
sensors

Article

Structural Damage Diagnosis-Oriented Impulse
Response Function Estimation under
Seismic Excitations

Jian-Fu Lin 1 , Junfang Wang 2,*, Li-Xin Wang 1 and Siu-seong Law 3

1 Center of Safety Monitoring of Engineering Structures, Shenzhen Academy of Disaster Prevention and
Reduction, China Earthquake Administration, Shenzhen 518003, China; linjianf@hotmail.com (J.-F.L.);
wlx@szadpr.cn (L.-X.W.)

2 College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China
3 School of Civil Engineering, Chongqing University, Chongqing 400045, China;

siu-seong.law@connect.polyu.hk
* Correspondence: flora.wang@connect.polyu.hk

Received: 31 October 2019; Accepted: 2 December 2019; Published: 9 December 2019
����������
�������

Abstract: Impulse response function (IRF) is an ideal structural damage index for the identification
of structural damage associated with changes in modal properties. However, IRFs from multiple
excitations applied at different degrees-of-freedoms jointly contribute to the dynamic response, and
their estimation is often underdetermined. Although some efforts have been devoted to the estimation
of IRF for a structure under single excitation, the case under multiple excitations has not been fully
investigated yet. The estimation of IRF under multiple excitations is generally an ill-conditioned
inverse problem such that an incorrect or non-feasible solution is common, preventing its application
to damage detection. This work explores this problem by introducing dimensionality reduction
transformation matrices relating two sets of IRFs of a structure with discussions on the performance of
the non-unique transformation matrices. Then, the extraction of IRF via wavelet-based and Tikhonov
regularization-based methods are compared. Finally, a numerical study with a truss structure is
conducted to validate the estimation of the IRFs and to demonstrate their applicability for damage
detection under seismic excitations. Both the damage locations and severity are accurately identified,
indicating the proposed methodology can enable the IRFs estimation under multiple excitations for
successful damage detection.

Keywords: impulse response function estimation; multiple excitations; structural damage diagnosis;
inverse problem

1. Introduction

Structural health monitoring (SHM) has played an important role in the fields of mechanical
and civil engineering in the last few decades. Early detection of damage in a structure during its
service life has attracted much attention because structural degradation is inevitable once structures
are built. Many civil structures are currently suffering from local damages. If these local damages
cannot be identified in time, serious global structural failures may happen from extreme loadings or
accidents, as shown in Figure 1. The occurrence of damage in a structure due to the change of physical
properties produces changes in a structure’s dynamic characteristics, such as its natural frequencies,
mode shapes, modal damping, frequency response function (FRF), impulse response function (IRF),
etc. The understanding and application of these changes are needed for the identification of damage
locations and severities. Comprehensive reviews [1–3] on vibration-based damage detection methods
have been performed. Natural frequencies, mode shapes, and their derivatives (e.g., model shape
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curvature, flexibility matrixes, and modal strain energy, etc.) are usually taken as damage detection
indices in the frequency domain. However, natural frequencies have been found insufficiently sensitive
to detect local damage in a highway bridge structure [4], and measurement errors in mode shapes
extraction often result in large false alarms in mode shape-based damage detection [5]. Nagarajaiah
and Yang et al. [6–8] have devoted to techniques in improving the accuracy of output-only modal
identification for structural health monitoring. Recently, Zhou et al. proposed a transmissibility-based
damage detection method, which is feasible for identifying damage in pipelines and bridges [9,10].
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Figure 1. Typical damages for different kinds of civil structures: (a) Soil settlement-induced damage; (b)
construction work-induced collapse; (c) strong wind-induced buckling; (d) severe earthquake-induced
collapse; (e) ship collision-induced damage; (f) foreign object (pile) invasion-induced damage.

Since damage detection indices in frequency-domain are sometimes not sufficiently sensitive to
local damages when a limited number of sensors are available, other researchers directly used structural
dynamic responses for model updating and damage detection without having modal extractions.
Cattarius and Inman [11] employed phase shift in the time history of structural vibration response to
identify the presence of local anomalies in a plate-like structure as well as a helicopter blade section.
Choi and Stubbs [12] formed the damage index directly from the time response to locate and quantify
local anomalies in a structure. Kang et al. [13] presented a system identification scheme in time-domain
to estimate stiffness and damping parameters of a structure using measured accelerations, and a
regularization technique was employed to alleviate the ill-condition of system identification. Later, Lu
and Law [14] developed a response sensitivity-based damage detection method to solve the structural
damage detection problem in time-domain, which could identify local changes in structure from a
few measurement locations. However, the updated results were subject to the effect of measurement
noise. More recently, Lin and Xu [15–19] proposed a covariance-based multi-sensing damage detection
method with optimal sensor placement in which the damage index was sensitive to local damage but
insensitive to measurement noise. Other researchers also developed data-driven damage detection
methods incorporating artificial intelligence algorithms [20–26].

