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Abstract: Tumor-derived extracellular vesicles (TEVs) are membrane-bound, nanosized vesicles
released by cancer cells and taken up by cells in the tumor microenvironment to modulate the
molecular makeup and behavior of recipient cells. In this report, we summarize the pivotal roles of
TEVs involved in bladder cancer (BC) development, progression and treatment resistance through
transferring their bioactive cargos, including proteins and nucleic acids. We also report on the
molecular profiling of TEV cargos derived from urine and blood of BC patients as non-invasive
disease biomarkers. The current hurdles in EV research and plausible solutions are discussed.
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1. Introduction

In the past decade, a heterogeneous population of nanograde membrane particles in biological
fluids, termed extracellular vesicles (EVs), gained newfound meaning in cancer therapy and diagnosis.
EVs is a broad term which generally indicates the heterogeneous vesicles released from cells. In fact,
most cells, if not all, shed vesicles constantly. Diverse names have been used to refer to various sorts
of EVs, including ectosome, microparticle, exosome and microvesicle. Among them, the biogenesis,
specific markers and functions of exosomes and microvesicles have been studied relatively thoroughly.
As summarized in Figure 1, the release as well as uptake of EVs occurs simultaneously between
cells. Exosomes are 50–100 nm in diameter and their biogenesis starts with the inward budding
of a late endosomal membrane which forms a multi-vesicular body (MVB) containing a number of
intraluminal vesicles (ILVs) [1]. In contrast, microvesicles (100–1000 nm in diameter) are larger than
exosomes and formed by outward budding of the cell membrane. Both exosomes and microvesicles
act as “intercellular postal service” [2] since they encapsulate a wide variety of bioactive molecules,
including proteins, lipids and nucleic acids (DNA, micro-RNA, mRNA and other noncoding RNA
species), and they transport this cargo to recipient cells locally or at a distance, consequently altering
their behavior. The uptake of EVs by recipient cells is mediated through fusion, phagocytosis,
macropinocytosis and receptor raft-mediated endocytosis. However, the mechanisms by which
EV cargo is selected are not yet known.

EVs gained biologists’ interest following the groundbreaking finding in 1996 that exosomes
transfer Major Histocompatibility Complex (MHC) class II molecules from B cells to T cells, thus
mediating activation of the adaptive immune response [3]. Later studies reported on the identification
of various functional miRNAs encapsulated in EVs of immune cells. In view of the extensive regulatory
capacity of miRNA, Valadi and colleagues in 2007 discovered for the first time that EVs have been
exploited by cells as a tool to exchange genetic information [4]. This finding reveals a novel mechanism
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of gene-based communication between cells via EV cargo transfer. The pivotal roles of EVs are found
not only in mediating the immune system but also in regulating various physiological and pathological
cellular functions. The urinary bladder is susceptible to diverse EV-containing biological fluids, such
as blood, lymphatic fluid and urine, reason why there has been an increased interest in EV roles in
bladder cancer (BC) and study of their potential clinical applications. In this review article, we will
focus on recent research on EVs derived from BC (BCEVs) and their roles in tumorigenesis and disease
progression, as well as emerging applications in therapeutics and diagnostics.

Figure 1. Extracellular vesicles (EV) biogenesis. The EV contents come from three sources: extracellular,
intracellular and plasma membrane. Extracellular and plasma membrane molecules enter the early
endosome through endocytosis either selectively by cargo receptor (ubiquitinated MHC-II) recognition
or non-selectively. In the late endosome, the endosomal sorting complexes required for transport,
ESCRT and their associated proteins such as TSG101, Alix, α-arrestin1 and CHMP4 mediate membrane
inward invagination and form exosomes within multi-vesicular body (MVB). During the vesicle
forming process, certain cytosolic components such as DNA, RNA and proteins are included in the
exosome. MVBs can turn into lysosomes and degrade their contents or dock and fuse with the
plasma membrane to release their contents to the extracellular space. The transportation and docking
of MVBs is mediated by cytoskeleton remodeling which is regulated by Rab GTPase proteins (e.g.,
Rab27α, Rab27β and Rab7) and their effectors (e.g., SYTL4 and SLAC2B), whereas the fusion of MVBs
with the plasma membrane is mediated by SNARE, VAMP7 and YKT6. In contrast, microvesicles
are formed by outward budding of the plasma membrane which involves actin-myosin machinery,
small GTPase and ARF6. The content sorting in microvesicles also involves TSG101. EV uptake is
initiated by adhesion of EVs to the surface adhesion molecules on recipient cells, such as integrins,
ICAM-1/LFA-1, CD11a, CD49d, CD44, CD169, heparin sulfate proteoglycans and by CD9, CD81
on EVs. EVs are then internalized through fusion, phagocytosis, macropinocytosis and endocytosis.
ESCRT: Endosomal sorting complexes required for transport; TSG101: Tumor susceptibility gene 101;
Alix: ALG-2-interacting protein X; CHMP4: Chromatin-modifying protein/charged multivesicular
body protein; SYTL4: Synaptotagmin like 4; SLAC2B: Slp homolog lacking C2 domain B; SNARE: SNAP
receptor; VAMP7: Vesicle associated membrane protein 7; YKT6: v-SNARE homolog (S. cerevisiae);
ARF6: ADP-ribosylation factor 6; ICAM1: Intercellulare adhesion molecule 1; LFA1: Lymphocyte
function-associated antigen 1.
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2. Oncogenic Properties of BCEVs

