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Targeted two-photon chemical apoptotic ablation
of defined cell types in vivo
Robert A. Hill1,2, Eyiyemisi C. Damisah1,3, Fuyi Chen1,2, Alex C. Kwan2,4 & Jaime Grutzendler1,2

A major bottleneck limiting understanding of mechanisms and consequences of cell death in

complex organisms is the inability to induce and visualize this process with spatial and

temporal precision in living animals. Here we report a technique termed two-photon chemical

apoptotic targeted ablation (2Phatal) that uses focal illumination with a femtosecond-pulsed

laser to bleach a nucleic acid-binding dye causing dose-dependent apoptosis of individual

cells without collateral damage. Using 2Phatal, we achieve precise ablation of distinct

populations of neurons, glia and pericytes in the mouse brain and in zebrafish. When

combined with organelle-targeted fluorescent proteins and biosensors, we uncover previously

unrecognized cell-type differences in patterns of apoptosis and associated dynamics of

ribosomal disassembly, calcium overload and mitochondrial fission. 2Phatal provides a

powerful and rapidly adoptable platform to investigate in vivo functional consequences

and neural plasticity following cell death as well as apoptosis, cell clearance and tissue

remodelling in diverse organs and species.
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E
xperimental approaches for cell ablation have been
important tools for investigating a variety of biological
questions. However, applications of cell ablation in living

organisms, especially in complex mammalian systems, have been
limited due to a lack of methods able to precisely induce and
image the death process of individual cells in vivo. Ideally, these
methods would have precise temporal and spatial specificity, and
hijack intrinsic apoptotic cellular mechanisms to mimic the
in vivo situation. Numerous pharmacological agents lacking
spatiotemporal precision are available that can induce widespread
apoptotic cell death in culture and in vivo1–3. On the other hand,
methods for more targeted cell death induction have been
developed but they have practical and technical limitations that
restrict their utility for studies in living animals. These methods
fall into three general categories: chromophore assisted light
inactivation (CALI)4–10, two-photon thermal ablation11–14 and
genetically encoded death receptors15–17. Some of their
fundamental limitations include a need to efficiently and
accurately deliver the required dyes or genetic materials for
targeted cell killing, prohibitively long illumination requirements,
non-specific tissue damage and necrotic death with spilling of
cellular contents, and induction of rapid macrophage/microglial
activation. These limitations have precluded precise real-time
in vivo molecular and cellular studies of single-cell apoptosis in
complex mammalian organisms. As a result, there remain
significant gaps in the understanding of the physiological
consequences, multicellular reactions and tissue plasticity that
occur after cell death in various organs.

To overcome these issues, we have developed a powerful and
rapidly adoptable method for induction of apoptosis in single cells
of interest in living organisms. This method, which we termed
2Phatal (two-photon chemical apoptotic targeted ablation), uses a
femtosecond-pulsed laser to induce highly focal photo-bleaching of
a nuclear-binding dye. This leads to dose-dependent single-cell
apoptosis, likely to be due to DNA damage caused by
bleaching-induced reactive oxygen species (ROS) production.
Combined with high-resolution time-lapse imaging, 2Phatal
constitutes, to our knowledge, the first targeted in vivo single-cell
apoptosis platform that is robust, reproducible and amenable to
precise cell biological analysis and quantification. Using this
method, we demonstrate in the live mouse brain, induction of
apoptosis in neurons, astrocytes, NG2 glia and vascular pericytes,
and in zebrafish neuromast lateral line hair cells. In combination
with genetically encoded subcellular organelle labelling and calcium
biosensors, we identify unique cell-type-dependent differences in
the temporal profile of cell death and a novel sequence of ribosomal
disassembly, calcium overload and mitochondrial fission
never before visualized in vivo. Finally, we also provide multiple
proof-of-principle studies, which open up the possibility of further
dissection of mechanisms and functional consequences of cell
ablation in the intact in vivo system by testing the consequences of
ablating a small group of fast spiking interneurons on the
excitability of a local cortical circuit. Thus, 2Phatal opens a range
of capabilities for the comprehensive interrogation in living
organisms of apoptotic death pathways, multicellular glial reactions
associated with cell death and circuit-based consequences of
targeted cell removal.

Results
Targeted photochemical induction of cell death in vivo.
Methods based on photo-bleaching of fluorescent molecules to
induce ROS production have been extensively used to inactivate
organelle function and kill cells in vitro7,10,18,19. We thus
reasoned that to induce targeted single-cell killing in vivo, we
could cause bleaching of fluorophores within individual cells of

