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Bone is the most frequent site of breast cancer and prostate cancer metastasis, and one
of the most common sites of metastasis for many solid tumors. Once cancer cells colonize
in the bone, it imposes a major clinical challenge for the treatment of the disease, and
fatality rates increase drastically. Bone, the largest organ in the body, provides a fertile
microenvironment enriched with nutrients, growth factors and hormones, a generous
reward for cancer cells. Dependent on cancer type, cancer cells can cause osteoblastic
(bone forming) or osteolytic lesions to promote the net resorption and/or release of growth
factors from the bone extracellular matrix. These processes activate a “vicious cycle”,
leading to disruption of bone integrity and promoting cancer cell growth and migration.
Cancer cells influence the bone microenvironment favoring their colonization and growth.
In order to metastasize to the bone, cancer cells must first migrate from the site of origin,
and once established within the bone, they must overcome the dormant inducing effects
of resident cells. If successful, cancer cells can then colonize and continually disrupt bone
homeostasis that is primarily maintained by osteocytes, the most abundant bone cell type.
For example, it has been shown that exercise induces osteocytes to release anabolic
factors that inhibit osteoclast resorptive activity, promote dormancy and the release of
anti-cancer factors that inhibit breast cancer cell metastasis. In this review, we will
summarize recent research findings and provide mechanistic insights related to the role
of osteocytes in osteolytic metastasis.
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INTRODUCTION: CANCER BONE METASTASIS

The bone is a mineralized tissue highly regulated to adapt and meet the diverse needs of the host
relative to physical demand, hormones, metabolic state, and environmental stimulation. Bone
remodeling involves three major bone cell types; osteoblasts (bone forming cells) and osteoclasts
(bone resorbing cells) that function in maintaining the structural balance, and the osteocytes that
function in bone remodeling in response to environmental and mechanical signals and stimuli (1).
The osteocyte, which is the most abundant cell type (~95%) in the bone, is the primary cell
responsible for bone remodeling and homeostasis. Embedded inside the bone mineral matrix,
osteocytes are connected and able to sense and respond coordinately to environmental cues, such as
hormones, physical stress, and mechanical loading and unloading. These properties allow osteocytes
to modulate the bone microenvironment by promoting the release of factors that regulate bone
formation or resorption with respect to demands. Disease and aging can disrupt bone homeostasis,
create structural defects, and alter the bone macro- and microenvironment, ultimately leading to
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cancer cells colonizing within the tissue (2). The bone, along with
the liver and lung, is one of the most frequent sites of cancer
metastasis (2). Bone metastasis is an unfortunate outcome of
many solid tumors, typically breast, lung, prostate, thyroid, renal
carcinoma, melanoma, gastrointestinal tumors, and head and
neck cancers (2, 3). Tumors that originate in the bone represent a
small fraction of diagnosed cancers. Originating from cells found
in bone tissue of osteosarcomas, these cancers are of transformed
osteoblastic lineage, and occur most often in adolescents (4, 5).
Other cancers, such as multiple myeloma arise from the bone
marrow, but do not come from mesenchymal lineage.
Approximately 80% of bone lesions and tumors originate in
the bone marrow as multiple myeloma (3, 6, 7). The process of
other cancers metastasizing to the bone is as complicated as one
would expect considering that it is not one single cancer type that
favors bone metastasis. This article primarily focuses on cancer
bone metastasis from cancer not originating from the bone. Bone
metastasis greatly affects the quality of life of patients, causing
complications, such as pain, nerve root or spine cord
compression, vertebral or peripheral fractures, hypercalcemia,
and bone marrow infiltration that lead to cytopenia (3, 8).

The reasons why tumor cells metastasize to the bone are poorly
understood. Bone tissue provides an ideal microenvironment for
metastatic tumor cells. Bone marrow endothelium, adipocytes, and
the immune response all participate in maintaining bone
homeostasis in ways that are only partially understood. Although
solid tumor metastasis to the bone is common, not all
cancers preferably metastasize to the bone. Thus, disseminated
tumor cells homing to the bone may be a targeted, and/or the
microenvironment found in the bone, including cellular, hormonal
or otherwise is not suitable for the growth of certain cancer types (8,
9). Interestingly, highly vascularized bone containing red bone
marrow and cancellous bone (e.g. pelvis and long bones) are
common sites of metastasis (rarely hand and foot bones) (3). It
has been shown that primary tumors from near and distal regions of
the body organize and make ready premetastatic niches. For
instance, myeloid cells can be recruited from the bone marrow by
tumor-derived exosomes that release a plethora of soluble factors,
including, proteins, enzymes, and small nucleic acids, which are
capable of homing in circulating tumor cells to the newly forming
metastatic niche (10).