Cancer cells are known to secrete more EVs than normal cells. The blood plasma of a cancer
patient contains approximately 4000 trillion EVs, roughly twice the amount contained in a healthy
individual [5]. Numerous studies have shown that EV-mediated cargo transfer to recipient cells
affects many stages of cancer progression through communication between the cancer and the
surrounding microenvironment, consequently promoting neoplastic transformation, BC proliferation,
migration, invasion and angiogenesis. The EV cargo contents and their effects on cancer progression
are summarized below.

2.1. BCEVs in Neoplastic Transformation

The transformation of healthy cells into malignant cancer cells involves several pathologic
processes and many studies indicate that TEVs participate by transferring oncogenic cargo molecules
to recipient cells [6]. A study by Urciuoli et al. [7] reported that treating NIH3T3 fibroblasts with
osteosarcoma-derived EVs induced tumor-like phenotypes. Cells gained survival capacity by enhanced
proliferation, migration, adhesion and 3D sphere formation and acquired the ability to grow in
an anchorage dependent manner. Similar findings were reported in a study by Panagopoulos et
al. [8], where they showed that EVs isolated from DU145 prostate cancer cells induced the malignant
transformation of non-malignant prostate epithelial cells, possibly via up-regulation of pro-survival
protein STAT3 [9,10]. Together, these results demonstrate that TEVs promote malignant transformation.

In the BC field, TEV’s role in tumorigenesis is less clear. Goulet et al. recently reported that BCEVs
can promote “transformation” of healthy fibroblasts into cancer-associated fibroblasts (CAFs) [11].
They isolated EVs from RT4, T24 and SW1710 BC cells and used them to treat healthy fibroblasts
isolated from human bladder biopsies. As a result, recipient fibroblasts gained CAF phenotypes with
increased proliferation and migration capacity as well as elevated expression of CAF markers—smooth
muscle actin (SMA), fibroblast activation protein (FAP) and Galectin. Interestingly, our unpublished
data (12,24,60) reveal that chronically exposing non-malignant immortalized urothelial cells to BCEVs
leads to malignant transformation in vitro and in vivo. This might be due to the selection of cells with
resistance to a BCEV-induced cellular stress response [12].

2.2. BCEVs Promote Cancer Cell Progression by Mediating Communication between Tumor Cells

2.2.1. Proliferation

The proliferation of tumor cells is an indispensable process for cancer progression, mostly
relying on tumor-derived soluble growth factors. TEVs have been shown to promote cancer cell
proliferation in leukemia, gastric cancer, glioblastoma, melanoma and prostate cancer, among
others [13]. In BC, treating human 5637 and T24 BC cells with BCEVs was shown to stimulate their
proliferation, possibly through activation of protein kinase B (Akt) and extracellular signal–regulated
kinase (ERK) pathways [14]. Recent research delineating BC proliferation under hypoxia conditions
found pivotal roles for BCEVs in transferring long non-coding RNA-urothelial cancer-associated
1 (lncRNA-UCA1) [15]. In this study, Xue et al. demonstrated that BCEVs derived from hypoxic
5637 cells contain high levels of lncRNA-UCA1 which stimulated proliferation, mobility and invasion
in human UMUC2 BC recipient cells. In a xenograft model, lncRNA-UCA1-containing EVs facilitated
bladder tumor growth and metastasis to the lymph nodes. Knockdown of lncRNA-UCA1 in hypoxic
BCEVs increased the expression of E-cadherin while reducing vimentin and MMP9 expression, thereby
triggering epithelial-mesenchymal transition (EMT) in the recipient BC cells.

2.2.2. Migration and Invasion

The essential step of tumor progression to metastasis is gaining the ability to migrate and invade.
Our previous study showed that EVs derived from high grade TCC-SUP BC cells as well as urinary
EVs from patients with muscle invasive bladder cancer (MIBC) facilitated migration and invasion
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in low grade 5637 BC cells. Two TCC-SUP EV-enriched proteins, EGF-like repeats and discoidin
I-like domain-3 (EDIL-3) [16] and periostin [17], were identified. They can activate the ERK1/2 MAP
kinase signal pathway in recipient low grade BC cells, thereby promoting migration and invasion and
knocking down EDIL-3 and periostin by shRNA disrupted this action. Similar results were reported by
other group [18], which showed that EVs derived from T24 and UMUC3 BC cells enhanced urothelial
cell migration and invasion. Also, blocking the EV uptake of recipient cells by heparin remarkably
reduced BCEV’s impact.

