  Categories for classification.

Top-level categories

1. Acne and Rosacea
2. Actinic keratosis
3. Atopic dermatitis
4. Bullous disease
5. Cellulitis
6. Contact dermatitis

7. Eczema
8. Exanthems
9. Fungal infections
10. Herpes
11. Light chain disease
12. Lupus erythematosus

13. Psoriasis
14. Scabies
15. Systemic disease
16. Urticaria
17. Vasculitis
18. Viral infections

Table 6.  Distribution of data in dermnet dataset.

Dataset: Dermnet

Number of data

Segmentation Classification

Class Train Test Total Train Test Total

Acne and Rosacea 4 2 6 746 131 877

Actinic keratosis 4 2 6 1193 181 1374

Atopic dermatitis 3 2 5 642 120 762

Bullous disease 3 2 5 393 92 485

Cellulitis 3 2 5 223 73 296

Contact dermatitis 3 2 5 231 74 305

Eczema 4 3 7 1667 234 1901

Exanthems 3 2 5 354 87 441

Fungal infections 4 3 7 1601 227 1828

Herpes 3 2 5 397 94 491

Light chain disease 3 2 5 538 117 655

Lupus erythematosus 3 2 5 371 90 461

Psoriasis 4 3 7 2044 275 2319

Scabies 3 2 5 448 98 546

Systemic disease 3 2 5 633 119 752

Urticaria 3 2 5 138 63 201

Vasculitis 3 2 5 411 94 505

Viral infections 4 3 7 1443 209 1652

Total 60 40 100 13,473 2378 15,851
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use of data in our private institutions, we utilize publicly available datasets. These datasets were chosen based on 
the availability of both a segmentation map and a classification label.

ISIC201612,  ISIC201713, and  HAM1000014 are datasets that have been used in previous AI competitions. They 
were provided as challenges for both segmentation and classification, and they therefore possess segmentation 
maps and classification labels. Table 7 shows a detailed distribution of these datasets. As the ISIC2016 and 
ISIC2017 datasets also provided a separate test dataset, these datasets were preserved and used for testing. For 
the HAM10000 dataset, we stratified the dataset according to the classification label, and created a balanced 50% 
split between the train and test data. There is no separate segmentation dataset, as each image contained a seg-
mentation map. Therefore, all images are used in the training and testing for both segmentation and classification.

There is one significant difference between these datasets and our Dermnet dataset. The images in these 
datasets were obtained with a special dermatoscopic device. These devices create high-resolution images with the 
skin disease located near the center. Therefore, these devices create images similar to the Dermnet dataset images 
after our segmentation phase. Thus, it is doubtful that our method will demonstrate an improved performance 
with the dermatoscopic images.

For all datasets, the testing dataset is unused for validation until the end of training. This is done to verify 
that our models learn to generalize unseen images. We take a three-fold cross-validation approach with train-
ing data for validation during training. We generate three replicas of each dataset and create a unique 90-to-10 
training and validation set. With each replica, we use a grid search algorithm to test different combinations of 
hyperparameters. Lastly, we train our model using the entire training set and select our hyperparameters based 
on the cross-validation stage. Training and testing were performed on a single GTX Titan V and four Intel Xeon 
Gold 5115 processors. We now explain each section of our analysis model in more detail.

Algorithm 1 AnalyzeSkin

1: procedure SEGMENT(x)

2: h, m = DECOMPOSE(x)

3: mask = U-NET([x, h, m])
4: CLASSIFY(mask)

5: end procedure

6: procedure CLASSIFY(mask)

7: clusters = FINDCLUSTERS(mask)

8: for cluster in clusters do

9: cluster = FIXRATIO(cluster)

10: cluster = RESIZE(cluster)

11: class = EFFICIENTNET(cluster)
12. top_prediction = GETHIGHESTCONFIDENCE(class)

12: print(top_prediction)

13: end for

14: end procedure

Table 7.  Distribution of data in dermatoscopic datasets.