avb3 integrins (acting as cell surface adhesion receptors) have
been found to play a key role in mediating the metastatic MDA-
MB-231 and Chines Hamster Ovary tumor cells into the bone
(11, 12). Metastatic cancer cells are attracted and retained in the
bone marrow through the sensing and signaling of chemokines,
for example, the C-X-C motif chemokine ligand 12 (CXCL12),
which is expressed in bone marrow stromal cells, attracts tumor
cells overexpressing the C-X-C chemokine receptor type 4
(CXCR4) (13). In another study by Cox et al., lysyl oxidase
(LOX) was identified in hypoxic ER-negative breast tumor cells
to play a key role in preparing the bone metastatic niche. LOX
induces osteoclastogenesis independent of RANKL, disrupts
bone homeostasis, ultimately leading to the formation of
premetastatic bone lesions (14). Moreover, high LOX activity
has been clinically associated with increased collagen cross-
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linking, fibrosis, and elevated risk of cancer metastasis (15).
LOX, secreted by primary tumor cells, is responsible for
catalyzing the cross-linking of both collagen and elastin, which
increases matrix stiffness, alignment, and total ECM volume. The
increase of ECM stiffness facilitates the activation of integrins
and augments Rho-generated cytoskeletal tension promoting
focal adhesion formation and cell motility (14, 15).

Adaptive immune cells also play a role in setting up the bone
metastatic niche. Immune-competent mice orthotopically
injected with metastatic 4T1 breast cancer cells are shown to
have increased osteoclastogenesis; this induces the pre-metastatic
osteolytic niche required for colony formation. It is further
shown that the primary tumor environment promotes the
differentiation of helper T cells (CD4+), and the tumor-specific
Th17 cells expressing RANKL, which stimulates osteoclast
activation and induces osteolytic bone lesions, ultimately
promoting breast cancer colonization in the bone (16).

The seemingly self-perpetuating metastatic growth to bone
has been described as a ‘vicious cycle’. In an intricate process
inside the bone, tumor cells secrete osteoclastogenic factors (e.g.,
IL-1, IL-6, IL-11, PDGF, MIP1a, TNF, M-CFS, RANKL, and
PTHrP) that help stimulate the recruitment and activity of
osteoclast, key players in the formation of osteolytic lesions
(17). This process disrupts bone homeostasis and induces the
release of growth factors, including, activin, transforming growth
factor b (TGFb), fibroblast growth factor (FGF), and platelet-
derived growth factor (PDGF) from the bone mineral matrix. In
turn, these released factors promote tumor cell growth and
increase further bone resorption (Figure 1, step ①) (18). This
feedback loop, or ‘vicious cycle’, increases the incidence of metastatic
lesions in the bone and eventually leads to related ailments, e.g. bone
fractures, and high levels of blood calcium (hypercalcemia).

As mentioned, an important player in the vicious cycle is
osteoclasts, large bone resorbing multinucleated cells originating
from the fusion of bone marrow-derived monocytes/
macrophages. Activated osteoclasts adhere to bone surfaces,
forming an acting ring that covers a space in which bone
demineralizing enzymes and proteases are secreted. Key
players in osteoclast differentiation include adenosine
nucleotides, receptor activator of nuclear factor k-B ligand
(RANKL), macrophage colony-stimulating factor (M-CSF),
and other molecules (19), which are principally generated from
nearby osteoblasts, osteocytes, and immune cells (20). Osteoclast
generation and activation is achieved directly, or indirectly by
RANKL production by neighboring cells, or by bone
trophic tumor cells. These activities are eventually used by
tumor derived cells to create the bone niche, leading to further
osteoclastogenesis and bone resorption. The mechanistic
comprehension of bone turnover in tumor growth has led to
the clinical use of osteoclast inhibiting bisphosphonates, and
Denosumab (anti-RANKL antibody) in patients with bone
metastasis, and has become the standard of care to improve
quality of life by limiting bone turnover (Figure 1, step ②) (21).
In addition to molecules directly involved in bone resorption,
other factors involved in bone resorption include interleukins-6
and 11 (22), parathyroid hormone-related peptide (PTHrP) (23,
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24), soluble intercellular adhesion molecule 1 (ICAM-1) (25),
Wnt molecules (26, 27), macrophage-stimulating protein (MSP)
(28), and extracellular adenosine (Figure 1, step ③) (29).