Most of the above time-domain damage detection approaches rely on the need of an externally
applied excitation. It is noted that most of the existing health monitoring systems for civil structures
operate continuously, and only ambient excitation can be used for the condition evaluation of these
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structures. Moreover, structural health monitoring based on ambient excitation (e.g., environmental
excitation or traffic vibration) would be the most desirable approach because of its low cost and easy
operation. Li and Law [27] have proposed a structural condition assessment approach under ambient
white noise excitation. This has been further developed by Li and Law [28] and Law et al. [29], where a
new covariance of covariance (CoC) matrix was formed from autocorrelation/cross-correlation functions
of structural-acceleration responses. The components of the CoC matrix were found more sensitive
to local stiffness reduction than modal frequencies and mode shapes. Researchers [30,31] suggested
conducting structural safety assessments by using ambient vibration data from different seismic
stations throughout regions that are prone to earthquakes. They took advantage of the microtremor
of the earth, which could provide sufficient energy for damage detection. Ma et al. [32] presented a
structural damage diagnosis and assessment method for detecting, locating, and quantifying structural
damage by directly using structural vibration under seismic excitation. Limongelli [33] proposed an
interpolation damage detection method for frames under seismic excitation.

The above time-domain damage detection methods often rely on the damage-induced change of
structural dynamic responses, such as acceleration, displacement, strain or stress response, before and
after damage occurrence. Dynamic responses are, however, subjected to the variation of excitations.
On the other hand, IRFs are intrinsic functions of the system, which are related only to excitation
location. To reduce uncertainties in the excitation, IRF, instead of the corresponding dynamic response,
is considered as a suitable candidate in the damage detection process. Robertson et al. [34,35] have
addressed the use of a discrete wavelet transform (DWT) for the estimation of IRFs from the vibration
records. Their research also has shown that the discrete wavelet transformation-based method
outperforms the Fourier transformation-based method in extracting the IRFs. Law and Li [36] proposed
the IRFs as a damage index for damage detection, and the IRFs were estimated via a discrete wavelet
transform approach from acceleration responses of a structure under a sinusoidal force. Li and Law [37]
extended the IRFs extraction from acceleration responses of a structure under support excitation for
damage identification, avoiding the limitation of requiring a large amount of input energy. Later, Li and
Wang [38] developed a new covariance matrix formulated from the IRF of acceleration responses for
damage detection with satisfactory results. Li and Hao et al. [39] integrated IRF extraction with optimal
sensor placement for damage detection. Recently, Li et al. [40] proposed a damage identification
method with a fusion of estimates from the covariance of IRF in different frequency bands. All the
above literatures on the extraction of IRF for damage detection consider only single excitation of
a structure. Few efforts have been devoted to the estimation of IRF function for a structure under
multiple excitations. For example, Law and Lin [41] proposed the extraction of IRF via Tikhonov
regularization from acceleration responses of a structure under multiple excitations. However, the
estimation of IRF is usually an ill-conditioned inverse problem such that an incorrect or non-feasible
solution is common, preventing its application in damage detection, especially for a structure under
multiple excitations.

Since the IRFs with multiple excitations applied to different degrees-of-freedom of the structure
jointly contribute to a dynamic response, their estimation is most probably underdetermined. Moreover,
the dimensionality reduction transformation matrices and IRFs extraction methods are not unique.
To explore this further, the authors in [41] and their colleagues will discuss IRF estimation by using
another dimensionality reduction transformation matrix, as well as compare the IRF estimation from
two extraction techniques in this paper. The dimensionality reduction transformation matrices relating
two sets of IRFs of a structure is firstly introduced. A better matrix is then obtained after evaluating
the performance of the non-unique transformation matrices. Secondly, the extraction of the IRF via
wavelet-based and Tikhonov regularization-based extraction methods are described and compared.
Thirdly, an optimal sensor placement method based on the principle of minimizing the estimation error
is further proposed in this paper. Finally, numerical study with a plane truss structure is conducted to
verify the estimation of the IRFs and demonstrate its application in damage detection. The damage
detection results indicate that the regularization-based approach has a more superior transformation
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matrix, giving an accurate and satisfactory inverse solution. Its application to structural damage
detection is also robust to measurement noise.

2. Methodology

2.1. The Impulse Response Function

The equation of motion of a linear damped structural system with N degrees-of-freedom (DOFs)
can be written as follows when under a unit impulse excitation:

M
..
x(t) + C

.
x(t) + Kx(t) = D · δ(t) (1)

where δ(t) is the Dirac delta function.
The impulse response function (IRF) is the response function of a system under the input of a unit

pulse and is an intrinsic function of the structural system. When the system is in static equilibrium
initially, the IRF can be computed from the following using the Newmark method as M

..
h(t) + C

.
h(t) + Kh(t) = 0

h(0) = 0,
.
h(0) = M−1D

(2)

where h(t),
.
h(t), and

..
h(t) are the N × 1 IRF of displacement, velocity, and acceleration vectors,

respectively.
The following studies mainly consider IRF estimation from acceleration responses due to its

relative ease of measurement and high signal-to-noise ratio. The estimation of IRFs from displacement
or velocity responses is similar. When the structural system is under a single excitation f (t), the
acceleration response

..
xl(t) from location l at time t can be obtained from the Duhamel integral as:

..
xl(t) =

∫ t

0
f (t− τ)

..
hl(τ)dτ (3)

and when written in discretized form,

..
xl(p) =

p∑
i=0

f (p− i)
..
hl(i) (4)

where p is the number of data points. Equation (4) can be rewritten in matrix form as:

..
xl = F ·

..
hl (5)

with

..
xl =



..
xl(0)
..
xl(1)
· · ·

..
xl(p)
· · ·

..
xl(n− 1)


n×1

; F =


f (0) 0 · · · 0
f (1) f (0) · · · 0

...
...