In addition to carrying and transferring oncogenic cargos, BCEVs have been found to serve as an
apparatus to dispose tumor-suppressor miRNAs (miR23b, miR224 and miR921) [19]. In this study,
miRNAs previously identified to possess tumor-suppressor functions, such as miR23b, miR224 and
miR921, were identified in BCEVs, implying a cancer character-sustaining mechanism. Silencing of
Rab27α and Rab27β, two major EV secretion regulators, indeed halted the tumor-suppressing miRNA
secretion. However, the miRNA retained in the cell might be inactivated by sequestration in the
MVBs. Suppression of EV release resulted in reduced cellular invasion, which provides a possible
explanation for the poor prognosis in BC patients with high expression of RAB27β. The levels of highly
exocytosed tumor-suppressor miRNAs were found to be reduced in metastatic lymph nodes relative
to primary tumors.

2.3. BCEVs Promote Cancer Cell Progression by Mediating Tumor-Stroma Communication

The tumor microenvironment is composed of a complex and heterogeneous network of different
cell types and the extracellular matrix (ECM). Tumor-associated stromal cells arise from various cellular
origins: fibroblasts, pericytes, bone marrow mesenchymal stem cells, adipocytes and endothelial
cells [20]. The communication between tumor cells and the tumor microenvironment is pivotal to both
primary tumor growth and metastatic evolution and this is mediated through direct cell-cell contact as
well as via tumor-secreted factors including EVs. One of the most characterized pro-cancer properties
of TEVs is their ability to facilitate new growth in vascular networks within tumor microenvironments
to sustain the rapidly growing tumor mass during metastasis. TEVs have long been known to be
exploited to induce angiogenesis; however, the underlying mechanism was only revealed very recently
in a breast cancer study [21]. TEVs derived from breast cancer MDAMB231 cells were reported to
contain a unique vascular endothelial growth factor isoform, VEGF90K, that was crosslinked with
Hsp90 and catalyzed by acyl transferase tissue transglutaminase (tTG). This EV-borne VEGF90K-Hsp90
complex stimulates tubulogenesis in HUVEC endothelial cells and this effect was diminished by the use
of the HSP90 inhibitor 17AAG to force the release of VEGF90K from the complex. Our group found that
EVs from high grade BC cells contain EDIL-3 [16], which is known to promote tumor vascularization
through an Arg-Gly-Asp (RGD) motif that interacts with integrin αvβ3 [22]. We demonstrated that
the pro-angiogenic property of these BCEVs was abolished when EDIL-3 was suppressed by shRNA,
confirming that EV-borne EDIL-3 mediates recipient endothelial angiogenesis.

Another key event mediated by TEVs during cancer progression is the establishment of a
pre-metastatic niche (PMN) in favor of future circulating tumor cell (CTC) adhesion and colonization,
which eventually leads to metastatic outgrowth. Growing evidence indicates that TEVs play
central roles in PMN establishment and maintenance processes such as vascular remodeling,
immune modulation, metabolic environment modification, fibroblast differentiation into CAF, ECM
re-organization and organotropic homing [23]. However, the difficulty of obtaining pre-metastatic
tissues from cancer patients and the lack of metastatic BC animal models have limited clinical
investigation into the significance of this phenomenon. Our laboratory has succeeded in isolating
metastasis-prone MB49 sub-lines and we have found that pre-conditioning mice with sub-line EVs
promotes lung metastases (manuscript in preparation). A broad panel of ECM components is enriched
in MB49 sub-line EVs, suggesting that they may participate in PMN formation principally through
ECM re-organization [24].



Int. J. Mol. Sci. 2018, 19, 2822 5 of 18

3. Regulation of Immune Responses by BCEVs

Recent global profiling of the genetic and epigenetic landscape of BC has revealed it to be one of
the most mutated cancers after lung cancer and melanoma [25,26]. Many new mutations have been
identified; interestingly, many of them coincide with mutations that have been discovered previously
in BC. This demonstrates that progressive tumors are heterogeneous, making it difficult to predict
their outcome and the signatures of some of these molecular alteration patterns seem to have a
prognostic impact [27]. With such a high mutation rate, BC can produce many tumor-associated
antigens (TAAs) that are either mutated cellular proteins or molecules with different post-translational
modifications [28]. The formation of TAAs leads to the generation of TAA-derived peptides, which are
then presented through MHC on the surface of cancer cells to activate immunological surveillance.
Since EVs have been known to modulate immune responses by directly or indirectly presenting
MHC-antigen peptide complex on their surface, it is likely that these TAA-derived peptides can also
be loaded into BCEVs to mediate immune response. In this section, we will discuss BCEVs functional
roles in regulating the immune system.