Although crucial to bone metastasis and creating the
metastatic niche, osteoclasts are not the only cell type to
participate in bone metastasis, and osteoblasts also play a vital
role. Osteoblasts participate in matrix mineralization, which
provides strength (hardness) to the bone (30). Osteoblasts are
derived from skeletal bone marrow stromal cells that differentiate
into preosteoblasts and secrete numerous factors, including
RANKL that directly impact osteoclastogenesis (Figure 1,
step ③) (30). These cells eventually differentiate into mature
osteoblasts, which secrete the mineral matrix proteins and
mineralize bone (30). Some osteoblasts may become bone
lining cells or become embedded in lacunae where they
differentiate into fully mature mechanosensing osteocytes (1,
30). While studies show osteoclasts can induce tumor
proliferation by releasing growth factors stored within the
mineral matrix, osteoblast activity has been associated with
tumor cell growth and tumor cell dormancy. Preosteoblasts and
osteoblasts express tumor-promoting osteoprotegerin (OPG)
(31), hepatocyte growth factor (HGF), and secrete connective
tissue growth factor (CTGF) and TGFb (22). Furthermore,
osteoblasts express IL-6, which increases osteoclastogenesis, and
Frontiers in Endocrinology | www.frontiersin.org 3
has been shown to drive proliferation of multiple myeloma
plasma cells (24, 32).

Tumor–osteoblast interactions have been shown to be critical
in establishing bone metastasis (33, 34). Circulating (prostate)
metastatic cells have been shown to have an affinity for the bone
endosteal surface where they interact with osteoblasts through
annexin2/annexin2 receptor interactions (33, 34). These micro-
metastases are formed in regions of new bone formation, where
differentiating and actively mineralizing osteoblasts are located.
Furthermore, osteoblast and breast tumor interaction is shown to
require adherent junction formation for tumor cell proliferation
(9), supporting the notion that factors produced during
osteogenesis promote cancer proliferation. Disseminated cancer
cells must also compete for the endosteal surface of the bone, a
niche occupied by non-proliferating long-term hematopoietic
stem cells (LT-HSCs) (Figure 2, step ①). The mechanisms of
cell cycle arrest of breast cancer cells once established in the
endosteal niche are likely the same mechanisms that induce the
non-proliferating status of long-term resident hematopoietic stem
cells, unfortunately, only to later escape dormancy and proliferate
(35, 36). In one study using a 3D co-culture model (osteoblast/
breast cancer), it was identified that the addition of bone
remodeling cytokines, tumor necrosis factor (TNF)-a and
interleukin (IL)-1b and tumor necrosis factor resulted in
FIGURE 1 | Schematic illustration of tumor microenvironment in the bone. At the left side of the panel is the osteocyte and the right side is the breast cancer cell.
These cells interact in a bone catabolic environment. The numbers indicate the steps of events that may happen during breast metastasis described in the review.
① The vicious cycle; cancer cells interact with monocytes to increase the osteoclast number and activity in order to release growth factors embedded in the bone.
② RANKL expressed by osteocytes and cancer cells increases the recruitment of monocytes and stimulates the osteoclast differentiation. ③ Under this condition
osteocytes increase the release of Sost and DKK1 that inhibit osteoblast activity and increase the expression of RANKL. ④ Notch signaling pathway induces
apoptosis in the osteocytes and increases the proliferation of cancer cells. ⑤ Osteocytes apoptosis signals promote osteoclasts for bone resorption. ⑥ eATP is
hydrolyzed to adenosine through CD39/CD73 enzyme activation, and generated adenosine activates adenosine receptor in cancer cells, leading to increased
proliferation, migration, and metastasis. ⑦ Extracellular adenosine increases osteoclast activity, ⑧ also promotes Treg activity, and increases immune tolerance.
October 2020 | Volume 11 | Article 567844
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increased proliferation in the breast cancer cell line MDA-MB-231
BMRS1 (37). The inhibition of TNF-a and IL-1b downstream
targets, cycloxygenase (COX) and PGE2 receptors, resulted in
decreased cancer cell proliferation (37). Moreover, osteoblasts and
osteocytes also secrete leukemia inhibitory factor (LIF), and the
activation of LIF receptors present in breast cancer cells is shown
to maintain them in a dormant state. Loss of LIFR resulted in
decreased expression of genes associated with cell dormancy. LIFR
knockdown increased cancer cell migration and invasion,
proliferation, and osteoclastogenesis. Interestingly, overexpression
of PTHrP also decreased LIFR signaling. (38).