. . .
...

f (n− 1) f (n− 2) · · · f (0)


n×n

;
..
hl =



..
hl(0)..
hl(1)
· · ·

..
hl(i)
· · ·

..
hl(n− 1)


n×1

(6)

It is noted that the excitation f (t) has been implicitly expressed in matrix F and n is the total
number of time instants.

The acceleration response
..
xl(t) in Equation (3) can also be obtained as
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..
xl(t) =

∫ t

0

..
hl(t− τ) f (τ)dτ (7)

with a discretized form as
..
xl(p) =

p∑
i=0

..
hl(p− i) f (i) (8)

When written in matrix form, we have

..
xl = Hl · f (9)

with

Hl =



..
hl(0) 0 · · · 0
..
hl(1)

..
hl(0) · · · 0

...
...

. . .
...

..
hl(n− 1)

..
hl(n− 2) · · ·

..
hl(0)


n×n

; f =



f (0)
f (1)
· · ·

f (i)
· · ·

f (n− 1)


n×1

(10)

It is noted that the IRF
..
hl(t) is implicitly expressed in matrix Hl in Equation (10).

2.2. Estimation of IRF

The IRF cannot be obtained directly from the measurement. It has been reported [35,36] that the
IRF can be extracted via the wavelet transform from known measured responses and input excitation
information to avoid errors in the Fourier transformation process of both the input and output signal.
However, the estimation of IRF is generally an ill-conditioned inverse problem when an incorrect or
non-feasible solution is not properly constrained. A Tikhonov regularization-based method for IRF
estimation from acceleration responses of a structure under multiple excitations has been proposed [41].
Different estimation methods often have different errors in the IRF estimation. This paper will compare
the performance of the wavelet-based method and Tikhonov regularization-based method in the
estimation of the IRFs.

2.2.1. IRF Estimation via Discrete Wavelet Transform

The wavelet-based method for estimating the IRF function will be introduced briefly below.
Applying the discrete wavelet transform (DWT) to f (t− τ) and

..
hl(τ) in Equation (3) separately, we

can get:
..
xl(t) =

∫ t
0

[
f DWT
0 (t)ϕ(τ) + f DWT

1 (t)ψ(τ) + · · ·+ f DWT
2 j+k

(t)ψ(2 jτ− k)
]

×

[ ..
h

DWT
l,0 ϕ(τ) +

..
h

DWT
l,1 ψ(τ) + · · ·+

..
h

DWT
l,2 j+kψ(2 jτ− k)

]
dτ

(11)

where ϕ(τ) and ψ(τ) are the scaling function and the mother wavelet function, respectively.
Equation (11) can be rewritten in matrix form for the time series with the orthogonal conditions
for both the translation and scale of the Daubechies wavelets as:

..
xl = FDWT

·

..
hl

DWT (12)

where matrix FDWT and vector
..
hl

DWT are the force matrix F and unit impulse response vector
..
hl after

discrete wavelet transform, respectively. The vector
..
hl

DWT can be computed from:

..
hl

DWT = FDWT†
·

..
xl (13)

and the estimated
..
hl is obtained by inverse discrete wavelet transform as:
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..
hl = IDWT(

..
hl

DWT) (14)

where DWT and IDWT denote the discrete wavelet transform and the inverse discrete wavelet
transform operations.

2.2.2. IRF Estimation via Tikhonov Regularization

The Tikhonov regularization method [42] is one of the widely used techniques to solve the
ill-conditioned equation effectively. Accordingly, the IRF estimation via Tikhonov regularization can
be expressed as

arg min..
hl

fobj(
..
hl) = ||F ·

..
hl −

..
xl||

2
2 + λ2

||

..
hl||

2
2 (15)

The regularization parameter λ ≥ 0 controls the extent of contribution of the errors to the cost
function, and the term

..
hl is obtained by minimizing the cost function. An explicit solution can be

given as
..
hl =

(
FFT + λI

)−1
FT ..

xl (16)

where I is the identity matrix. Then, the singular value decomposition of F is given as

F = UΣVT = [u1, u2, · · · , um]diag(σ1, σ2, · · · , σr)
[
vT

1 , vT
2 , · · · , vT

n

]
(17)

Thus, the regularized solution of the estimated
..
hl is given by [42]

..
hl = V

(
Σ2 + λI

)−1
ΣUT ..

xl =
r∑

k=1

σ2
k

σ2
k + λ

uT
k

..
xl

σk
vk (18)

It is noted that the
σ2

k
σ2

k+λ
can be viewed as a filtering factor, which suppresses the solution terms

corresponding to the small singular values and make the solution insensitive to disturbances.