interest using the focal illumination properties of a conventional
two-photon femtosecond pulsed laser. However, when we used
this approach in the live mouse brain, we found that focal
bleaching of fluorescent proteins or the fluorophore
sulforhodamine 101 (SR101) in neurons or astrocytes was
ineffective at causing their death even at higher laser intensities
(Supplementary Fig. 1). Even when fluorescent proteins
were targeted to the nucleus to potentially cause more
bleaching-induced DNA damage, we did not observe cell death
(Supplementary Fig. 1). To overcome this limitation, we reasoned
that photobleaching of a dye that is in closer proximity and
tightly interacting with nuclear DNA could be an effective way to
induce ROS-mediated DNA damage that would trigger the
apoptosis cascade leading to death of single cells. We thus
administered to live mice the cell permeant nuclear-binding dye
Hoechst 33342 (H33342) by topical application to the cortex
through a cranial window or by intravenous systemic injection
(Supplementary Fig. 2). Within 3 h, both administration methods
extensively labelled nuclei, which were visible at least 300mm
deep into the cortex with excellent signal to noise ratio
(Supplementary Movie 1). Application of H33342 in mice
expressing yellow fluorescent protein in neuronal subsets
(Thy1-YFP) (Fig. 1b) or concurrently with the dye SR101,
which can label astrocytes20 (Fig. 1b and Supplementary
Movie 2), showed that nuclei of both cell types were robustly
labelled (astrocytes were 2.1-fold brighter than neurons but there
was minimal variability in labeling within cell types. P¼ 0.015,
60 astrocytes and 60 neurons from n¼ 3 mice, Student’s t-test)
(Fig. 1c). Dye labelling caused no detectable cellular toxicity
under normal imaging conditions and was cleared from the tissue
within days (Supplementary Fig. 2). Thus, H33342 can be used
for both acute and chronic experimental preparations and is
compatible with repeated in vivo imaging.

To test whether we could induce targeted cell killing in vivo,
regions of interest (ROIs) (8� 8 mm) were centred on single cells
and briefly scanned using the two-photon laser (tuned to 775 nm)
to cause dye bleaching (see Methods, Fig. 1d). In contrast to
bleaching of non-nuclear dyes, time-lapse imaging revealed that
H33342 caused a stereotyped progression of nuclear pyknosis,
fragmentation and cell disappearance starting B2 h after
photobleaching (Fig. 1d). Importantly, unlike previous methods
of two-photon-mediated laser ablation11,13,14,21–24, this mild,
brief photobleaching approach did not induce cell rupture or
tissue burning (Fig. 1). To develop a dose-dependent, easily
adoptable and highly reproducible method for single-cell killing,
we systematically tested the effects of laser scan time and laser
intensity on H33342 photobleaching and cell death progression.
As predicted, a linear correlation was evident between laser scan
time and H33342 photobleaching (R2¼ 0.999, n¼ 30 cells per
condition from three mice) (Fig. 1e,f). Repeated imaging of
the targeted cells revealed that the rates of apoptotic cell death
(as quantified by nuclear pyknosis and subsequent cell
disappearance) were proportional to laser illumination (n¼ 30
cells per scan time from three mice) (Fig. 1g,h), as evidenced by a
linear positive correlation between scan time (R2¼ 0.9601),
total bleached units per cell (R2¼ 0.9604) and cell death
induction (Fig. 1h and Supplementary Fig. 3). In addition
to scan time, modulation of laser intensity also resulted in
dose-dependent induction of cell death. Scan times were fixed at
10 s per cell and laser intensity was varied from 21.3 to 45.4 mW
(measured at the sample plane). As predicted, increased laser
intensities correlated with the extent of ROI photobleaching
(Fig. 1i). More importantly, there was a laser intensity-dependent
induction of cell death with 21.3 mW resulting in 50% and
40.6 mW resulting in 100% death (n¼ 30 cells per intensity from
three mice) (Fig. 1j,k), positive correlations between laser
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intensity (R2¼ 0.604), total bleached units per cell (R2¼ 0.771)
and cell death rates (Fig. 1k and Supplementary Fig. 3). Thus, fine
modulation of laser scan time and intensity provides a robust
approach for experimentally defined induction of cell death.

2Phatal does not induce neural collateral damage. A major
obstacle associated with previous efforts to study the

consequences of cell removal stem from the often-overlooked
tissue damage and responses by neighbouring glia that
occur when using two-photon thermal laser ablation. For
example, it is well documented that brain microglia respond
to this kind of ablation via rapid process extension towards
the injury site25. To test whether 2Phatal would induce a similar
kind of acute response, microglia were visualized in CX3CR1-GFP
reporter transgenic mice, whereas single neurons were
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Figure 1 | Two-photon photobleaching of nuclear-binding dye to ablate single cells in vivo. (a) Schematic of in vivo imaging and labelling of the mouse

cortex with Hoechst 33342 (H33342) via topical or intravenous dye application. (b) Images captured in vivo showing H33342 labelling in YFP-labelled

neurons (green) and SR101-labelled astrocytes (red). (c) Box and whiskers plot showing H33342 fluorescence intensity is significantly higher in astrocytes

compared to neurons. Sixty astrocytes and 60 neurons from n¼ 3 mice, t-test P¼0.0151, t¼4.0783, df¼4. (d) Fluorescence intensity trace showing

photobleaching of H33342 within a single-cell ROI and subsequent nuclear condensation and disappearance of the targeted cell over 18 h (arrow). (e)Three

cells (boxed regions) subjected to 5, 10 and 20 s of focal photobleaching. (f) Fluorescence intensity traces showing photobleaching of H33342 at the laser

scan times indicated, traces indicate mean±s.e.m. Linear correlation between laser scan time and single-cell bleaching. (g) Images showing the three cell

death outcomes (arrows indicate targeted cells) quantified for each experimental condition. (h) Laser scan time-dependent cell death induction 1 day after

photobleaching, n¼ 30 cells per intensity from 3 mice. (i) Fluorescence intensity traces showing photobleaching of H33342 at the laser intensities

indicated, traces indicate mean±s.e.m. (j) Laser intensity-dependent cell death induction 1 and 2 days after photobleaching, n¼ 30 cells per intensity from

3 mice. (k) Linear correlations between laser intensity and detection of cell death and units bleached per cell and cell death, traces indicate mean±s.e.m.
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ablated with 2Phatal. In vivo time-lapse imaging revealed that
in contrast to thermal ablation, 2Phatal did not induce any
acute microglial process responses towards the targeted cell
(Fig. 2a–c and Supplementary Movie 2) (thermal ablation n¼ 7
cells from 4 mice, 2Phatal n¼ 9 cells from 4 mice, significance*
determined by a 99% confidence interval compared with
baseline).