An early study by Kobayashi et al. found bone stromal cells
induced dormancy by the release of bone morphogenic protein 7
(BMP7) and activation of prostate BMP receptor 2. BMP7-treated
prostate cancer cells resulted in activated p38 MAPK, increased
expression of p21 and the metastasis suppressor gene, NDRG1 (N-
myc downstreamregulated gene 1) (39). Key studies have given
further insight into the mechanisms in which osteoblasts may
induce dormancy in disseminated tumor cells (40, 41). In another
study, osteoblast conditioned media increased cellular quiescence
of prostate cancer cells. TGF-b2 and growth differentiation factor
(GDF)10 were identified as osteoblast secretory factors that
induced quiescence in several prostate cancer cell lines. The
binding of these factors to the TGF-bRIII receptor expressed in
prostate cancer cell lines activated (phosphorylation at Thr180/
Tyr182) p38 mitogen activated protein kinase (MAPK). Activated
p38-MAPK phosphorylation of downstream target retinoblastoma
Frontiers in Endocrinology | www.frontiersin.org 4
protein (Rb) resulted in the inhibition of cancer cell-cycle
progression (40). In another study of prostate cancer metastasis
to the bone, Yumoto et al. identified osteoblast-derived ligand
growth arrest specific 6 (GAS6) and the tumoral tyrosine kinase
receptor Axl as required for the TGF-b2-induced response
towards prostate cancer cell dormancy (41). Multiple myeloma
cells have also been shown to be affected by the bone
microenvironment. These cells can occupy the endosteal niche,
remain dormant, and escape therapies that largely target dividing
cells. The interaction of multiple myeloma cells with cells of
osteoblastic lineage along the endosteal bone surface was
associated with single, non-dividing tumor cells. Interestingly,
dormant myeloma cells that were insensitive to melphalan, a
chemotherapeutic agent, could be reactivated upon osteoclast
activation with the soluble form of RANKL (42).

The bone is home to the hematopoietic system, and it
integrates an assortment of systemic physiological signals. Bone
homeostasis is affected directly or indirectly by many pathological
conditions, including diabetes, gastrointestinal diseases, physical
stress, etc. (43–48). One example is the increased risk of cancer and
tumor growth under inflammatory conditions (32, 49) or the
propensity of cells metastasizing to fractures sites (50). Similar
correlations have been associated with surgical procedures (51–
53), which intrinsically induce trauma, inflammation, and an
increase in innate immune cells needed for tissue repair. These
responses have been shown to promote conditions conducive to
metastatic growth at non-surgical sites (51, 53).
FIGURE 2 | Schematic illustration of anti-tumor microenvironment in the bone. At the left side of the panel are the osteocytes and the right side are the breast
cancer cells. These cells interact in a healthy bone environment. The numbers indicate the steps of events that may happen during breast metastasis described in
the review. ① The interaction of metastatic cells with osteoblast promotes dormancy. ② Physiological level of mechanical loading stimulates osteocyte release of
anabolic factors, Wnt, and OPN, to increase osteoblast differentiation, activity, and bone strength. ③ High concentration of OPN reduces EMT in metastatic cells.
④ Mechanical loading increases opening of Cx43 hemichannels and the release of ATP. ⑤ eATP inhibits osteoclast activity and ⑥ also inhibits Treg formation and
stimulates immune surveillance. ⑦ eATP activates P2X receptor and reduces the proliferation, migration, and metastatic potential of cancer cells.
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Bone, like other organs, changes with age, which includes an
accumulation of senescent cells, such as, osteoblasts, and resident
bone cells harboring genetic mutations (54–56). The loss of bone
density with age is well known. Equally concerning is how the
accumulated damage to cells and their genetic makeup, caused
by environmental toxins, or byproducts of cellular respiration,
can result in an environment primed for tumor growth and
metastasis (57). How does an increase in senescent bone cells
affect certain cancers metastasizing to the bone, or dormant cells
in the bone being released from dormancy? As discussed here and
shown in numerous studies, senescent osteoblasts can promote
osteoclastogenesis, which leads to increased metastasis,
dissemination, and metastatic growth of cancer in the bone. This
supports and explains the possible mechanisms in which elder
cancer patients in remission with dormant cancer cells in the bone
often relapse. A possible underlying reason is that cancer cells can
take residence in the bone through the contribution of senescent
cells accumulated over time (42, 58). An important detail to keep in
mind is that most experimental studies have not used aged animal
models (59, 60). Studies delving into how age affects metastasis are
in dire need.

