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Abstract: WNT-signaling controls important cellular processes throughout embryonic development and
adult life, so any deregulation of this signaling can result in a wide range of pathologies, including cancer.
WNT-signaling is classified into two categories: β-catenin-dependent signaling (canonical pathway)
and β-catenin-independent signaling (non-canonical pathway), the latter can be further divided into
WNT/planar cell polarity (PCP) and calcium pathways. WNT ligands are considered as unique directional
growth factors that contribute to both cell proliferation and polarity. Origin of cancer can be diverse and
therefore tissue-specific differences can be found in WNT-signaling between cancers, including specific
mutations contributing to cancer development. This review focuses on the role of the WNT-signaling
pathway in melanoma. The current view on the role of WNT-signaling in cancer immunity as well as a
short summary of WNT pathway-related drugs under investigation are also provided.
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1. Introduction

The study of WNT-signaling was initiated in the early 1980′s by the discovery of Wingless,
a Drosophila segment polarity gene [1] and then the mouse proto-oncogene Int1 [2]. The term
‘WNT’ comes from a combination of these two names of the same gene [3]. The WNT-signaling is
evolutionarily conserved and plays an important role in the embryonic development, adult tissue
homeostasis and regeneration [4]. Furthermore, it maintains genetic stability and is important for cell
fate and differentiation, cell proliferation, cell motility, apoptosis and stem cell maintenance [5]. Aberrant
functioning of WNT-signaling is associated with a number of diseases, including embryonic malformations,
degenerative diseases and cancer [6–9]. WNT-signaling is divided into two pathways: β-catenin-dependent
also known as canonical or WNT/β-catenin pathway and β-catenin-independent—also termed as
non-canonical—which can be further divided into WNT/planar cell polarity (PCP) and calcium pathway
that in some circumstances can antagonize WNT/β-catenin-signaling [10]. The β-catenin-dependent
pathway mainly controls cell proliferation, whereas β-catenin-independent signaling regulates cell
polarity and migration. This distinction, however, is conventional as these two main pathways form
a network with concomitant crosstalk and mutual regulation [11,12]. Better understanding of the
mechanisms that govern the highly context-dependent outcome of WNT-signaling in different tumors
is important for the development of appropriate treatment strategies. This review is focused on
WNT-signaling in melanoma, a tumor derived from melanocytes that arise from neural crest cells.

1.1. WNT Ligands in Canonical and Non-Canonical WNT Signaling Pathways

The WNT family of secreted proteins includes 19 cysteine-rich glycoproteins (~40 kDa; ~350–400 amino
acids with a 20–85% sequence identity) [4,13], in which postranslational modifications comprising
glycosylation and palmitoylation are considered to be essential for their biologic activity [6,14].
Porcupine, endoplasmic reticulum resident acyltransferase, is the enzyme that is required for the
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attachment of palmitoleic acid to WNT ligands [6,8,14]. Then, WNT ligands bind to an evolutionary
highly conserved transmembrane protein Evenness interrupted/Wntless (EVI/WLS) and are shuttled
to the plasma membrane via the Golgi apparatus [15]. By clathrin-mediated endocytosis, EVI/WLS
is recycled in the Golgi apparatus by the retromer complex. There are several routes enabling WNT
proteins to exit the cells: by solubilization, exosome formation or by lipoprotein particles (LPPs),
serving as extracellular transporters to achieve long-range signaling [4,8,15]. The interactions between
WNTs and their specific receptors activate WNT pathways: canonical (β-catenin-dependent) (Figure 1)
and non-canonical (β-catenin-independent) (Figure 2) that cooperate with each other in regulation of
important cellular processes. Generally, the ligand subtype determines the mode of the WNT-signaling
network. WNT1, WNT2, WNT3, WNT3A, WNT8a, WNT8b, WNT10a and WNT10b are activators
of the canonical pathway, whereas WNT4, WNT5A, WNT5B, WNT6, WNT7a, WNT7b and WNT11
are common activators of non-canonical WNT-signaling [16,17]. WNTs are classified as directional
growth factors with unique properties since they influence proliferation and polarity, and both may
occur at the same time and in the same cells [18]. Moreover, WNTs can act in an autocrine and
paracrine manner [6,19,20].
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Figure 1. Simplified scheme of canonical WNT -signaling pathway. (A) In the absence of WNT
ligands (WNT OFF state), β-catenin is phosphorylated by a destruction complex consisting of
AXIN, APC, GSK3β and CK1α to be further ubiquitinated for proteasomal degradation. In the
absence of R-spondins, E3 ubiquitin ligases RNF43/ZNRF3 target FZD for lysosomal degradation;
(B) binding of WNT ligands to FZD receptors and LRP co-receptors activates WNT-signaling (WNT
ON state). AXIN is associated with LRP5/6, whereas DVL is recruited to FZD, which results in
dissociation of the destructive complex. β-catenin is accumulated and stabilized in the cytosol, and then
unphosphorylatedβ-catenin is translocated to the nucleus to activate the expression of WNT target genes.
APC—adenomatosis polyposis coli; AXIN—axis inhibition protein; BCL—B-cell CLL/lymphoma protein;
BRG-1—brahma-related gene-1; CBP—(CREB)-binding protein; CK1α—casein kinase 1α; CK1γ—casein
kinase 1γ; CK1ε—casein kinase 1ε; DKK1—Dickkopf-1; DVL—disheveled; FZD—frizzled receptor;
GSK3β—glycogen synthase kinase 3β; LEF—lymphoid enhancer-binding factor 1; LGR—leucine-rich
repeat-containing G-protein coupled receptor; LRP—low-density lipoprotein receptor related protein;
MAK—metastasis associated kinase; PAR1—protease-activated receptor 1; PKC—protein kinase C;
PYGO—pygopus; RNF43—ring finger protein 43; sFRP—secreted frizzled-related proteins; TCF—T
cell factor; β-TrCP—beta-transducin repeats-containing proteins; WIF1—WNT inhibitory factor 1;
WISE—WNT modulator in surface ectoderm; Ub; ubiquitin; ZNRF3—zinc and ring finger protein 3.
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Figure 2. An overview of non-canonical WNT-signaling pathways: (A) WNT/planar cell polarity-
signaling pathway (PCP) is initiated by WNT binding to FZD and ROR, then DVL is recruited and
DVL-Daam-1 complex is activated, followed by JNK and ROCK activation and cytoskeletal rearrangement;
(B) WNT/Ca2+-signaling pathway is initiated by WNT binding to FZD and ROR, with further G-protein
triggered phospholipase C activation leading to phospholipase C intracellular calcium fluxes and downstream
calcium dependent responses. AP-1—activator protein 1; CaMKII—Ca2+/calmodulin dependent kinase
II; CaN—calcineurin; CDC42—cell division cycle 42; DAG—diacylglycerol; DAAM1—DVL associated
activator of morphogenesis; DVL—disheveled; FZD—frizzled; JNK—c-Jun N-terminal kinases; NLK—nemo
like kinase; NFAT—nuclear factor of activated T-cells; PIP2—phosphatidylinositol (4,5)-biphosphates;
PKC—protein kinase C; PLC—phospholipase C; RAC—Ras-related C3 botulinum toxin substrate;
RHO—Ras homolog gene family; ROCK—Rho-associated kinase; ROR—RAR-related orphan receptor;
TAK1—transforming growth factor beta-activated kinase 1.