2.3. Dimensionality Reduction Transformation

The IRF estimation for a structure under multiple excitations was seldom studied as compared
to that when under single excitation [34,35,38,39]. Dimensionality reduction transformation matrices
have been suggested [41] to facilitate the IRFs extraction. It is, however, found that the transformation
may take up different forms. This paper aims to discuss the performances of two forms of this
transformation for structural damage detection and assess the accuracy of different approaches for
the IRF estimation. The IRF functions obtained from different excitations will be compared in the
following sections.

An engineering structure is, in general, under multiple excitations, and its acceleration response
can be expressed explicitly as a linear superposition of the IRFs as:

..
xl = Fe1 ·

..
hl,e1 + Fe2 ·

..
hl,e2 + · · ·+ Fei ·

..
hl,ei + · · ·+ Fer ·

..
hl,er + · · ·+ Fem ·

..
hl,em

=
[

Fe1 Fe2 · · · Fei · · ·Fer · · · Fem

]
·

[ ..
hl,e1

..
hl,e2 · · ·

..
hl,ei · · ·

..
hl,er · · ·

..
hl,em

]T (19)

where the subscript l denotes the sensor’s location; the subscript ei and er denote the ith, rth excitation,
respectively; and m is the total number of excitations. Equation (19) can be rewritten as:

..
xl = Fe ·

..
hl,e (20)

where Fe =
[

Fe1 Fe2 · · · Fei · · ·Fer · · · Fem

]
and

..
hl,e =[ ..

hl,e1

..
hl,e2 · · ·

..
hl,ei · · ·

..
hl,er · · ·

..
hl,em

]T
.
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The acceleration response
..
xl can also be expressed implicitly in terms of the IRFs according to

Equation (9) as:

..
xl = Hl,e1 · fe1 + Hl,e2 · fe2 + · · ·+ Hl,ei · fei + · · ·+ Hl,er · fer · · ·+ Hl,em · fem

=
[

Hl,e1 Hl,e2 · · · Hl,ei · · ·Hl,er · · · Hl,em

]
·

[
fe1 fe2 · · · fei · · · fer · · · fem

]T

= Hl,efe

(21)

where Hl,e =
[

Hl,e1 Hl,e2 · · · Hl,ei · · ·Hl,er · · · Hl,em

]
and fe =[

fe1 fe2 · · · fei · · · fer · · · fem

]T
.

2.3.1. The First Transformation Matrix

Law and Lin [41] proposed a dimensionality reduction transformation matrix, in which a coefficient
transformation matrix Qi between two sets of IRFs can be expressed as:

Hl,er ·Qi = Hl,ei (22)

The transformation matrix Qi can be computed easily with a pseudoinverse from:

Qi = H
†

l,er
·Hl,ei (23)

If the set of IRF
..
hl,er from the rth excitation is taken as the reference set, other sets of IRF

..
hl,ei can be

transformed using Equation (23), and Equation (21) becomes:

..
xl = Hl,er ·Q1 · fe1 + Hl,er ·Q2 · fe2 + · · ·+ Hl,er ·Qi · fei + · · ·+ Hl,er · fer + · · ·+ Hl,er ·Qm · fem

= Hl,er · (Q1 · fe1 + Q2 · fe2 + · · ·+ Qi · fei + · · ·+ fer + · · ·+ Qm · fem)

= Hl,er · f̂e

(24)

where f̂e = (Q1 · fe1 + Q2 · fe2 + · · ·+ Qi · fei + · · ·+ fer + · · ·+ Qm · fem) is the generalized force vector
corresponding to the rth excitation. Note that Equation (24) for the structure under multiple excitations
is in a form similar to Equation (9) for the structure under single excitation, and the matrices are defined
similarly to those in Equation (10).

We can rewrite Equation (24) similar to Equation (5) using the explicit expression of
..
hl,er as:

..
xl = F̂e ·

..
hl,er (25)

with

F̂e =


f̂e(0) 0 · · · 0
f̂e(1) f̂e(0) · · · 0

...
...

. . .
...

f̂e(n− 1) f̂e(n− 2) · · · f̂e(0)


n×n

(26)

2.3.2. The Second Transformation Matrix

The relationship between two sets of unit impulse responses is not unique, and the above is just
one example. Another example for such a relationship can be found easily as:

..
hl,ei = Qi

′
·

..
hl,er (27)

where the transformation matrix Qi
′ is a diagonal matrix with the diagonal elements obtained by the

division operation between
..
hl,ei and

..
hl,er term by term instead of matrix operation.
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Thus, Equation (19) can be expressed as:

..
xl = Fe1 ·Q1

′
·

..
hl,er + Fe2 ·Q2

′
·

..
hl,er + · · ·+ Fei ·Qi

′
·

..
hl,er + · · ·+ Fe j ·

..
hl,er + · · ·+ Fem ·Qm

′
·

..
hl,er

= (Fe1 ·Q1
′ + Fe2 ·Q2

′ + · · ·+ Fei ·Qi
′ + · · ·+ Fer + · · · Fem ·Qm

′) ·
..
hl,er

= F̂′e ·
..
hl,er

(28)

with F̂
′

e = Fe1 ·Q1
′ + Fe2 ·Q2

′ + · · ·+ Fei ·Qi
′ + · · ·+ Fer + · · · Fem ·Qm

′

It is noted that Equation (28) for the structure under multiple excitations is in the form of Equation
(5) under an equivalent excitation, and the matrices are defined similarly to those in Equation (5).
Equations (24) and (28) refer to the case of the structure with an equivalent single excitation after
transformation of the effects from other excitations to that of the reference excitation. Thereafter, the
number of IRFs has been significantly reduced, and they can be solved by wavelet-based method with
Equations (13) and (14) or the regularization-based method with Equation (18).