Bone impacts metastasis in unexpected and sometimes
complex manners. Mechanical loading inhibits secondary
growth and osteolytic capability of metastatic tumors in nude
mice by modulating osteoblastic/osteoclastic activities and
communication between osteocytes and tumor cells (61).
Osteocytic release of osteopontin (OPN) (Figure 2, step ②), a
secreted phosphoprotein with a high avidity to bone mineral
matrix, has been reported to induce activators of the EMT
process (62). Interestingly, lower OPN levels (0.1 to 0.5 mg/ml)
induce EMT markers. Low levels of mechanical loading (1 N) are
shown to increase the expression and secretion of OPN (Fan, 2020
#82). The increase in OPN in turn inhibits the expression of TGF-
b in osteocytes, increases the adhesion of tumoral cells, thus
possibly inhibiting growth and migration by anchoring tumor
cells at the primary site. This bone microenvironmental condition
is pro-mesenchymal to epithelial transition (MET) reducing the
aggressiveness and allowing the settlement of secondary tumor
(Figure 2, step ③) (63). Similar intensities of mechanical loading
inhibiting tumor growth in nude mice have been previously
reported (61). As studies have shown, high loading intensity of
the bone enhances breast cancer cell malignancy; therefore, the
extent of mechanical loading should be carefully monitored (63).
Taken together, studies indicate osteocytes are an important player
in providing the ‘soil’ for bone metastasis/progression as well as
associated skeletal diseases (27, 64–66).
INTRICATE FUNCTION OF OSTEOCYTES
IN BONE HOMEOSTASIS AND CANCER
BONE METASTASIS

The extensive lacuna–canaliculi network allows osteocytes to
directly communicate with one another. It also allows for
osteocytes to respond to local and distant signals, including
Frontiers in Endocrinology | www.frontiersin.org 5
mechanical (bone stress) or biological (paracrine and
endocrine) (1, 67). Osteocytes control bone remodeling
through regulation of bone-forming and bone-destroying cells.
During bone demineralization, osteocytes decrease osteoblast
differentiation and function through secreted factors, including
the Wnt signaling antagonists sclerostin and Dickkopf Wnt
signaling pathway inhibitor 1 (DKK1) (67). Osteocytes are the
main sclerostin producer in the bone, and this protein inhibits
the association of Wnt ligands with their receptor in osteocytes
and osteoblast. Therefore, the key bone formation inhibitor,
sclerostin, has been given much attention as a targeted
therapeutic approach for low bone density (66, 68). Bone
RANKL is primarily produced by osteocytes (Figure 1, step
③). RANKL promotes monocyte differentiation into bone
resorbing osteoclasts. Neutralization of RANKL with the
antibody Denosumab is currently in use to reduce fracture
incidence in low bone density, bone metastasis, and rare bone
cancers (Figure 3, step ①) (69, 70). The Denosumab Clinical trial
(ABCSG-18) showed that postmenopausal breast cancer patients
under aromatase inhibitor treatment had a significant latency of
apparition of bone fracture with Denosumab as an adjuvant (71).
This was also true in metastatic breast cancers and new
primary malignancies.

In contrast, in a clinical trial (D-CARE study) of patients with
stage II/III breast cancer, Denosumab treatment did not improve
bone metastasis free survival. Denosumab did increase the
incidence of osteonecrosis of the jaw (5 versus <1%) and
hypocalcaemia (7 versus 4%) in comparison with placebo (72).
Although the above mentioned trials do not corroborate
Denosumab having a beneficial effect on survival, the results
obtained from these two trials have a significant difference. The
D-care trial patient profile was of early stage high risk breast
cancer patients, while the ABCSC-18 study focused on early stage
low risk breast cancer patients. It is also important to note the
trials were conducted with different Denosumab schedules and
endpoints (70).