In contrast to the lack of an acute (within minutes) reaction by
microglia to 2Phatal bleaching, subsequent imaging during the
time points when nuclear pyknosis was occurring revealed a
targeted process of single-cell phagocytosis by individual
microglia (n¼ 12 cells from 3 mice) (Fig. 2d). Single microglia
engulfed the dying cell and remained in the region for several
days. This highly targeted, controlled response suggests precise
mechanisms of microglia phagocytosis during single-cell

apoptosis and 2Phatal now provides a novel tool to study this
process for the first time in vivo.

Next, to determine whether 2Phatal induced any collateral
damage to nearby neuronal structures, single cells were ablated
immediately adjacent to green fluorescent protein (GFP)-labelled
axons and their boutons in Thy1-GFP transgenic mice (Fig. 3a).
Time-lapse imaging over the following days revealed
characteristic apoptotic nuclear condensation in the ablated cell
but no significant effects on adjacent axonal boutons, which
retained their normal plasticity rates compared to control regions
away from ablation sites (42 cells for each condition from n¼ 3
mice, control vs 2Phatal, bouton formation: 1d P¼ 0.981, 2d
P¼ 0.960; bouton elimination: 1d P¼ 0.721, 2d P¼ 0.854;
stable 1d P¼ 0.744, 2d P¼ 0.907, multiple t-tests with
Holm–Sidak correction) (Fig. 3a,b).
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Figure 2 | Microglial engulfment and phagocytosis of targeted cells. (a) In vivo images showing CX3CR1-GFP-labelled microglia (green) adjacent to a cell

before and after photobleaching (arrows), showing no change in microglia motility. (b) In vivo images showing microglia adjacent to a cell (arrows) before

and after two-photon thermal ablation, showing rapid directed microglia process extension towards the mild thermal injury. (c) Time-lapse images and

method for quantification of microglia response to 2Phatal and thermal ablation (arrows indicated targeted cell region). Unlike thermal ablation, there

was no difference in microglia motility detected around cells subjected to 2Phatal; Thermal ablation n¼ 7 cells from 4 mice, 2Phatal n¼ 9 cells from 4 mice,

traces indicate mean±s.e.m. *Significance determined by a 99% confidence interval compared with baseline. (d) Extended time-lapse imaging

revealed directed single-cell microglia phagocytosis of the apoptotic nuclei (arrow), providing the first system to study molecular and cellular mechanisms

of single-cell apoptotic phagocytosis in vivo (n¼ 12 cells from 3 mice).
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Thus, unlike previous ablation approaches, 2Phatal does not
induce acute microglial process reactivity or disrupt immediately
adjacent neuronal structures (Figs 2 and 3). Therefore, 2Phatal is
the first available method that can be applied to reliably
investigate at single-cell resolution how the surrounding neural
microenvironment responds to a physiologically relevant mode of
cell death, including phagocytosis of single apoptotic cells
(Fig. 2d); all without the confounding factors of laser damage,
spilling of cellular contents and rapid inflammatory glial
responses.

Cellular and molecular changes are consistent with apoptosis.
Based on our finding of a stereotyped time course of nuclear
condensation and cell death (Fig. 1), and the lack of acute
microglia responses (Fig. 2), we hypothesized that 2Phatal
induced a classical apoptotic process. To further verify this we
characterized the morphological progression of cell death by
visualizing cytoplasmic and membrane bound fluorescent
reporters in both cortical pyramidal neurons (Thy1-YFP) and
somatostatin-expressing interneurons (SSTcre:mT/mG). In vivo
time-lapse imaging revealed that targeted cells proceeded through
an apoptotic-like morphological cascade characterized by nuclear
pyknosis and fragmentation coinciding with cell soma shrinkage,
loss of dendrites and formation of apoptotic bodies, specifically at
previous dendritic branch locations. (Fig. 4a–e, Supplementary
Movie 3 and Supplementary Fig. 4). Neighbouring cells and
processes showed no signs of collateral damage (Fig. 4d,e), similar
to our quantifications of the effects of 2Phatal on axonal bouton
plasticity (Fig. 3a,b).

The morphological characteristics of the death process
suggested that 2Phatal was inducing classical cellular apoptosis.

However, to further validate this, we labelled dying cells in vivo
with Annexin V, a protein which binds specifically to exposed
phosphatidylserine in the cellular membrane of apoptotic cells.
Indeed, fluorescently conjugated Annexin V was detected
specifically on dying cell soma and processes as early as 2 h after
nuclear photobleaching (n¼ 15 cells from 4 mice) (Fig. 4f),
providing strong additional evidence for apoptosis induction.
The ability to induce apoptosis in selected neuronal subtypes
provides a powerful system to dissect the cell death process and to
test the distinct contributions of targeted neuronal cell types to
cortical network physiology in vivo.