Transformation matrices Qi and Q′i are special forms of the relationship between any two sets of

IRF functions in the forms of Hl,er and
..
hl,er , respectively. The performances of matrix Qi are studied in

the following examples, while a comparison of the performances of matrices Qi and Q′i will be given
in Section 3.2.

2.4. IRF Estimation-Based Optimal Sensor Placement Method

The sensor locations were arbitrarily selected by experience in [41], and it is noted that different
sensor placement configuration would give different accuracy in the IRF estimation as well as damage
detection result. However, there is no existing optimal sensor placement method suitable for the IRF
estimation-based damage detection under multiple seismic excitations. The transformation matrix
and the estimation method for IRF extraction may induce some uncertainties for damage detection.
To enhance the accuracy of damage detection, an optimal sensor placement method based on the
principle of minimizing the estimation error is proposed in this paper. The normalized IRF estimation
error β can be written as:

β = ‖

..
h

0
r −

..
h

0
a

std(
..
h

0
a)
‖ (29)

where
..
h

0
r and

..
h

0
a are the estimated IRF obtained from the measured acceleration and the analytical IRF

from the finite element model in the initial intact state, and std(•) is the standard deviation operation.
The objective function for selecting the sensor locations with minimum error is expressed as

argmin
θ

fobj(θ)= tr
[
ββT

]
= diag

[
ββT

]
(30)

where fobj(θ) is optimal sensor placement objective function based on the minimization of IRF
estimation error β. Thus, the optimal sensor configuration with a prescribed number of sensors can be
obtained by solving Equation (30).

2.5. IRF Estimation-Based Damage Detection

A sensitivity-based model updating method is adopted for the damage identification. The local
damage is assumed only related to a stiffness reduction as αiKi, where Ki and αi are the elemental
stiffness matrix in the intact state and the stiffness reduction factor of the ith element with 0.0 ≤ αi ≤ 1.0.

2.5.1. Damage Detection Algorithm

The objective function for damage detection is defined as the difference between two sets of IRF
vectors as:

arg min
α

fobj(α) = ||
..
hr(α) −

..
ha(α)||

2
2 (31)
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where
..
hr and

..
ha are the estimated IRF obtained from the measured acceleration in the damage

state and the analytical IRF from the finite element model in the initial intact state, respectively.
The objective function in Equation (31) is minimized and the vector αi of elemental stiffness factors
and the transformation matrices Qi and Q′i in the initial intact finite element model are iteratively
updated as shown in Figure 2 such that the estimated IRF matches well with the analytical IRF in the
damaged state.Sensors 2019, 19, x FOR PEER REVIEW 11 of 21 
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Figure 2. The flowchart of the damage detection by using estimated impulse response function (IRF).

The objection function in Equation (31) can be expressed in first-order Taylor expansion as:

S∆α = ∆
..
h =

..
hr −

..
h

0
a (32)

where the sensitivity matrix S is computed with the finite difference method from the analytical
model as:

S =


..
ha(α+ ∆α) −

..
ha(α)

∆α

 =
∂ ..

ha

∂α1
,
∂

..
ha

∂α2
· · ·

∂
..
ha

∂αne

 (33)

2.5.2. Model Updating Procedure

The damage detection equation in Equation (32) is solved by using the iterative Gaussian–Newton
method with:

Sk
· ∆αk = ∆

..
h

k
(k = 0, 1, 2 · ··) (34)
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where superscript k, ∆αk denote the iteration number and the fractional stiffness reduction at the kth

iteration, respectively. The transformation matrix Qi in Equation (23) takes up the following form
initially from the intact state in the iterative calculation:

Qi
0 = [H

†

l,er
(α0)] · [Hl,ei(α

0)] (35)

The stiffness parameter, sensitivity matrix, and the residual vector from each iteration can be

further expressed as αk+1 = αk + ∆αk, Sk = Sk(αk) and ∆
..
h

k
= [

..
hr(αk)]

k
− [

..
ha(αk)]

k
, respectively, with

an initial set of α0. A detailed implementation procedure of the proposed algorithm is given below:

Step 1: The analytical IRF
..
ha is computed from the analytical finite element model of the structure

under multiple unit excitations using Newmark method.
Step 2: The “measured” acceleration responses

..
xl acquired from selected points of the structure are

computed from the equation of motion of the structure with the analytical finite element model
with local damages and under multiple excitations.

Step 3: Select a reference IRF and compute the transformation matrices Qi by Equation (23) in the
initial intact state. Then, the equivalent generalized force vector f̂e in Equation (10) can be
obtained by using Equation (24), and the equivalent generalized force matrix F̂e can also be
obtained from its definition in Equation (26).