3.1. Immune System Activation by BCEVs

While the activation of the immune system by cancer cell-derived EVs is not a well-studied
phenomenon, there are a few reports that support this claim. For example, Rao et al. reported that
TEVs elicited an antitumor immune response in a murine hepatocellular carcinoma (HCC) model
in vivo [29]. They isolated TEVs from the murine HCC cell line hepa1-6 and used them to activate
DC2.4, a murine dendritic cell (DC) line. These TEV-pulsed DCs were orthotopically injected into
HCC tumor-bearing C57BL/6 mice, which resulted in increasing infiltration of T lymphocytes and
elevated levels of interferon-γ (IFN-γ), consequently suppressing tumor growth. A similar finding
was reported by Bu et al., who found that TEV-pulsed DCs elicited a tumor-specific CD8+ cytotoxic T
cell response in glioma patients [30]. In this study, they applied patient-derived T cells and CD14+ DC
precursor cells and found that EVs from the tumors of the same patients can activate T cell-mediated
cytotoxicity. In the context of BC, Zhang et al. found that BCEV-educated DCs elicit T cell cytotoxic
activity in vitro [31]. This evidence supports the possibility that BCEVs can promote immune system
activation to facilitate the anti-tumor immune response.

3.2. Immune System Suppression by BCEVs

TEVs are known to be able to suppress the immune surveillance system, allowing tumor cells to
escape the immune barriers and grow. This role of TEVs has been extensively studied using various
cell types involved in the immune surveillance of tumors. In one immune escape strategy, cancer cells
downregulate their MHC class I surface expression. However, natural killer (NK) cells are known to
recognize and eliminate those non- or low-expressing MHC class I cells [32], so as a defense mechanism
cancer cells can secrete EVs bearing transforming growth factor β1 (TGFβ1) to deactivate NK cells and
decrease their cytotoxic activity, resulting in the suppression of the anti-tumor immune response [33].

Shinohara et al. reported that the presence of miR145 in colorectal cancer TEVs can polarize classic
(M1) type macrophages into M2 type macrophages, thereby supporting cancer cell growth in vitro and
in vivo [34]. Further mechanistic dissection revealed that miR145 directly binds to the 3’untrasnlated
region (UTR) of HDACII, a histone deacetylase, silencing its expression and promoting interleukin
10 (IL-10) production.

TEV suppression of DC function was demonstrated by Salimu et al. [35]. They treated
DC cells with TEVs isolated from DU145 prostate cancer cells and co-cultured them with CD8+

T cells. TEV-educated DCs triggered significantly stronger tumor-antigen-specific T cell responses as
determined by IL-2 and IFN-γ production.

TEVs also allow immune escape by inactivating T lymphocytes directly. Rong et al. discovered
that breast cancer cells secrete TEVs capable of suppressing T lymphocytes [36]. A similar phenomenon
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was found in head and neck cancer patients, where TEVs suppressed T lymphocytes, allowing tumor
progression [37].

In BC, an important question that remains unanswered is whether EVs have an
immunosuppressive character as seen in other cancer types. Last year, Lee et al. found that EVs
derived from BC patient urine present an altered protein composition [38]. They found significant
upregulation of mucin-1 (MUC1), carcinoembryonic antigen (CEA) and moesin. MUC1 has been
reported to contribute to NK cell evasion by cancer cells [39] and its expression level has been associated
with BC prognosis [40]. CEA has been correlated with tumor angiogenesis [41] and can inhibit NK
cell targeting of cancer cells [42]. Moesin has been associated with metastasis and poor prognosis in
a number of different cancers, including pancreatic, colon and laryngeal carcinomas [43–46]. These
findings suggest that BCEVs might have immunosuppressive roles and open a new avenue for
future research.

3.3. BCEVs in Promoting Inflammation

BCEVs may also have a role in controlling inflammation. We reported that MIBC patient urinary
EVs are enriched in transaldolase (TALDO1) [47], an enzyme linked to oxidative stress, inflammation
and carcinogenesis [46]. ApoB is another BCEV protein with a functional link to the inflammation
process [48]. ApoB is another BCEV protein with a functional link to the inflammation process [49].
Andreu et al. compared the urinary EV protein profiles of BC patients versus healthy non-smokers and
found that ApoB expression was significantly increased in BC patient-derived EVs. ApoB is involved
in a wide range of biological processes including secretion associated with exosomes [50] and EVs [51].
ApoB has also been reported to play important roles in angiogenesis [52] and inflammation [53].