Calcium dynamics and mitochondrial fission during apoptosis.
We next explored whether 2Phatal could be used to investigate
subcellular, molecular and organelle dynamics during
apoptosis. Calcium signalling is of fundamental importance
during the apoptosis cascade26,27. We thus labelled neurons
with the genetically encoded calcium indicator GCaMP6s
via adeno-associated virus (AAV1) injected intrathecally
(see Methods) or in SSTcre:GCaMP6s transgenic mice.
Repeated in vivo time-lapse imaging in awake, head-fixed mice
revealed that cells subjected to 2Phatal demonstrated a robust rise
in intracellular calcium concentration characterized by sustained
increases in GCaMP6 fluorescence in both cell bodies and
dendrites (Fig. 5a,b and Supplementary Movie 4). The calcium
overload occurred 2–3 h after H33342 photobleaching and
coincided temporally with the initiation of nuclear
morphological changes (Fig. 5c and Supplementary Fig. 4).
Within minutes of the cytoplasmic calcium overload, GCaMP6s
fluorescence could be observed transitioning from predominantly
cytoplasmic labelling to both cytoplasmic and nuclear
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distribution, suggesting an alteration in permeability at the
nuclear envelope28 (Fig. 5d and Supplementary Movie 5).
Quantification before and after 2Phatal induction revealed
a significant decrease in calcium spike events (n¼ 11 cells from
4 mice) compared with normal adjacent cells (n¼ 14 cells from 4
mice) at both 2 h (P¼ 0.0001) and 6 h (P¼ 0.0213), and in
the overall fluorescence fluctuations (P¼ 0.0102 at 2 h, P¼ 0.0267
at 6 h) (significance determined by multiple t-tests with
Holm–Sidak correction) (Fig. 5e,f). These results demonstrate
in vivo a sustained alteration in calcium homeostasis at early
stages of the apoptotic process.

Feed-forward signals link endoplasmic reticulum calcium
release and mitochondrial function during early stages of
apoptosis26,29. To precisely monitor mitochondrial dynamics at
different stages of the apoptotic process, in utero electroporation
was used to fluorescently tag mitochondria in Layer II neurons
(Fig. 6a). In vivo time-lapse imaging of cells subjected to 2Phatal
revealed a progression of mitochondrial fission and
fragmentation in cell bodies and along individual dendrites
starting at 3 h after photobleaching (Fig. 6a). Quantification
revealed a significant decrease in mitochondria size and in their
spread along dendrite branches (n¼ 15 dendrites from 3 mice)
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compared with normal adjacent cells (n¼ 14 from 3 mice) at
both 3 h (Po0.0001) and 6 h (Po0.0001) after initial
photobleaching (significance determined by multiple t-tests with
Holm–Sidak correction) (Fig. 6b and Supplementary Fig. 5).
These data demonstrate for the first time in the live mouse brain a
temporally coordinated sequence of apoptosis- associated calcium
overload and mitochondrial fission. Thus, we conclusively show
that 2Phatal can be used to precisely dissect defined subcellular
processes at high spatio-temporal resolution during DNA
damage-induced apoptosis in vivo.

Fast-spiking interneuron ablation disrupts neuronal activity.
We next determined whether 2Phatal could be used to test the
functional consequences of the loss of distinct neuronal subtypes
to local neuronal circuit function in vivo. Layer II/III parval-
bumin (PV)-expressing fast-spiking interneurons were targeted

in transgenic PVcre:Tomato reporter mice with viral mediated
GCaMP6 pan neuronal labelling (Fig. 7). PVþ interneuron
processes in these mice target the perisomatic region of
neighboring GCaMP6f-labelled pyramidal cells (Fig. 7b); thus,
we hypothesized that 2Phatal of the local PVþ cell population
would alter the spontaneous activity of remaining neurons.
Somatic calcium levels from GCaMP6f-labelled cells were
imaged in awake head-fixed mice over multiple trials before and
1 day after 2Phatal of PVþ interneurons (Fig. 7c,d). 2Phatal
applied to a patch of 8–11 PVþ neurons resulted in a sig-
nificant increase in spike events specifically in cells adjacent to
ablated cells (P¼ 0.019, n¼ 4 mice) but not in control regions
in the same mouse where no cells were ablated (P¼ 0.234,
n¼ 4 mice) (significance determined by paired t-tests) (Fig. 7e).
Thus, 2Phatal can be used to study the discrete functional
consequences of targeted cell removal on the local cortical
circuitry.
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before P¼0.9395, t¼0.0767, df¼ 23; 2 h P¼0.000124, t¼ 5.05, df¼ 23; 6 h P¼0.0213, t¼ 2.7778, df¼ 23, as indicated. Right graph shows

quantification of the variance (s.d.) within a single 120 s imaging trial before, 2 and 6 h after 2Phatal induction; significance determined by multiple t-tests

with Holm–Sidak correction before P¼0.7836, t¼0.2779, df¼ 23; 2 h P¼0.0102, t¼ 3.263, df¼ 23; 6 h, P¼0.0267, t¼ 2.678, df¼ 23, as indicated.