Step 4: The estimated reference IRF
..
hl,er can be obtained by solving Equation (25) with the explicit

expression of an IRF shown in Equation (5).
Step 5: Compute the sensitivity matrix S starting from the initial intact analytical model from Equation

(32).
Step 6: Obtain the fractional stiffness reduction ∆αk from Equation (34) with the adaptive Tikhonov

regularization technique [43].
Step 7: The analytical model of the structure is updated from αk+1 = αk + ∆αk. The sensitivity

matrix is updated from Sk = Sk(αk), and the transformation matrix is improved as Qi
k =

[H
†

l,er
(αk)] · [Hl,ei(α

k)] for the next iteration.

Step 8: Repeat Steps 1 to 7 until the following convergence criteria are achieved.

||

..
hr

k
−

..
ha

k
||

2
2

||

..
hrk||22

≤ toler1;
||∆αk+1

−∆αk
||

2
2

||

k+1∑
i=1

αi ||22

≤ toler2 (36)

The tolerance limits for convergence criteria toler1 and toler2 have been set equal to 10−3 and
10−5, respectively. The maximum iteration number is set equal to 300 in case when the solution is
difficult to converge.

3. Numerical Studies

3.1. The Structure

A simply supported plane truss structure served for the simulation study in this paper consists
of 31 aluminum alloy bars (1.52 m length, 0.0025 m2 cross-sectional area) and 14 nodes (Figure 3).
The finite element model of the truss structure is established by using commercial software MATLAB.
Each bar of the truss structure is simulated as one finite element. The Young modulus and density
of the bar are 70 GPa and 2770 kg/m3, respectively. The structure is supported at nodes 1 and 14.
Both the vertical and horizontal translational restraints at the supports are represented by a large
stiffness of 1.0× 1010 kN/m. Rayleigh damping is adopted for the system with the first two damping
ratios ξ1 = 0.01 and ξ2 = 0.005. The first five natural frequencies are 36.09, 75.63, 132.95, 220.95, and
248.58 Hz, respectively.
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Figure 3. The finite element model of a planar truss structure.

Taking advantage of the microtremor of the earth, sufficient energy for damage detection can be
provided. The Taiwan Chi-Chi seismic excitation was adopted for a damage detection study based
on IRF estimation in [41]. To validate the feasibility of the proposed IRF estimation-based damage
detection method under different seismic excitations, the E1-Centro seismic excitations are selected
in this study. The 2D truss is subjected to E1-Centro seismic excitations acting along both the x-axis
and y-axis of the structure at the supporting nodes without any phase difference. Figure 4a,b show
the seismic acceleration records. Generally, excitations with sufficient energy are more effective to
detect small damage. Therefore, we selected a time duration with a large excitation amplitude from
the seismic records for the study. A ten-second record starting from the 5th to the 15th second are
selected from the El-Centro seismic excitation, and it is labeled as TP in Figure 4. The noise effect in
the measured acceleration responses is reduced by dividing the responses into 10 equal short data
segments for IRF estimation, as shown in Section 3.3. Each data segment lasts for one second and they
are named as TP-#1 to TP-#10, respectively, matching the true time histories, where TP-#1 denotes
data in the 5th second, TP-#2 represents data in the 6th second, and so on, until TP-#10 stands for data
in the 15th second. Only the acceleration response from TP-#1 is used for demonstration of the IRF
estimation, optimal sensor placement, and damage detection in the following sections. It is noted
in [41] that more data segments can be selected for damage detection by conducting a stability check as
some of the data segments may lead to divergence of IRF estimation. To cover the first three modes of
the truss, the sampling rate is selected as 300 Hz. Correspondingly, the original seismic acceleration,
sampled at 100 Hz, is resampled at 300 Hz through linear interpolation in this study.
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3.2. Comparison of Transformation Matrixes Qi and Q′i

In the derivation of the transformation matrices Qi and Q′i above, it is noted that the relationship
between two sets of unit impulse responses is not unique and matrices Qi or Q′i are just one special
form. A comparison of the robustness of the two transformation matrices is needed. It is noted that
two different equivalent excitation force matrices f̂e and F̂e

′ with the definitions given in Equations
(24) and (28), respectively, can be obtained via the transformation matrices Qi and Q′i , respectively.
A check on the components of equivalent excitation force matrices f̂e and F̂e

′ may serve as a qualitative
evaluation of the stability of the transformation matrices indirectly.

The equivalent excitation force matrices F̂e in Equation (26) and F̂e
′ in Equation (28), respectively,

are computed via transformation matrices Qi and Q′i for the IRF estimation at nodes 5 and 12 from
the intact state with one-second measured acceleration response in the recording denoted as TP-#1.
The nonzero elements of equivalent excitation force matrices F̂e and F̂e