As mentioned above, bones inevitably age and undergo
numerous changes, including bone loss, osteocyte apoptosis,
and increased oxidative stress. Osteocyte apoptosis is a key
stimulus that triggers bone resorption (Figure 1, step ⑤) (73,
74). The slowed production of sex hormones that comes with
aging promotes osteoclast activity (75, 76), osteocyte apoptosis
(73), elevated oxidative stress (76, 77), and a reduction in
osteoblast function (78). Thus, reduction in sex hormones
culminates in bone fragility and bone loss. This bone
destructive environment is further enhanced by a decline in
immune surveillance and increased fat formation; this disturbs
the balance of critical osteoclastogenic proteins, RANKL, and
OPG, towards bone destruction (79). The AZURE phase 3
clinical trial for post-menopausal women was designed to
study the effects of adjuvant zoledronic acid treatment in early
high risk breast cancer patients. The AZURE trial showed that
with treatment, incidence of bone metastasis was reduced.
Critical to our understanding, this benefit was restricted to
postmenopausal women and those under ovarian suppression
treatments with hormone-receptor-positive breast cancer. This
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observation highlights how critical it is to understand the
differences between old and young bones in metastasis (80, 81).

Emerging studies indicate how osteocytes could have a
positive impact on tumor growth, motility, and survival, a
scenario leading to poor outcomes in cancer patients. The
interaction between prostate cancer cells and osteocytes
induces the osteocytic production and release growth-derived
factor 15 (GDF15) promoting prostate cancer cell proliferation,
migration, and invasion of prostate cell in the bone (82). MLO-
Y4 osteocytes stimulated by hydrostatic pressure, similar to what
is observed in bone metastasis, increased the viability of prostate,
breast, and lung cancer cell lines. Hydrostatic pressure also
improved motile and invasive capacity through increased
expression of chemokine (C-C motif) ligand 5 (CCL5, also
known as RANTES) and MMPs (83). Likewise, high intensity
shear stress increased survival and migration in the MDA-MBA-
231 breast cancer cell line (63, 84). However, these studies also
show how intensity of load imparts opposing effects on survival
and migration. This underscores the importance of osteocytes in
the modulation of the bone microenvironment with regard to
tumor progression particularly with respect to the relationship
between the magnitude of mechanical stimulation and breast
cancer cell apoptosis or migration (84).

Increased osteocyte apoptosis within lytic bone lesions has
been found in patients with multiple myeloma (85). During the
progression of multiple myeloma, osteocytes directly interact with
multiple myeloma cells, which stimulate osteocytes to produce
Frontiers in Endocrinology | www.frontiersin.org 6
sclerostin and RANKL. This results in the recruitment of
osteoclast precursors and a reduction of Wnt signaling, leading
to the inhibition of osteoblast differentiation (Figure 1, step ③).
Concomitantly, cell to cell interactions reduce osteocyte viability
due to apoptosis triggered Notch signaling and sustained by
multiple myeloma derived TNFa. Furthermore, Notch signaling
interaction increases the proliferation of multiple myeloma by
increasing cyclin D1 RNA levels and accelerating cell proliferation
(Figure 1, step ④) (27). This highlights how osteocytes play a
constant integrative role of endocrine, paracrine, and mechanical
signals, and the output of those signals results in bone formation
or resorption responses. The complexity of such integration makes
it particularly difficult to predict the impact of osteocytes on cancer
cells metastasized to the bone.
PROTECTIVE ROLES OF OSTEOCYTES
AGAINST CANCER BONE METASTASIS