Normal n¼ 14 cells from 4 mice, 2Phatal n¼ 11cells from 4 mice (df¼ degrees of freedom).
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Cell-type-specific progression of apoptosis. Next, we determined
whether we could investigate apoptotic mechanisms in
non-neuronal cell types. We first tested the effectiveness of 2Phatal
to induce astrocyte apoptosis. H33342-labeled astrocytes were
identified by concomitant SR101 labelling or in transgenic
Aldh1L1cre:Z/EG cytoplasmic GFP reporter mice (Fig. 8). Similar to
neurons, brief bleaching of H33342 within astrocytes induced
nuclear pyknosis and formation of apoptotic bodies (Fig. 8b
and Supplementary Fig. 6) leading to cell death that was also
proportional to laser scan time (n¼ 18–20 cells per condition, from
4 mice for SR101 labelling). Astrocyte apoptosis initiation was
not dependent on the method of astrocytic labeling as
GFP-only-labelled astrocytes and SR101-labelled astrocytes
initiated apoptosis at similar time points (Supplementary Fig. 6).
Interestingly, unlike neurons that consistently died within 1–2 days
after photobleaching (Fig. 4c), astrocyte apoptosis initiation was
delayed until 4–5 days (Fig. 8b), despite both their initial brighter
nuclear labelling and subsequent greater degree of
photobleaching (Fig. 1c and Supplementary Fig. 7). This previously
unknown difference in the initiation of apoptosis between neurons
and astrocytes suggested fundamental cell intrinsic differences in
the response to DNA damage between these cell types.

The protracted initiation of cell death in astrocytes provided a
unique time window for investigation into subcellular response
mechanisms occurring during this 3–4-day period preceding
terminal apoptosis. We first tested at what stage mitochondrial
fission events occurred in astrocytes by using cre-dependent GFP
mitochondria reporter mice (ACTINcre:PhAM; see Methods)
(Fig. 8c). We found that mitochondrial fission in astrocytes
occurred 3–4 days after 2Phatal induction, consistent with our
finding that the initiation of nuclear condensation was markedly
delayed in astrocytes (3–4 days) compared with neurons (2–4 h)
(Supplementary Fig. 7). In contrast to the late astrocytic
induction of nuclear pyknosis and mitochondrial fission, live
imaging of Aldh1L1-EGFP bacTRAP transgenic mice, in which
the ribosomal subunit L10a is tagged with enhanced GFP
(EGFP)30, suggested that ribosomes were rapidly disassembled
1 day after 2Phatal induction, well before any other cellular
changes associated with apoptosis (Fig. 8e–g, Supplementary
Fig. 6 and Supplementary Movie 6, n¼ 12 cells for each condition
from 3 mice). Thus, ribosomal disassembly and degradation

may constitute one of the earliest mechanisms during DNA
damage-mediated apoptotic death.

Ablation of NG2 glia, pericytes and zebrafish hair cells. We
next tested whether 2Phatal was effective at killing of other cell
types in the adult central nervous system. NG2 glia (also known
as oligodendrocyte progenitor cells or polydendrocytes31) and
vascular pericytes were identified and imaged in vivo (constitutive
and inducible NG2cre:mT/mG, NG2cre:ZEG and NG2creER:mT/
mG transgenic mice were used, see Methods)32 (Fig. 9a). For
NG2creER:mT/mG mice, low-dose tamoxifen injections were
used to label single cells33. In vivo time-lapse imaging of NG2 glia
subjected to 2Phatal resulted in nuclear pyknosis and formation
of apoptotic bodies along single processes (Fig. 9b,c and
Supplementary Fig. 8) leading to apoptotic death over 24 h.
Neighbouring non-ablated NG2 glia processes invaded the
territory of the ablated cell over the following days
(Supplementary Fig. 8). Similarly, in vivo imaging of vascular
pericytes subjected to 2Phatal revealed apoptotic cell death over
2–3 days (Fig. 9). In addition to testing the efficiency of 2Phatal
for cell ablation, mitochondria were fluorescently tagged in NG2
glia and vascular mural cells, and imaged in vivo during the
apoptotic process (Fig. 9e). Consistent with our findings in
neurons and astrocytes, both NG2 glia and pericytes displayed
mitochondrial fission events coinciding with nuclear
condensation (Fig. 9f,g). Thus, 2Phatal provides a simple,
powerful tool for exploration of apoptotic mechanisms and
functional roles played by these understudied central nervous
system cell populations.

Finally, we tested whether 2Phatal could also be used in
zebrafish. H33342 was used to label neuromast hair cells in the
lateral line, a mechanosensory cell type similar to the mammalian
inner ear hair cells that is used by zebrafish for navigation
(Fig. 10a,b). Using 2Phatal, we induced death of single hair cells
labelled in a Prox1-RFP reporter transgenic line (Fig. 10c–e).
Time-lapse imaging of single cells revealed consistent nuclear
pyknosis followed by what appeared to be extrusion of the
condensed nuclei from the local cluster of cells (Fig. 10e and
Supplementary Movie 7). Single cells followed a stereotyped
condensation and extrusion behaviour ranging from 1 to 6 h
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(n¼ 9 cells from 3 fish) after initial photobleaching (Fig. 10f),
remarkably similar to the time course of neuronal apoptosis in
the mouse cerebral cortex. Thus, 2Phatal can be used to study cell
death mechanisms and functional consequences of single-cell
removal in both mice and zebrafish, and likely in many other
species.