1.2. β-Catenin-Dependent (Canonical) WNT Signaling

In resting cells, in the absence of activating signals (Figure 1A), the level of β-catenin is low,
which is achieved by the cytoplasmic ‘destruction complex’ that consists of axis inhibition protein 1
(AXIN1), adenomatosis polyposis coli (APC), glycogen synthase kinase 3β (GSK3β) and casein kinase
1α (CK1α) [7,21–23]. AXIN1 is the central scaffold protein, which directly interacts with all other
core components of the destruction complex [24]. It is a concentration-limiting protein [25], and its
cellular level is stabilized by SUMOylation [26] and decreased by degradation involving activated
low-density lipoprotein receptor related protein 5/6 (LRP5/6) [27] and tankyrases [28]. Affinity of AXIN1
to β-catenin is increased by GSK3β-mediated phosphorylation [29,30]. In the destruction complex,
β-catenin is first phosphorylated by CK1α at Ser45, then by a serine/threonine kinase GSK3β at Ser
33, Ser 37 and Thr41. Interaction of GSK3β with β-catenin is facilitated by AXIN1 and APC [29,31].
F-box containing protein E3 ubiquitin ligases such as β-transducin repeat-containing protein (β-TrCP)
marks β-catenin for ubiquitination and proteasomal degradation [4,22,23,32].