Class

Number of data

Train Test Total

Dataset: ISIC 2016

Benign 727 303 1030

Malignant 173 75 248

Total 900 378 1278

Dataset: ISIC 2017

Benign 1372 393 1843

Melanoma 374 117 386

Seborrheic keratosis 254 90 521

Total 2000 600 2750

Dataset: HAM 10000

Actinic keratosis 164 163 327

Basal cell carcinoma 257 257 514

Benign 549 550 1099

Dermatofibroma 58 57 115

Melanoma 556 557 1113

Melanocytic nevi 3352 3353 6705

Vascular lesion 71 71 142

Total 5007 5008 10,015
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Preprocessing: decomposition
The main constituents of the skin that are visible to humans are melanin and hemoglobin. These constituents 
provide valuable information for the segmentation of abnormal skin. To ensure that our model can learn to 
use these features, we used independent component analysis (ICA) to extract the melanin and hemoglobin 
 constituents7,15,16. Assuming that these components are linearly separable, the separated linear vectors can be 
represented by the following  formula7:

where dm and dh represent the density vectors of melanin and hemoglobin, respectively, qmx,y and qhx,y represent 
the quantity of these components, and � represents values that are caused by other colors. As shown  in7, by 
applying ICA, we can decompose skin as

where 
−

D represents the estimated values of dm and dh , and Ix,y represents the decomposed result. Figure 6 shows 
an example of one of these decompositions.

Segmentation
The U-Net17, as shown in Fig. 7, is an architecture created by CNNs, that has attracted attention for accurate 
biomedical image segmentation through the combination of down-sampling, up-sampling, and skip connections. 
Its name is attributed to the shape of its architecture, the first half of the ‘U’ representing down-sampling. Here, 
the context and key features of the input images are gained at the cost of a decrease in resolution. The second 
half of the ‘U’ represents up-sampling. Here, the resolution is increased to gain knowledge of the location of the 
target segment. To combat degradation due to the complexity of the model, skip connections are added to each 
up-sampling block.

Although in the original  paper17, the resolutions of input and output were different, that is, 572 × 572 and 
388 × 388 pixels, respectively, we chose to keep our input and output resolution consistent at 304 × 304 pixels. 
This was done because the images in our dataset were not large enough to warrant the tiling strategy required 
for extremely large images. Thus, zero-padding allowed us to keep the input and output resolutions consistent, 
thereby allowing the retention of information present on the border of our images.

Using the decomposed images, in one instance, we input three images, namely, the original, the hemoglobin, 
and the melanin images, to our U-Net and obtained a single black-and-white mask image as output as shown in 
Fig. 8. In this image, a black pixel represented normal skin, and a white pixel represented abnormal skin. Using 
the mask image, we used a simple contour-finding algorithm to draw an outline around clusters of erythema. 
We then used a convex hull algorithm to draw rectangles around the contours. The dimensions and locations of 
these rectangles were then used to crop the original image. These cropped images of each cluster were saved as 
individual pictures. We added padding to each cluster to create a larger and squarer image, as the performance 
of classification can suffer due to clusters being too small or not evenly shaped. Figure 9 shows contours and 
rectangles around each cluster showing how each cluster was cropped.

Lx,y = dmqmx,y + dhqhx,y +�

[
qmx,y , q

h
x,y

]
=

−

D
−1

L(x,y) − E

E = minx,y

(
−

D
−1

L(x,y)

)

Ix,y = exp(−L
′

x,y)

Figure 6.  Decomposed result of skin. The original image is decomposed into its hemoglobin and melanin 
constituents through ICA.
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After generating three replicas of our dataset, we create a unique 90-to-10 training and validation set. With 
each replica, we perform a grid search algorithm to find the optimal hyperparameters. For the loss function, 
we test the Binary Cross-Entropy and Dice Coefficient Loss. For the optimizer, we test Adam with learning rates 
of 1e−4, 5e−5, and 1e−5; RMSprop with learning rates of 1e−4, 5e−5, and 1e−5; and SGD with a momentum of 
0.9 and learning rates of 1e−1, 5e−2, and 5e−2. For the number of epochs, we test with 40, 60, and 80 epochs 
and decrease the learning rate by a factor of 0.1 every 20 epochs. After testing with the replicas, we use the full 
training set for training with the hyperparameters: Binary Cross-Entropy, Adam with a learning rate of 5e−4, a 
weight decay of 5e−4, 60 epochs, and a decrease in learning rate by a factor of 0.1 every 20 epochs.