′ are plotted and compared in
Figure 5. The equivalent excitation force computed from matrix Qi as Equation (6) is noted more stable
than that computed from the transformation matrix Q′i . The latter has large fluctuations in the data
series, which are due to the term-by-term division operation with a small denominator for obtaining
the transformation matrix Q′i .
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The diagonal elements of matrix Q′i obtained from the vertical IRFs at nodes 5 and 12 are plotted
in Figure 6. There are large values in the diagonal elements numbered 198, 204, 248, 280, and 284 as
shown in Figure 6a, which correspond to the large fluctuations in the nonzero equivalent excitation
force in the IRF estimation at node 5 as shown in Figure 5a. Similar observations are found in Figures 5b
and 6b for the IRF estimation at node 12, where a distinct large value exists in the diagonal element 178
of Q′i . It is clearly noted that a large diagonal element of matrix Q′i would lead to a large fluctuation in
the computed equivalent excitation force. It may therefore be concluded that the transformation matrix
Qi has better performance than matrix Q′i in the computation, and it will be used in the subsequent
studies of IRF estimation and damage detection.
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3.3. Comparison of Two Methods for IRF Estimation

The estimation of the IRF is, in essence, an inverse problem including the solution of the
ill-conditioned equations subject to the effect of measurement noise. The accurate estimation of the IRF
is thus one of the obstacles for its application to identify local structural damages. In this section, the
wavelet-based and regularization-based methods are compared in the estimation of the IRF in noise
contaminated environment.

The intact structure is subjected to El-Centro seismic excitation (see Figure 4) and the acceleration
responses at nodes 5 and 12 in TP-#1 recording with 5% random noise is used for the estimation of
the IRFs. The estimated IRFs via wavelet-based method using Equations (12) and (14) is shown in
Figure 7a from 1 × 300 data. The estimated IRF data points ranging from 0–200 match well with the
true IRF, while large deviations from the true analytical IRF are found close to the end of the estimated
IRF. The estimated IRFs via the regularization-based approach using Equation (18) are demonstrated
in Figure 7b. The regularization-based approach is noted to yield estimates on the IRF with higher
accuracy. A close inspection in Figure 7 shows that the estimation error increases gradually with time
and is particularly noted in the data points towards the end ranging from 200–300. This may be due to
the diminishing signal-to-noise ratio with time as the IRF is a decaying function when the response
diminishes to zero. According to this property of the IRF, a period of stable estimated IRF can then be
selected to reduce the noise effect for subsequent damage detection.

The regularization-based method may also be concluded to be more effective than the
wavelet-based method in estimating the IRF. It is also suggested to have only the first 70% of
the estimated IRF from one measurement in one second, i.e., 1 × 300 × 70% = 210 data points for the
subsequent damage detection when the sampling ratio is 300 Hz.
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3.4. Sensor Placement

The structure is assumed to be under both horizontal and vertical El-Centro seismic excitations,
as shown in Figure 4. The horizontal IRF at each measured node is transformed taking the vertical IRF
at the same node as reference in this study. Twelve accelerometers in the vertical direction from nodes
2 to 13 are selected as candidates for measurement. It is assumed to have only six optimal selecting
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sensors for damage detection. The optimal sensor configuration is obtained by minimizing Equation
(30). The diagonal elements in the matrix

[
ββT

]
are the covariance error of IRF estimation for the

corresponding sensors as shown in Figure 8. Therefore, the sensors installed in the vertical direction of
nodes 2, 3, 4, 8, 11, and 12 are selected for the following damage detection studies.
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3.5. Damage Identification Using the Estimated IRFs

Local damage in the truss structure (Figure 3) is produced by introducing a reduction in the axial
stiffness of individual bars and keeping the inertial properties unchanged. Only one damage scenario
has been studied in the IRF estimation-based damage detection in [41]. To examine the feasibility and
effectiveness of the proposed method for structural damage detection, two multiple damage scenarios
are considered and the details are listed in Table 1. In the first scenario, damages are assumed to occur
in element 4 (diagonal member) and element 5 (lateral member) close to the support of the structure.
Element 4 is of 10% stiffness reduction, while element 5 is of 15% stiffness reduction. In the second
scenario, damages occur in a total of three elements at mid-span of the structure: element 13 (diagonal
member), element 15 (lateral member), and element 16 (vertical member). Elements 13, 15, and 16
have 15%, 10%, and 15% stiffness reduction, respectively. These unknown damages are detected by
solving Equation (32).

Table 1. Numerical studies scenarios and parameters.

Scenarios I II

Damage Element No.
Damage Extent (%)

4th (10%) and 5th (15%) 13th (15%), 15th (10%) and 16th (15%)

Sampling Rate (Hz) 300
Noise Level (%) 0, 3 and 5

Acceleration response data from the truss structure under El-Centro seismic excitation as shown in
Figure 4 with one-second duration in TP-#1 recording is used for IRF estimation and damage detection
study. The damage detection results for the two damage scenarios are depicted in Figure 9a,b. It is
noted that both the damage locations and the damage extents can be identified accurately in the
noise-free cases. When 3% noise is added to the measured acceleration responses, both the damage
locations and the extents can be identified satisfactorily in both damage scenarios. When 5% noise
is added, the damage detection accuracy is reduced with false positives. In damage scenario I, the
damaged elements 4 and 5 are identified with 9.27% and 14.11% stiffness reduction, respectively. Some
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large false positives are noted in the undamaged elements 9 (4.11%), 14 (3.16%), 16 (3.88%), 26 (3.35%),
and 27 (2.23%). In damage scenario 2, the damaged elements 13, 15, and 16 are identified with 14%,
5.97%, and 15.43% stiffness reduction, respectively. Similarly, large false positives are noted in the
undamaged elements 3 (3.37%) and 20 (3.57%). It is believed that the false alarms are generated due to
errors in the inverse computation of the IRF estimation and damage detection. It may be concluded that
the proposed method for damage detection is feasible and accurate under median-level measurement
noise for practical application. In addition, the computation time of the IRF-based damage detection of
the truss structure is about 265–280 s for each damage scenario by using the computer with the Intel(R)
Core (TM) i7-8550U CPU @1.80 GHz 1.99 GHz and 12.0 G RAM.
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scenario 2.
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4. Discussions