Discussion
We have developed a powerful platform for spatiotemporally
targeted single cell ablation in the live animal. The following
features set 2Phatal apart from previous cell ablation
methods. First, rapid nucleic acid dye photobleaching with a
femtosecond-pulsed two-photon laser results in targeted
apoptosis evidenced by stereotyped nuclear pyknosis, formation
of apoptotic bodies, phosphatidylserine membrane exposure,

calcium overload and mitochondrial fission. Second, it does not
induce acute microglial activation or collateral damage to
neighbouring cells or immediately adjacent synapses. Third, at
the concentrations we used, nucleic acid dyes are non-toxic, can
be used to image nuclear dynamics and are cleared from the cells
over short times. Fourth, this method can be relatively high
throughput due to the short bleaching times and can be adopted
for multiple cell types and animal species with conventional
two-photon systems and without the requirement of
time-consuming and often not feasible molecular manipulations.
Thus, 2Phatal allows precise dissection of cellular and molecular
mechanisms of DNA damaged-induced apoptosis, cell debris
clearance and functional consequences of single-cell loss for the
first time in the live animal.

Similar photochemical methodologies have been previously
used mostly for single molecule inactivation via light induced
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local production of ROS (CALI)4,7,18,34. Chromophores used in
past studies range from exogenously applied dyes such as
Malachite green4 and Fluorescein7 to genetically encoded
fluorescent proteins such as EGFP6, KillerRed8, miniSOG9,10

and SuperNova35 targeted to the cell or molecule of interest.
CALI has mainly been used in cell culture systems and, in some
cases, optically accessible transparent animal models such as
Caenorhabditis elegans, Drosophila melanogaster and
zebrafish4,5,7,10,36,37. Importantly, previous approaches have not
been successfully used in the live mammalian brain due to
difficulties in targeted cell labeling and prohibitively long
illumination protocols (on the order of minutes to hours, in
contrast to seconds with 2Phatal), with significant off target
damage associated with the non-focal illumination methods.

The focal illumination properties of femtosecond pulsed lasers
could overcome these issues and two-photon inactivation of
GFP-labelled proteins has indeed been demonstrated19. However,
in vivo two-photon CALI with fluorescent proteins has not been
established and, based on our data, its extension to cell ablation
in vivo is likely to be limited (Supplementary Fig. 1). 2Phatal
overcomes these issues by using a femtosecond pulse laser to
cause highly focal and very brief photobleaching (5–10 s) of a
nuclear-targeted photosensitizer. This provides a tunable and
reproducible system for single cell in vivo induction of apoptosis
without the off target effects seen with other ablation methods.

In addition to photochemical methods, other approaches for
cell ablation have been developed based on transgenic expression
of toxin receptors or apoptotic pathways15–17. However,
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genetically targeting specific cell populations can be prohibitive
due to lack of cell type specificity and inability to exclusively
deliver genetic modifiers to defined cell populations in the live
brain or other organs. This is particularly true for populations of
cells with overlapping molecular expression in which genetically
encoded systems could result in off target cell ablation.
Furthermore, unlike 2Phatal, these approaches do not permit
experimental targeting of single cells for ablation. For a direct
example, we used 2Phatal for specific ablation of NG2 glia and
vascular pericytes, which is not currently possible using
genetically encoded Diphtheria toxin receptor due to a lack of
exclusive molecular identifiers for each cell population. Thus, as
one example, this approach provides a means to investigate in the
intact brain the roles of NG2 glia separately from the function of
pericytes in vascular homeostasis.

To date, attempts at spatiotemporal targeted ablation
in zebrafish and mammalian systems have been limited to
long ultraviolet illumination or two-photon thermal
ablation11,13,14,21–24. However, ultraviolet illumination causes

membrane damage and even mild thermal ablation protocols
cause spilling of cellular contents, which induce rapid microglial
activation (Fig. 3 and Supplementary Movie 2)25,38. This
prohibits studies of apoptotic mechanisms or fine structural
and functional investigation of adjacent non-ablated cells. 2Phatal
overcomes these limitations by initiating apoptosis at the
single-cell level with low laser intensity and without acute
microglial activation or damage to adjacent cells.

Very little is known about dynamic cellular and molecular
events occurring during single-cell apoptosis in intact living
organisms. 2Phatal now allows studies of these apoptotic
mechanisms in multiple organs and species. We used 2Phatal
to show distinct phases of single-cell apoptosis revealing calcium
overload and mitochondrial fission events in neuronal cell bodies
and processes. Furthermore, our preliminary findings suggest a
previously unrecognized process of ribosomal disassembly at very
early stages of apoptosis well before calcium overload, nuclear
condensation and mitochondrial changes. It is possible that these
findings represent breakdown in polysome structure39 and
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indicate decreased protein translation early during the
commitment phase of the apoptosis cascade40–42 . In addition,
application of 2Phatal to multiple cell types in the nervous
system revealed intriguing temporal differences in the initiation
phases of the apoptotic cascade, which probably represent
unique cell-type-specific DNA damage responses or ROS
buffering mechanisms43,44. Thus, 2Phatal now provides a
means to investigate these phenomena in a physiological in vivo
system.

Once apoptosis has occurred, phagocytic mechanisms of cell
clearance are critical for maintaining tissue homeostasis24,45,46.
2Phatal also provides a new platform for investigating such
mechanisms of clearance of apoptotic cells in numerous
genetically modified organisms to dissect molecular and cellular
pathways involved in physiological and pathological phagocytosis
by microglia and other cells. For example, our intriguing
observation that dying zebrafish hair cells may be extruded from
the neuromast is consistent with recent observations of cell
extrusion events in developing Xenopus laevis brain47. It is likely
to be that such mechanisms are found in multiple developing organ
systems and 2Phatal provides a robust system for studying them.