In summary, our understanding of BCEVs’ functional roles in regulation of immune response
is still in its initial stage. With recent progress made in cancer immunotherapy and the emerging
evidence of BCEVs mediating communication between tumor and immune cells, we anticipate that
further research will reveal pathological roles of BCEVs and their cargos in the regulation of immune
responses, especially in response to checkpoint inhibitors.

4. Therapeutic Application of BCEVs

4.1. EV-Mediated Delivery of Therapeutic Agents in BC

Nanomedicine was introduced in cancer therapy during the 1990s [54]. With the benefit of small
size (usually less than 200 nm), nanoparticles are able to escape from being engulfed by macrophages
and neutrophils (which eliminate particles about 250–1000 nm) and then diffuse into the blood
circulation and be transported to their target sites. With EVs’ small size, various cell origins and low
cytotoxicity, EVs have become an ideal nanoparticle drug carrier [55].

EVs were first used as a drug delivery vehicle to transport curcumin, an anti-inflammatory
drug, to treat brain inflammatory disease [56]. Administration of exosomes encapsulating curcumin
resulted in 5–10 fold higher plasma concentrations than curcumin alone and more effective inhibition of
LPS-induced brain inflammation. BC cells are known to take-up EVs in a dose-dependent manner [57].
A recent study also found robust EV internalization in BC cells [58] where human BC cell lines
(SW780 and UMUC3) showed 20–50 fold higher EV internalization rates than normal urothelial cells.
Such high uptake rates make EV-nanoparticles an attractive method of drug delivery to BC cells.
Moreover, the membrane structure of EVs encapsulates and protects vulnerable molecular contents,
in particular various RNA species, such as siRNA, miRNA and lncRNA. In a recent study, EVs were
exploited as a vector to deliver the designed siRNA to BC cells [58]. EVs were loaded with artificially
synthesized siRNAs targeting polo-like kinase-1 (PLK1) by electroporation and then used to treat
UMUC3 cells. As a result, the UMUC3 expression of PLK1 was significantly decreased, consequently
inducing apoptosis and necrosis.
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Chemotherapy following removal of the primary tumor is the standard treatment in many
cancers. While chemotherapy is often capable of inducing cell death in tumors, many patients
develop more advanced tumor growth due to the appearance of chemo-resistance, which remains
one of most challenging problems in cancer research today. A recent study reported an innovative
approach of using TEVs to sensitize BC cells to chemotherapeutic agents [59]. In a mouse model,
intravesical instillation of TEVs prior to instillation of drugs including doxorubicin, mitomycin C,
hydroxycamptothecin and gemcitabine, significantly reduced hematuria and tumor incidence. These
TEVs were initially collected from UV-treated tumor cells and ranged in size from 100–1000 nm
(microparticles). The recipient BC cells internalized the EVs into lysosomes, increasing lysosomal pH
from 4.6 to 5.6, thereby promoting transportation of the lysosome to the nucleus over exocytosis and
subsequently retaining drug bioactivity in the BC cells.

In the context of immunotherapy for BC, our group found that Bacillus Calmette–Guérin (BCG)
infection stimulated BC cells to release EVs that could activate T lymphocytes, bone marrow-derived
DCs and macrophages in vitro. This unpublished data suggests that TEVs are capable of mediating
the anti-tumor immune response, possibly from transferring immune-active cargos [60].

4.2. Prognosis and Diagnosis of BC Using EVs

There is a growing trend towards exploring the use of minimally invasive liquid biopsy for early
cancer detection and TEVs are attractive sources of cancer diagnostic and prognostic biomarkers for
the following reasons: (1) EVs contain a specific cargo of proteins and RNAs that might reflect the
status of the originating cells, (2) EVs are membranous structures that can protect the cargo contents
from degradation, [61] EVs are relatively accessible as they are found in clinical specimens that can
be obtained through non-invasive methods. Apart from plasma/serum, urine is considered the most
relevant body fluid in terms of its physical contact with bladder tumor mass. Although EVs compose
only 3% of excreted urinary protein [62], with proper isolation methodology and proteomic analysis,
many urinary exosomal proteins have been identified to have pathophysiologic significance [61,63–69].
Nawaz et al. in 2014 published a comprehensive review of EVs as biomarkers for urogenital cancers
which addressed the great potential of utilizing EVs in prognosis and diagnosis [70].

To define appropriate baselines, proteomic investigation of EVs derived from healthy donors is
needed. The first comprehensive study of urinary EV protein contents was performed by Pisitkun
et al. in 2004 using liquid chromatography-tandem MS (LC-MS/MS) [71]. Soon after, more detailed
proteomic analyses were reported which determined protein profiles for urinary EVs of bladder and
prostate gland origin [68,72–76].