As our main objective was to demonstrate the viability of CAD, the performance was mostly determined 
using pixel-level sensitivity rather than the Intersection over Union or the Dice coefficient metrics that are often 
used to measure segmentation performance. Moreover, we mainly focused on the true positive rates of segmen-
tation, represented by the sensitivity metric. This is because our aim was to create a screening test method to 

Figure 7.  U-Net architecture. A fully CNN network, comprised of down-sampling, up-sampling, and skip 
 connections17.

Figure 8.  Input and Output of the U-Net. The inputs of the U-Net are the original, hemoglobin, and melanin 
images obtained from the preprocessing step. The output of the U-Net is a single masked image.



11

Vol.:(0123456789)

Scientific Reports |         (2021) 11:5350  | https://doi.org/10.1038/s41598-021-84593-z

www.nature.com/scientificreports/

help healthcare workers make a more accurate diagnosis by preventing abnormal skin from being overlooked. 
Nevertheless, we also measured the performance of our model using the specificity, Dice coefficient, and Haus-
dorff distance to provide a more complete performance comparison. We measured these metrics by comparing 
the output from our U-Net model to an image that was masked by professional dermatologists. Going through 
each pixel, if a pixel of the U-Net output was black and the pixel of the dermatologist-masked image at the same 
location was black, this is seen as a true negative. If both were white, this was seen as a true positive. If the U-Net 
output was black but the dermatologist mask was white, this was seen as a false negative, and the converse was 
a false positive. The equations for sensitivity, specificity, and Dice coefficient metric can be represented by the 
following formulas:

The Hausdorff distance (HD) is used to measure the dissimilarity between the predicted segmentation masks 
the and ground truth. The Hausdorff distance can be calculated by the  formula18:

where h(X,Y) = max
x∈X

min
y∈Y

�x − y�.

We use an implementation of the method  presented18 to calculate the Hausdorff distance between the output 
and ground truth.

Classification
EfficientNets18 were introduced in late 2019 as a state-of-the-art model for image classification. Rather than 
scaling a CNN model without balance between the depth, width, and resolution of the image at hand, Efficient-
Nets were developed by scaling a baseline model in a methodical manner. This allows for an efficient increase 
in accuracy rates without unreasonable amounts of required memory and floating-point operations (FLOPS) 
through the optimization of the following  formulas18:

Sensitivity =
TP

TP + FN

Specificity =
TN

TN + FP

DiceCoef . =
2× TP

(TP + FP)+ (TP + FN)

SetX = {x1, . . . xn}andY = {y1, . . . , yn}

H(X,Y) = max(h(X, Y), h(Y, X)),

max
d,w,r

Accuracy(N(d,w, r))

Figure 9.  Contour finding algorithm applied to output of U-Net. Clusters of abnormal skin are identified 
through a contour finding algorithm. Each cluster is cropped in the shape of a rectangle through a convex hull 
algorithm used to surround each contour.
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Here, d, w, and r represent the depth, width, and resolution of the scaled model, and Ĥ , Ŵ , Ĉ, F̂ , L̂ represent the 
parameters of the optimized baseline model. Thus, in summary, the goal of the EfficientNet model, namely, 
N(d,w, r) , is to produce maximum accuracy in a classification problem. The model is represented by the product 
of its variable-weighted parameters, represented as ⊙

i=1...s
F̂

d•L̂i
i (X

<r•Ĥi ,r•Ŵi ,w•Ĉi>
) . The memory usage, 

Memory(N) , and required computational performance, FLOPS(N) , for the model must be less than that of the 
target.

The original  paper19 presents eight different models, ranging from EfficientNet-B0 through EfficientNet-B7, 
each increasing in complexity. Table 8 shows the accuracy and training time per epoch of each of these models 
trained on unsegmented images. There are sharp increases in training time between the EfficientNet-B4 and 
EfficientNet-B7 models, as we were forced to use smaller batch sizes during training owing to the increased 
number of trainable parameters and the limited memory in our GPU. In addition, as we employ a grid search 
algorithm, many models must be trained for many epochs. Therefore, a lower training time is desirable. After 
testing these models with our dataset and hardware, we chose to implement the EfficientNet-B4 model as it used 
substantial memory and training time without losing excessive complexity. We applied transfer learning to the 
segmented and cropped images from the previous section and classified them into 18 different classes.