Finally, once cells are removed, there are likely to be robust
tissue remodelling changes and circuit-based disturbances.
2Phatal of a focal population of fast spiking interneurons resulted
in a local increase in spontaneous activity in neighboring cells.
These findings are consistent with data acquired with optogenetic
silencing approaches48 however additional experiments are
necessary to discern the cellular mechanisms behind this
finding. Importantly, 2Phatal now provides a system for
studying these and other consequences of single cell removal in
live animals. Combined with functional probes of calcium and
voltage, removal of distinct neurons or astrocytes could be used
for targeted single-cell disruption and interrogation of neural
circuits.

Methods
Animals. All animal procedures were approved by the Institutional Animal
Care and Use Committee. Both male and female mice aged P30–P150 housed in a
12/12 h light/dark cycle housed 2–5 per cage were used in these studies. No animals
were excluded from analysis. The following transgenic mouse lines were used for
visualization of defined cell populations in the live brain: Thy1-YFPh49 (Jackson
Labs 003782), Thy1-GFPm (Jackson Labs 007788), CX3CR1-GFP50 (Jackson Labs
005582), PVcre51 (Jackson Labs 008069), Aldh1L1cre52 (Jackson Labs 023748),
Aldh1L1-bacTRAP-EGFP30 (provided by Dr Flora Vacarino, Yale University),
NG2cre53 (Jackson Labs 008533) also used as ACTINcre based on cre
recombination in male germ cells54, NG2creER55 (Jackson Labs 008538), SSTcre56

(Jackson Labs 013044), nT/nG57 (Jackson Labs 023035), tdTomato Ai9 (ref. 58)
(Jackson Labs 007909), PhAM59 (Jackson Labs 018385), Z/EG60 (Jackson Labs
003920) and mT/mG61 (Jackson Labs 003920). Zebrafish were imaged from 48
to 96 h post fertilization. The following transgenic zebrafish lines were used:
Tg(kdrl:EGFP) (KDR-GFP)62 and TgBAC(prox1a:KALTA4,4xUAS-
ADV.E1b:TagRFP) (Prox1-RFP)63.

Surgery and in vivo imaging. For all mouse experiments, cranial windows were
used. Briefly animals were anaesthetized via intraperitoneal injections of
100 mg kg� 1 ketamine and 10 mg kg� 1 xylazine or via inhaled isoflurane. A region
of the skull (3� 3 mm) was gently removed with a high speed drill and the
underlying dura was removed. A small 0 glass coverslip was placed over the skull
to allow long term optical access for in vivo imaging. In some cases, cerebral
vessels were visualized by intravenous injection of 70,000 MW Texas Red dextran
(ThermoFisher catalogue number D1830). Repeated SR101 labelling of astrocytes
and oligodendrocytes was performed via intravenous injections64. In some cases,
Alexa-488 Annexin V (ThermoFisher catalogue number A13201, 1:50 dilution)
was applied topically to the cortical surface for one hour and washed for 10 min to
detect phosphatidylserine on apoptotic cells.

In vivo images were acquired using a two-photon microscope (Prairie
Technologies) equipped with a mode-locked MaiTai two-photon laser (Spectra
Physics) and � 20 water immersion objective (Zeiss 1.0 numerical aperture). For
all experiments except GCaMP6s calcium imaging, animals were anaesthetized
with ketamine/xylazine or inhaled isoflurane. For GCaMP6s imaging, time-lapse
images were acquired in awake head-fixed mice as described33 The two-photon
laser was tuned to the following wavelengths for optimal excitation of particular

fluorophores: 775 nm for H33342 and Tomato; 900 nm for GFP, yellow fluorescent
protein (YFP), mGFP, mTomato, nTomato, GCaMP6s, SR101, Annexin V,
mRuby2 and Texas Red dextran; and 1,030 nm for Tomato. In some cases, to
faithfully detect and display co-localization between 775 nm excited H33342 and
fluorescent proteins only excited by 900 nm, sequential multi-wavelength imaging
was used. Images were displayed as an overlay to visualize both nuclear dye and
fluorescent proteins.

2Phatal. To induce photobleaching and apoptotic cell death, nuclei were labelled
in vivo using Hoechst 33342 (ThermoFisher catatlogue number H5370). The dye
was either applied topically (0.04–0.01 mg ml� 1 diluted in PBS) to the cortical
surface for 10 min and then thoroughly washed with PBS or injected intravenously
(50 ml volume at 10 mg ml� 1) (Supplementary Fig. 1). Labelling was evident within
2 h and remained for B7–10 days (Supplementary Fig. 1). To induce 2Phatal,
single ROIs (20� 20 pixels, 8� 8 mm) were selected and centred on defined nuclei.
Laser wavelength was set to 775 nm and pixel dwell time was set to 100 ms.
Photobleaching was achieved by 5–20 s laser scanning per cell as indicated in
the text with laser intensities varying between 21.3 and 45.4 mW as indicated,
measured at the objective-sample interface with a power meter. After initial
optimization of laser scan time and intensity (Figs 1–4), a 10 s laser scan time per
cell with defined 8� 8 mm ROI was used for all subsequent experiments.