Cell-free urine has been used to predict treatment response, recurrence, prognosis and diagnosis
by detecting DNA level, methylation, mutation and integrity [77,78]. In BC, DNA level and integrity in
cell-free urine were found to be significantly elevated relative to controls [79–81]. Urinary EV profiling
of quantity as well as miRNA and protein content has been reported to serve as a prognostic and
diagnostic biomarker. Recently, Liang et al. developed an integrated double-filtration microfluidic
device to measure EV concentration at the point-of-care. They found higher amounts of EVs in the
urine of BC patients compared to healthy controls and this result further suggests that urinary EVs
have great potential to be used as a disease biomarker for BC [82]. Profiling miRNAs in cell-free
urine was demonstrated to have >80% sensitivity and specificity in detecting different stages of
BC [83]. Proteomic analysis of urinary EV cargo provides another prospect for disease prediction.
Lin et al. collected urine EVs and analyzed the proteomic data from 129 BC patients versus 62 healthy
participants and found SERPINA1 and H2B1K as promising BC biomarkers for prognosis Proteomic
analysis of urinary EV cargo provides another prospect for disease prediction. Lin et al. collected urine
EVs and analyzed the proteomic data from 129 BC patients versus 62 healthy participants and found
alpha-1 antitrypsin (SERPINA1) and Histone H2B type 1-K (H2B1K) as promising BC biomarkers
for prognosis [84]. We have searched the cargo contents of EVs derived from BC cells and urine
of BC patients from the past 10-year publication and summarized the list of miRNAs and proteins
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encapsulated in EV cargos in Tables 1 and 2, respectively. The BC patient urinary EVs are a mixture
of the whole body EVs and BCEVs, which reflects the clinical reality and relevance. Note that most
of the reported cargo molecules are based on global screening that identified differentially displayed
miRNAs and proteins between BC samples and controls but their functional roles in BC have not
been verified.

Table 1. List of miRNAs identified in BC urinary EVs and/or BC cells EVs.

miRNA Regulation Sample Sources Reference

miR-21 up urine & BC cells lines [85–89]

miR-200c up urine [85,86,88]

miR-23b up urine [19,90]

miR-513b-5p up urine [90,91]

miR-183 up urine [88,92]

miR-205 up urine from
NMIBC patients [86,88]

miR-16-1-3p, miR-28-5p, miR-92a-2-5p, miR-142-3p,
miR-195-3p, miR-196b-5p, miR-299-3p, miR-492, miR-601,
miR-619-5p, miR-3155a, miR-3162-5p, miR-3678-3p, miR-4283,
miR-4295, miR-4311, miR-4531, miR-5096, miR-5187-5p

up urine [90]

miR-155-5p, miR-132-3p, miR-31-5p, miR-15a-5p up urine [87]

miR-93, miR-940 up urine [85]

miR-16, miR-96 up urine [92]

miR-486-5p, miR-205-5p, let-7i-5p up urine from
NMIBC/(G1 + G2)

[88]
miR-106b-3p, let-7c-5p, miR-486-5p, miR-151a-3p,
miR-200c-3p, miR-183-5p, miR-185-5p, miR-224-5p up urine from NMIBC/G3

miR-4454, miR-720/3007a, miR-29-3p up urine from NMIBC [86]

miR-214 up urine from NMIBC [93]

miR-503-5p, miR-145-5p, miR-3158-3p, miR-30a-3p up urine from MIBC [91]

miR-106b-3p, miR-486-5p, miR-205-5p, miR-451a, miR-25-3p,
miR-7-1-5p, miR-146a-5p up urine from MIBC [88]

miR-1, miR-99a, miR-125b, miR-133b, miR-143, miR-1207-5p down urine [92]

let-7f-2-3p, miR-520c-3p, miR-4783-5p down urine [90]

miR-30c-2-5p, miR-30a-5p down urine from
NMIBC/(G1 + G2)

[88]miR-30a-5p, miR-30c-2-5p, miR-10b-5p down urine from NMIBC/G3

miR-30a-5p, let-7c-5p down urine from MIBC

miR-27b-3p down BC cells [91]

miR-let-7i-3p down BC cells [89]

miR-29c-5p, miR-146b-5p, miR-200a-3p, miR-200b-3p,
miR-141-3p down BC cells [91]

Table 2. List of proteins identified in BC urinary EVs and/or BC cells EVs.

Protein ID Sample Sources Validated Proteomic Detection

EHD4 urine and BC cells

[47]

[16,38,94]

HEXB urine and BC cells [16,38]

ANXA; SND1 urine and BC cells [16,95]

S100A4 urine and BC cells [16]

TALDO1 urine and BC cells [16]

MUC1 urine and BC cells [38,96] [95]

EPS8 urine
[38]

[94]

CEAM5 urine

CD44; BSG BC cells

[96]ITGB1; ITGA6;
CD36; CD73;

CD10; CD147; 5T4
BC cells
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Table 2. Cont.