The skeleton is a dynamic organ that responds to physical stress by
promoting bone remodeling, which includes the addition and
removal of bone. Although several resident bone cells are involved
in mechanosensing, osteocytes are regarded as the major
mechanosensory cell within the bone (67, 86). The long
dendritic processes of osteocytes form gap junction channels
composed primarily by gap junction proteins (connexins). These
FIGURE 3 | Schematic illustration of therapeutic agents used to treat bone metastasis. At the left side of the panel are the osteocytes and the right side are the
breast cancer cells. These cells are subjected to the therapeutic treatment under the bone environment. The numbers indicate the steps of events that may happen
during breast metastasis described in the review. ① Denosumab, a RANKL neutralizing antibody, binds RankL expressed by osteocytes and cancer cells, and
inhibits the recruitment of monocytes and osteoclast differentiation. ② Bisphosphonates (BPs) inhibit osteoclast activity. Also, ③ BP increases osteocyte survival and
induces opening of Cx43 hemichannels and the release of ATP. ④ eATP inhibits osteoclast activity. ⑤ eATP activates P2X receptor and reduces the proliferation,
migration, and metastatic potential of cancer cells. The effects of the pharmacological agents reduce the activity of the vicious cycle.
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gap junction networks connect not only neighboring osteocytes,
but also cells on the bone surface, including osteoblasts and
osteoclasts (1, 67). The mechanosensing osteocytes form
connexin 43 (Cx43) hemichannels (half a gap junction channel)
which allows for the communication between the internal
environment of the cell and its extracellular environment. Gap
junction channels are involved in the global regulation and fine
tuning of bone formation and resorption as it was evidenced by
the altered levels of serum remodeling markers N-terminal
propeptide of type I procollagen and C-terminal telopeptide of
type I collagen, respectively (87). Osteocyte hemichannels likely
play a predominant role in its response to mechanical stimulation;
given that bone and osteocytes are constantly subjected to
mechanical stimuli as a result of physical movement, gravity,
and blood circulation. This is evident by the major impact that
Cx43 hemichannels have on the expression of OPG and RANKL,
and osteocyte viability, which are essential for bone integrity and
longevity (87, 88). Concordantly, the anti-apoptotic effect of
bisphosphonates on osteoblasts and osteocytes has been shown
to be through regulation of Cx43 hemichannels (Figure 3, step ③)
(89). Bisphosphonates are the gold standard for therapy for bone
diseases in cancer patients (6, 80) as they inhibit osteoclast activity
and prevent bone loss induced by cancer cells, thus reducing
fracture risk (21, 28). In vivo, osteocyte Cx43 hemichannel activity
is an important mediator of the growth inhibitory effects of
bisphosphonates in breast cancer (65). In vitro and in vivo
studies by our group further underscore the key role of Cx43 in
mediating the tumor inhibitory effects of bisphosphonates.
Bisphosphonate conditioned media from osteocytes inhibited
breast cancer cell growth (MDA-MB-231), migration, and
invasion. These effects were abrogated by treating with Cx43
hemichannel specific blocking antibody (65). Moreover, mice
with impaired Cx43 gap junctions and hemichannels showed
significantly increased tumor burden and a reduced effect of
bisphosphonates on tumor growth compared to mice with
impaired Cx43 gap junction channel function or wild type (65).
This implies Cx43 hemichannels in osteocytes are responsive to
bisphosphonates, thus making Cx43 a promising novel drug target
for the treatment of breast cancer metastasis to the bone. In a
previous study, we have shown that these effects are mediated by
adenosine triphosphate (ATP) released by osteocyte Cx43
hemichannel opening (Figure 2, steps ④ and ⑦) (Figure 3, steps
③ and ④) (90). These important findings highlight that more work
is needed to determine exactly how osteocytes impact various
cancers metastatic potential, and if these cells can be targeted to
stop bone metastasis.
ATP RELEASE BY OSTEOCYTES, A KEY
COMPONENT FOR THE HOSTILE
MICROENVIRONMENT FOR CANCER

As a response to tissue damage and cellular stress, cells, including
osteocytes, secrete/release ATP to the extracellular space (Figure
2, step ④) (65, 91, 92). The intracellular concentration of ATP is
Frontiers in Endocrinology | www.frontiersin.org 7
~3–10 mM, and the extracellular ATP (eATP) is about 10 nM.
The big difference between intracellular and extracellular ATP is
from active ATP degradation through ectonucleotidases in the
extracellular compartment (93). The presence of eATP has been
shown to inhibit the growth of pancreatic, colon, prostate, breast,
liver, ovarian, colorectal, esophageal, melanoma, and leukemia
(94). Intravenous ATP used in clinical trials of patients with pre-
terminal lung cancer, showed an increase in survival rate and had
a beneficial effect on weight and muscle strength (95–97).
Multiple studies show an anticancer action of eATP or eATP
analogs by binding to P2 purinergic receptors (90, 98). eATP is
rapidly degraded to adenosine, a well-known tumorigenic factor
(92, 93, 99). Additionally, eATP or P2 receptor agonist decreases
osteoclast activity and bone resorption (Figure 2, step ⑤) (100),
reduces the number of T regulatory lymphocytes (Tregs) (101),
and prolongs the activity of T lymphocytes (Figure 2, step ⑥)
(102). However, ATPmetabolites through P1 purinergic receptor
activation also mediate pro-tumorigenic effects in prostate
and breast cancer cells (90, 103). This suggests that ATP
and/or ATP metabolite balance plays a key role in the tumor
microenvironment. The solid tumor microenvironment is
usually hypoxic and/or inflammatory, and the extracellular
concentration of nucleotides (ATP/adenosine) is higher in
comparison to normal tissue (92, 103, 104). In this hypoxic/
inflammatory microenvironment, adenosine promotes cancer
cell migration and chemotaxis in breast cancer and melanoma
cells, along with an increase in osteoclastic activity and bone
resorption (Figure 1, ⑥ and ⑦) (29). This microenvironment also
results in poor immune surveillance with high lymphocytic
tolerance (Figure 1, steps ⑥and ⑧) (92, 105, 106). The main
pathway leading to high extracellular adenosine levels is the
hydrolysis of eATP by a family of enzymes known as
ectonucleotidases, such as CD39 and CD73, which hydrolyze
ATP and ADP to AMP, and AMP further to adenosine (Figure
1, step ⑥) (93, 105). CD73 has been associated with a pro-
metastatic phenotype in breast cancer, and CD73 knockdown
leads to suppression of breast cancer cell growth, migration, and
invasion both in vivo and in vitro (105). Therefore, we must
practice caution since the function of eATP on tumorigenesis
could largely depend on the activity of ecto-ATPases in
the tissue.