Viral infection and in utero electroporation. The following viruses were used
to label neurons with GCaMP6 as indicated. Viruses were obtained from
Penn Vector Core and based on Addgene plasmid 50942: AAV1.hSyn1.mRu-
by2.GSG.P2A.GCaMP6s.WPRE.SV40 (lot CS0493) with a titre of 3.69e13
GC ml� 1 (Fig. 5) or AAV9.Syn.GCaMP6f.WPRE.SV40 (lot CS1001) with a titre of
7.648e13 GC ml� 1 (Fig. 7). Viruses (diluted 1:10 in PBS) were delivered via
injection into the subarachnoid space resulting in widespread labeling of cerebral
Layer II/III neurons or superficial astrocytes without direct injection in the
cortex. The following plasmids were used for in utero electroporation to label
mitochondria: tdTomato-mito-7 (ref. 65) (Addgene 58115). In utero
electroporation was conducted at embryonic day 15.5 to label Layer II neurons66.
Briefly, timed pregnant mice were anaesthetized with a mixture of ketamine and
xylazine. The abdominal region was shaved, sterilized and a 3 cm midline incision
was made in the skin and abdominal muscle. The uterine horns were exposed and
the lateral ventricle of each embryo was pressure injected (Picospritzer II, General
Valve) with plasmid DNA (B0.5 ml volume per embryo) at a concentration of
1 mg ml� 1 followed by electroporation with tweezertrodes (50 V, 4–50 ms pulses
with 1 s pulse interval, BTX Harvard Apparatus) to target Layer II cortical neurons.
The embryos were placed back in the mother, and the muscle and skin were
sutured. Electroporated pups were aged to postnatal day 30 and a craniotomy was
performed over the transfected hemisphere to carry out 2Phatal experiments as
described above.

Zebrafish dye labelling and imaging. Zebrafish aged 49–96 h post fertilization
were labelled with H33342 applied in the water at a concentration of 2.5 mg ml� 1

for 30 min. Fish were then anaesthetized with tricaine methane-sulfonate (Sigma
Aldrich) and embedded in 1% low melting point agarose during imaging. Time-
lapse images were acquired on a Leica SP5 confocal microscope with a � 20 water
immersion objective (Leica 1.0 numerical aperture) at intervals of 10–15 min for
4–8 h. 2Phatal photobleaching of single neuromast hair cells was carried out on the
two-photon microscope as described above. Time-lapse movies were aligned,
analysed and quantified in ImageJ to characterize nuclear condensation, extrusion
and disappearance as indicated.

Quantification and data analysis. For quantification of cell death after 2Phatal
photobleaching (Figs 1,4 and 8), cell nuclei were characterized as normal,
condensed or absent as indicated in Fig. 1g at the days indicated in the text and
figures. Quantification was performed blind to laser intensity and scan time for
each experiment. For quantification of acute microglia response to thermal ablation
or 2Phatal (Fig. 2c), time-lapse images were acquired once per minute for 15 min
before 2Phatal or thermal ablation and then once per minute for 15 min following.
Changes in CX3CR1-GFP fluorescence intensity indicated as DF/F, where F is
initial fluorescence intensity within a circular ROI (radius 50 mm) centred on the
ablated cell were measured for each time point and increase in the fluorescence
intensity was used as an indication of microglia activation (or lack thereof) towards
the targeted cell as shown in Fig. 2. For quantification of axonal bouton plasticity
(Fig. 3b), all boutons within a 20� 20 mm ROI were quantified as present or absent
adjacent to 2Phatal exposed cells and control nuclei within the same image before,
1 day and 2 days after 2Phatal induction. For quantification of calcium dynamics,
time-lapse images were acquired in awake head-fixed mice for three trials (Fig. 5)
or six trials (Fig. 7) at 1 Hz for 120 s each trial and at each time point relative to
2Phatal photobleaching (before, 2 h and 6 h for calcium changes during single-cell
death and 1 day after on neighbouring cells for spontaneous activity after PVþ
interneuron ablation). Changes in GCaMP6 fluorescence intensity indicated as
DF/F where F is baseline fluorescence intensity within a 10� 10 mm ROI centred
on the cell. Spike events were quantified as fluorescence intensity changes greater
than 0.5 change in fluorescence over the average fluorescence for the trial (Figs 5e,f
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and 7d,e). For quantification of changes in mitochondria during apoptosis,
time-lapse fluorescence images were aligned and thresholded. Line profiles were
measured along single dendrites of 2Phatal and control cells as demonstrated
(Supplementary Fig. 5). Percent coverage was determined based on the proportion
of 0 to non-0 values at any given point along the dendrite (Supplementary Fig. 5d).

Statistical analyses were performed using two-tailed unpaired or unpaired
Student’s t-tests with Holm–Sidak correction where appropriate using Graphpad
Prism as indicated in the text and figure legends with significance designated with
P-values o0.05 or by using a 99% confidence interval test (Fig. 2c), or a two-way
analysis of variance with Bonferroni post hoc analysis (Fig. 8g). For cell survival
analysis Log-rank (Mantel–Cox) tests were performed on Graphpad Prism as
indicated in the text. All data were assumed to have a normal distribution and
equal variance for each statistical test and plotted as the mean±s.e.m. as indicated
in each figure legend. No data were excluded from analysis, no randomization was
used to assign experimental subjects and experimenter blinding was not necessary.
No statistical methods were used for predetermined sample size determination. For
each experiment, at least three animals were used with animal and cell numbers
indicated in the text. Each representative image was successfully repeated in excess
of at least three image locations for each animal with sample sizes (n) designates as
single cells followed over multiple days or single animals imaged as indicated in the
text and figure legends.

Data availability. The data that support the findings of this study are available
from the corresponding author on reasonable request.
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