We further improved the performance by using the Synthetic Minority Oversampling  Technique20 library, as 
a more balanced dataset was needed for training. In addition, because our segmentation model required more 
data to better generalize erythema, there were clusters of normal skin that were cropped and included in different 
classes. It was observed that this confused the model, as similar images were seen throughout different classes. 
To combat this, we refined the data by going through each image and excluding certain images that were either 
too small or incorrectly segmented images.

We created replicas of the training set and performed a grid search algorithm, as in the method utilized in 
the segmentation phase. For the loss function, we tested the Categorical Cross-Entropy and Focal Loss. For the 
optimizer, we test Adam with learning rates of 1e−4, 5e−5, and 1e−5; RMSprop with learning rates of 1e−4, 5e−5, 
and 1e−5; and SGD with a momentum of 0.9 and learning rates of 1e−1, 5e−2, and 5e−2. For the number of 
epochs, we test with 40 epochs, 60 epochs, and 80 epochs and decrease the learning rate by a factor of 0.1 every 
20 epochs. After testing with the replicas, we used the full training set for training with the hyperparameters: 
Categorical Cross-Entropy, Adam with a learning rate of 1e−5, a weight decay of 5e−4, 80 epochs, and a decrease in 
learning rate by a factor of 0.1 every 20 epochs. The AUC is calculated by taking the integral of the curve created 
by points at different sensitivity and specificity thresholds. In addition, specificity, sensitivity, and the F1-score 
can be represented by the following formulas:

For all performance metrics, scores are calculated individually for each class present in the dataset. The 
scores are then weighted and averaged according to the number of data points in a class corresponding to the 
entire dataset.

such that : N(d, w, r) = ⊙
i=1...s

F̂
d•L̂i
i (X

<r•Ĥi ,r•Ŵi,w•Ĉi>
)

Memory(N) ≤ targetmemory

FLOPS(N) ≤ targetflops

Specificity =
TN

TN + FP

Sensitivity =
TP

TP + FN

F1− score =
2TP

2TP + FP + FN

Table 8.  Training time required for efficientnet-B0 through B7.

Model Top-1 accuracy (%) Training time per epoch (s)

EfficientNet-B0 39.71 187.965

EfficientNet-B1 43.15 250.170

EfficientNet-B2 44.46 255.180

EfficientNet-B3 43.30 309.375

EfficientNet-B4 45.77 392.925

EfficientNet-B5 45.54 522.975

EfficientNet-B6 45.83 643.965

EfficientNet-B7 47.54 942.720
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tutional Review Board of Seoul National University Boramae Medical Center because patient records/informa-
tion was anonymized and de-identified prior to analysis. All experiments were performed in accordance with 
the relevant guidelines and regulations.

Conclusion
We have shown that even without a large dataset and high-quality images, it is possible to achieve sufficient 
accuracy rates. In addition, we have shown that current state-of-the-art CNN models can outperform models 
created by previous research, through proper data preprocessing, self-supervised learning, transfer learning, 
and special CNN architecture techniques. Furthermore, with accurate segmentation, we gain knowledge of the 
location of the disease, which is useful in the preprocessing of data used in classification, as it allows the CNN 
model to focus on the area of interest. Lastly, unlike previous studies, our method provides a solution to classify 
multiple diseases within a single image. With higher quality and a larger quantity of data, it will be viable to use 
state-of-the-art models to enable the use of CAD in the field of dermatology.

Data availability
The dataset used for segmentation is available upon request from the corresponding author for academic use. 
The dataset used for classification is available on Dermnet for academic use (https ://dermn etnz.org/).

Code availability
The code for the development of a mobile app is available on (https ://githu b.com/sonha min/dermt ools). The 
code regarding the analysis model is available upon request from the corresponding author for academic use.
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