Adenosine and ATP bind to specific purinergic receptors at
the cell surface, which are divided into P1 receptors, with
adenosine as the main ligand, and P2 receptors, with ATP and
ADP as the main agonists. P1 receptors have four subtypes: A1,
A2a, A2b, and A3. There are two major P2 receptor subtypes,
seven P2X, and eight P2Y subtypes (92, 107). The presence of P2Y
subtypes has been shown to play important roles in cell survival
under mechanical stress, although the role of specific P2X
subtypes remains unclear. It has been suggested that autocrine
activation of breast cancer P2X7 receptors participates in the
activation of cell proliferation, cancer cell process elongation, and
further ATP release (99). The tumor microenvironment rich in
ATP is shown to either promote or inhibit cell migration, enough
to activate multiple P2 receptors, but not enough to induce cell
death trough P2X7 activation. The study by Zhou et al. provides
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clues to clarify the mixed effects of ATP. They showed that the
addition of a non-hydrolysable P2X receptor agonist resulted in
an inhibitory effect on cancer cell migration and growth. This
inhibitory effect was dependent on P2X7 activation (Figure 2,
step ⑦) (Figure 3, step ⑤) (90). A2A receptor activation, on the
other hand, resulted in a stimulatory effect on breast cancer cell
migration and growth (Figure 1, step ⑦) (90). Cancer cell-specific
expression of P1 receptor subtypes has been reported. for
example, in breast cancer. A2b receptors are absent on ER-
positive MCF-7 cells, whereas MDA-MB-231 cells express very
high levels of A2b (90). In order to understand and establish
strategies to control tumor growth and metastasis, it is very
important to evaluate the presence and expression levels of the
specific P1 or P2 receptor subtypes in cancer cells. These are likely
key factors determining if a cellular response to adenosine
nucleotides will be elicited.
CONCLUSION AND FUTURE DIRECTIONS

The osteocyte is a key player modulating the bone cancer
microenvironment. Metastatic cancer cells have shown the
potential to utilize osteocyte signaling by turning the bone
microenvironment osteoclastogenic and transforming
osteocytes into pro-tumorigenic cells. Moreover, osteocytic
overproduction of Wnt inhibitors contributes to the
suppression of bone formation. In addition, metastatic cancer
cells colonized in the bone reduce osteocyte viability, resulting in
reduced cell capacity to maintain bone homeostasis. However,
the bone forming ability of osteocytes is related with an anti-
resorptive microenvironment. This condition reduces osteocyte
apoptosis, enhances Cx43 hemichannel activity, increases bone
strength, and reduces osteoclast recruitment and activity. Taken
together, these osteoclast activities will inhibit the overall
Frontiers in Endocrinology | www.frontiersin.org 8
activation of metastatic dormant cells, and tumor growth, and
motility. Although we have just started a fascinating journey to
understand the functional relationship between cancer and
osteocytes, targeting osteocyte signaling pathways and
molecular messengers has already shown to have a positive
impact on preventing/improving bone pathologies associated
with cancers. These results offer encouraging and supportive
ideas of a targeted approach on osteocytes that reside in the
cancer niche. These studies may offer guidance and a map to
develop new therapies for cancers metastasized to bone, or the
prevention thereof.

In conclusion, osteocytes play a large role as gate keepers of
the bone and bone homeostasis. By having a broader knowledge
on how osteocytes influence cancer cells, osteoblasts, and
osteoclasts, we may improve and increase pharmacological
strategies to help keep the bone healthy and free of cancer.
Further work is needed to uncover key events and players that
coordinate the communication between cancer cells and bone
cells. The goal is to identify target points that can disrupt the
initial and key steps of bone metastasis. Osteocytes may prove to
be a key ally in combating cancer cell progression in the bone.
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