Protein ID Sample Sources Validated Proteomic Detection

NRAS; MUC4 urine [94]

SERPINA1
H2B1K urine [84]

TACSTD2 urine [74]

EDIL3 urine and BC cells [16]

POSTN urine and BC cells [17]

CTNNB1; CDC42 urine and BC cells [95,97]

14-3-3; ALIX; B2M; EGFR; EZR; FSCN1; LGALS;
GST; MSN; PRDX1; PTGFRN; RDX; TAGLN2 BC cells [95]

5. Current Challenges and Future Prospects

5.1. Current Challenges

Researchers have used dozens of names for various secreted vesicles (including exosomes,
microvesicles and EVs), which have been broadly used and are sometimes interchangeable. However,
exosomes and microvesicles are functionally and structurally distinct; there are differences in charge,
size and molecular composition [98]. Importantly, the size distributions of exosomes and microvesicles
overlap significantly and the identity of EVs between 100–150 nm in diameter is ambiguous [12].
Therefore, size alone cannot always be used to distinguish these EV subpopulations from one another.
While “extracellular vesicle” is a widely accepted generic term for all secreted vesicles, there is a need
for consensus about how to apply the other terms appropriately to different EV subpopulations in
terms of vesicle size.

The conflicting names for different EV subpopulations are largely due to the different procedures
used in individual laboratories to obtain and sort biological fluids to isolate EVs. Currently, with the
rapid increase in the understanding of EV biology, including their function in numerous aspects of
human disease and their potential significance in clinical applications, there is a growing demand
for simple, efficient and reliable techniques to isolate EVs. Until now, the most standard EV isolation
procedure combines filtration and ultracentrifugation, which purify particles based on their size and
density [99]. To further purify exosomes from EVs, a common technique uses a continuous sucrose
gradient during ultracentrifugation, which distributes particles according to density (exosomes float
at densities ranging from 1.15–1.19 g/mL) [100]. In addition, microfluidic techniques combining
immune-affinity, sieving and trapping have been applied to concentrate exosomes [101–103]. However,
the unavoidable damage to the exosome structure and the low recovery narrows the application of
this technique. Another common EV isolation method that has also been widely used for exosome
purification is immune-affinity precipitation. This technique captures exosomes using antibodies
against exosome surface markers. However, this method is limited by the exclusion of some EV
subpopulations that do not carry the well-known markers. Therefore, the identification of general
markers for EVs, such as lipid composition, pH value and electrical properties might be useful for
capturing whole EV populations [104]. With the rapidly growth of the field, more and more isolation
methods are proposed, the most updated EV isolation technic were comprehensively covered by recent
reviews [1,12]. The recent launched EV-TRACK database encourages researchers to report their EV
isolation details for developing a standardized protocol. (http://evtrack.org).

One of the hurdles to urinary EV isolation is the aggregation of highly abundant non-exosomal
proteins, such as Tamm-Horsfall protein (THP), which tends to form fibrillary aggregates at low
temperature. This aggregation during the EV isolation process was proposed to be reduced by a
disulfide bond reducer, such as dithiothreitol (DTT), or a mild solubilizing detergent, such as CHAPS
(3-[(3-cholamidopropyl) dimethylammonio]-1-propanesulfonic), which can separate THP from EVs
during differential centrifugation [99,105–107]. However, DTT treatment can cause changes in the
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extracellular domains of EV proteins that would affect their stability and function. CHAPS treatment
is better at preserving EV features but requires longer preparation [99].

The major challenge of EV-based biomarker discovery is the lack of a validated and standardized
approach to normalize body-fluid concentrations among patients, especially in urine samples due
to variation of water excretion in each individual. Urinary creatinine (UCr) excretion in the renal
system is considered to be constant across and within individuals and is commonly used to normalize
urinary biomarker concentrations against variations in urine flow rate in the evaluation of chronic
kidney disease and prediction of acute kidney injury [108,109]. However, creatinine excretion rates
vary widely among individuals with different age, sex, race, diet, physical activity, muscle mass,
emotional stress and disease state [110,111], thus potentially masking the true value of EV proteins.
Alternatively, specific exosome markers such as TSG101 and Alix can be used for normalization of
urinary EV proteins [112]. More studies are needed to evaluate these normalization techniques and/or
identify new ones.