The feasibility of structural damage diagnosis based on impulse response function estimation
under multiple seismic excitations has been reported above. This approach has the following distinct
features:

(a) The dimensionality reduction transformation matrices for IRF estimation is not limited to the
seismic excitations. They can be applied to structures subjected to other types of excitations, such
as wind loads and traffic loads. The proposed method is potentially applicable to the damage
detection of different structures such as bridges, buildings, tunnels, offshore platforms, and ships.

(b) It is important to select an appropriate reference IRF; otherwise, it may lead to a large error in the
transformation matrix. This is because of the very small amplitude excited at the inappropriate
reference location. To avoid this problem, IRF from different locations can be compared for
evaluating their suitability to serve as the reference IRF before conducting the estimation.

(c) Finally, it is noted that the IRF estimation and damage detection are prone to noise contamination.
The proposed optimal sensor placement method and the selection of data points in the IRF are
effective to alleviate the noise effect. As shown in the numerical study, both the damage locations
and the extents can be satisfactorily identified under 3% measurement noise. With the increase of
measurement noise to 5%, the damaged elements can be accurately localized, but the precision of
identified damage extent is slightly reduced and small false positives occur. It is believed that the
reduced identification performance and false positives result from a limited number of sensors
and the inverse computation errors of both the IRF estimation and damage detection.

5. Conclusions

A methodology for estimating IRF from structural responses resulted from multiple unknown
excitations is demonstrated and applied in the damage detection of a structure. Two different
transformation matrices are compared for transforming the multiple general excitation problem into an
equivalent single excitation problem. The first transformation matrix Qi is selected due to the higher
robustness. IRFs are then estimated with the first matrix in two IRF estimation methods, namely the
wavelet-based and regularization-based methods. Numerical validation of the proposed estimation
method is conducted with a plane truss structure under seismic excitations. The estimation results
obtained using the regularization-based method are proved more accurate than the wavelet-based
method. Methods to reduce the measurement noise effect on the damage detection results are also
proposed, which include a sensor placement method and the selection of IRF data with a large
signal-to-noise ratio. It is found that the damage locations and the damage extents are accurately
identified in the noise-free cases. Further, the IRF-based damage detection is examined under 3%
and 5% measurement noise, and both the damage locations and the damage extents can be identified
satisfactorily with only several small false alarms. It can be concluded that the proposed method for
damage detection is feasible under median-level measurement noise for practical application.
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List of Symbols

C = the N ×N damping matrix
D = the mapping matrix relating the excitation forces to the corresponding DOFs of the structure
ei and er = denote the ith, rth excitation respectively
f (t) = a single excitation
F = implicitly expressed matrix form of excitation
FDWT = FDWT is the force matrix F after discrete wavelet transform
h(t) = IRF of displacement vector
.
h(t) = IRF of velocity vector
..
h(t) = IRF of acceleration vector
..
hl

DWT = the unit impulse response vector
..
hl after discrete wavelet transform

..
hl(t) = IRF of acceleration response from location l at time t
..
hr = the estimated IRF obtained from the measured acceleration in the damage state
..
ha = the analytical IRF from the finite element model in the initial intact state

Hl = implicitly expressed matrix form of
..
hl(t)

I = the identity matrix
K = the N ×N global stiffness matrix
M = the N ×N mass matrix
n = the total number of time instants
p = the number of data points
Qi = the first dimensionality reduction transformation matrix
Qi
′ = the second dimensionality reduction transformation matrix

S = the sensitivity matrix
U = the left singular matrix
u1, u2, · · · , um = the left singular vectors
V = the right singular matrix
v1, v2, · · · , vn = the right singular vector
x(t) = the displacement vector
.
x(t) = the velocity vector
..
x(t) = the acceleration vector
..
xl(t) = the acceleration response from location l at time t
αi = the stiffness reduction factor of the ith element
∆α = the value of factional change of stiffness reduction
β = the normalized IRF estimation error
δ(t) = the Dirac delta function
λ = the regularization parameter
ξ1 and ξ2 = the first two damping ratios
σ1, σ2, · · · , σr = singular values
Σ = the diagonal matrix of singular values
ϕ(τ) = the scaling function
ψ(τ) = the mother wavelet function
List of Abbreviations
CoC = covariance of covariance
DOFs = degrees-of-freedom
FRF = frequency response function
DWT = discrete wavelet transform
IDWT = inverse discrete wavelet transform
IRF = impulse response function
SHM = structural health monitoring
std(•) = standard deviation operation
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