Urinary EVs originate from cells throughout the urinary system; therefore, it is important to
distinguish BC-specific EVs from the heterogeneous population of urinary EVs shed from other sources
such as kidney and prostate. A recent study was able to increase the purity of podocyte-derived
exosome isolation using immune-absorption with antibodies against the podocyte-specific complement
receptor type 1 (CR1). Proteomic analysis of the podocyte EVs identified 14 new podocyte EV-enriched
proteins that can potentially be used as kidney-specific EV markers to distinguish them from the
broader urinary EV population [113]. This finding encourages similar efforts to identify BC-specific
EV markers that are greatly needed to improve the diagnostic utility of urinary EVs.

5.2. Future Prospects

With accumulating evidence of TEVs’ functional roles in cancer progression, depletion of the
TEVs in circulation while retaining normal and healthy EVs becomes an ideal therapeutic approach.
In 1989, Lentz conducted a primary experiment to remove low molecular weight (<120 kDa) proteins
from cancer patients’ blood by ultrapheresis, which resulted in tumor size reduction in 6 out of
16 patients [114]. At that time, serum cytokine receptors were proposed to be the key factors in
blocking the antineoplastic immune response. However, this therapeutic effect might be because
the process also results in the elimination of EVs. Previously, plasmapheresis combined with an
affinity matrix containing Galanthus nivalis agglutinin to capture hepatitis C viruses has been applied
clinically [115]. A similar plasmapheresis system was adapted to capture TEVs using a specific
antibody-conjugated cartridge [116]. Therefore, identifying TEV-specific surface markers is the crucial
step to take this approach to the next stage.

Another TEV targeting strategy is the inhibition of EV biogenesis and uptake. Amiloride,
an endocytic vesicle recycling inhibitor, reduces the EV amount in the circulation and increases
chemotherapy effects in mice [117]. Interference with the key proteins in EV biogenesis, such
as Rab27β, also results in inhibition of EV release and reduction of tumor progression [118,119].
Theoretically, inhibiting EV uptake can be achieved by blocking surface phosphatidylserine. However,
such inhibition can also affect microvesicle uptake by normal cells that might cause off-target side
effects. Further dissection of EV machinery might lead to the identification of regulatory pathways in
EV biogenesis or internalization that are specifically utilized by cancers.

The mechanisms by which secreted EVs are targeted to recipient cells are not yet well understood.
It has been suggested that various integrins expressed on the surface of EVs might determine that they
will interact with specific recipients through ligand-receptor binding [56,120,121]. A study by Hoshino
et al. found that EVs from a variety of cancer cell types were preferentially taken up by specific cells
in various organs depending on their integrin expression [122] This finding raises the possibility of
utilizing EVs as therapeutic vectors to deliver RNA, protein or drug cargos to specific targeted cells by
genetically engineering the EV integrins [123]. As more understating of the physical and pathological
role of EV, more applicable areas of BCEV will be proposed.
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6. Conclusions

In this review article, we have discussed various functional roles of BCEVs in mediating BC
pathogenesis. As summarized in Figure 2, BCEVs can drive normal urothelial cell malignant
transformation, promote BC progression via stimulation of proliferation, invasion and migration
of recipient neighboring BC cells and modify the tumor stroma to support tumor growth. BCEVs
have been further suggested to have roles in mediating cancer-related immunity, either by promoting
inflammation favorable to tumors or by participating in the immune surveillance mechanism. Finally,
potential clinical applications of BCEVs, mainly in diagnosis or prognosis or as drug-delivery vehicles,
are discussed. However, the normal physiological functions of EVs should not be neglected, so that the
off-target side effects of EV-based therapy can be reduced. As to EV-based liquid biopsy development,
the identification of tissue/disease-specific EV markers is necessary to facilitate sorting of TEVs from
the heterogeneous EV populations in patient specimens. Further investigation of EV biogenesis,
content packing and uptake is also critical for future applications.

Figure 2. Summary of the roles of BCEVs in cancer, the tumor microenvironment and therapeutic
applications. BCEVs are involved in many aspects of cancer development and progression. Like other
cancer cells, BC cells release EVs into extracellular spaces and can be received by urothelial cells
and immune cells, consequently modifying their behavior to support or suppress tumor growth
(red and blue arrows indicate the migrating direction of intracellular vesicles). On the one hand, BCEVs
can promote neighboring recipient cells’ cancerous behaviors, including malignant transformation,
proliferation, migration and invasion, as well as modify the tumor microenvironment in favor of
tumor outgrowth, including promoting inflammation, ECM remodeling and fibroblast differentiation
to cancer-associated fibroblasts (CAF). In contrast, BCEVs also participate in the immune surveillance
system by presenting tumor antigens to provoke dendritic and cytotoxic T cell anti-tumor immunity.
With specific cargoes carried by BCEVs such as miRNA, lncRNA and proteins, their clinical application,
particularly in disease biomarkers, has rapidly expanded. Moreover, researching the utilization of
BCEVs as vesicles to deliver therapeutic materials is also underway.
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