Upon binding of WNT proteins to the seven-pass transmembrane frizzled (FZD) receptor and single
pass transmembrane receptors LRP5 and LRP6, the initiation of canonical signaling pathway occurs,
leading to β-catenin stabilization (Figure 1B) [7,32]. A characteristic feature of FZD is the cysteine-rich
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domain, which is the primary module for binding of WNT ligands [4,13]. The mutual interaction of
WNT ligands with both FZD and LRP5/6 is necessary for canonical pathway activation that inhibits
β-catenin proteasomal degradation [7,22,32]. It is preceded by a series of events, and several models
have been created [33] to show the sequence of events leading to activation of β-catenin. Regardless
of the model, disheveled (DVL) that directly interacts with FZD is concomitantly phosphorylated by
several protein kinases such as protease-activated receptor 1 (PAR1), casein kinase 1ε (CK1ε), metastasis
associated kinase (MAK) and protein kinase C (PKC) [14,34]. Activated DVL detaches AXIN1 from the
destruction complex and the released AXIN1 binds to phosphorylated LRP5/6 [7,32]. Phosphorylation
of LRP5 and LRP6 occurs in Pro-Pro-Pro(SerTrp)Pro (PPP(S/T)P) motifs and is triggered by GSK3β
and CK1γ [23,34]. β-catenin can be dephosphorylated by protein phosphatase 2A (PP2A) [35].
WNT/β-catenin-signaling can be potentiated by the leucine-rich repeat-containing G-protein coupled
receptor 5/a roof plate-specific spondin (LGR5/RSPO) complex, which acts in cooperation with receptors
FZD/LRP5/6 [36–38]. The LRG5/RSPO complex promotes WNT-signaling through the neutralization
ring finger protein 43 (RNF43) and zinc and ring finger protein 3 (ZNRF3), the transmembrane E3
ligases that serve as a part of a negative feedback loop [39]. All these processes lead to the accumulation
of stable, unphosphorylated β-catenin in the cytoplasm, followed by its translocation to the nucleus.
β-catenin binds to nucleoporins (NUPs) and builds the nuclear pore complex (NPC). It binds NUP358
on the cytoplasmic side, NUP62 in a central channel and NUP98 together with NUP153 on a nuclear
end [40]. In the nucleus, after displacing the transcriptional repressor Groucho, β-catenin can interact
with several proteins, e.g., T cell factor/lymphoid enhancer-binding factor 1 (TCF/LEF), brahma-related
gene-1 (BRG-1), TATA-binding protein, CREB-binding protein/its homolog p300 (CBP/p300), c-JUN,
SWItch/sucrose non-fermentable chromatin-remodeling complex (SWI/SNF) and B-cell CLL/lymphoma
9 protein (BCL-9; BCL9L), which links the N terminal part of β-catenin with pygopus (PYGO) [34,41].
Then, β-catenin serves as a transcriptional regulator of the expression of WNT target genes [7,21,32,34].
These genes encode the following groups of proteins: (a) regulators of proliferation, e.g., vascular
endothelial growth factor (VEGF), fibroblast growth factor (FGF), c-JUN, FOS-related antigen 1 (FRA1);
(b) regulators of the canonical WNT pathway e.g., WNT1-inducible-signaling pathway protein 1
(WISP1), AXIN, Dickkopf-1 (DKK1), TCF, LEF1; (c) matrix metalloproteinases and some components
of extracellular matrix; (d) cadherins; (e) lineage-specific proteins such as microphthalmia-associated
transcription factor (MITF), which modulates several functions in melanocytes and melanoma [42].

It should be noted that the transcriptional role of β-catenin extends beyond the TCF/LEF as
β-catenin may be a partner of other transcription factors, e.g., sex-determining region Y (SRY)
box-containing factors (SOX), mothers against decapentaplegic homolog (SMAD), octamer-binding
transcription factor 4 (OCT4) and forkhead box class O family member proteins (FOXOs) [43].

WNT/β-catenin-signaling can be modulated by several antagonists at the ligand and receptor
level, e.g., DKK proteins, secreted frizzled-related proteins (sFRPs), WNT inhibitory factor 1 (WIF1),
WNT modulator in surface ectoderm (WISE), Kremen (KRM) and Cerberus protein (CER1) [14,16,44].
They interact with WNTs and their receptors, causing the inhibition of the WNT/β-catenin pathway [16].
Moreover, the activity of WNTs is also modulated by a highly conserved feedback antagonist NOTUM,
acting as a deacylase that removes a palmitate moiety from WNTs leading to their inactivation [4].
There are several negative feedback mechanisms that can limit WNT-signaling, including WNT target
genes such as AXIN1, AXIN2, DKK1 and SFRP [45,46].

The β-catenin-dependent WNT-signaling cascade (Figure 1) regulates a wide range of biologic
processes comprising both developmental processes during embryogenesis as well as those during
tissue homeostasis and regeneration. Canonical WNT-signaling is involved in the regulation of cell
proliferation and differentiation and maintenance of stem cells. β-catenin, the central component of
WNT/β-catenin pathway is a multifunctional protein that can either bind to cadherin that is an integral
part of the actin cytoskeleton or act as transcriptional coactivator [42,47]. β-catenin is expressed both
in melanocytes and epithelium, however, the amount of β-catenin at the cell surface is less abundant
in melanocytes than in epithelial cells [48]. β-catenin (781 amino acids) is encoded by CTNNB1 and
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comprises a flexible N-terminal domain (NTD; ~150 aa), central armadillo (ARM) repeat domain
(12 copies, 550 aa) and a C-terminal transactivation domain (CTD; ~100 aa) [23]. While NTD and
CTD may be flexible, the central region forms a rigid scaffold that is responsible for the interaction of
β-catenin with its binding partners [49] such as cytoskeletal proteins α-catenin, IQ motif containing
GTPase activating protein 1(IQGAP1) [50], E-cadherin and N-cadherin [51], a conserved nuclear
protein, named chibby, transcriptional regulators TCF/LEF, inhibitor of β-catenin and TCF4 (ICAT) and
proteins forming the ‘destruction complex’.

1.3. Non-Canonical WNT Signaling

β-catenin-independent pathways comprise: WNT/planar cell polarity-signaling pathway (PCP)
(Figure 2A) and WNT/Ca2+-signaling pathway (Figure 2B). The WNT/PCP-signaling pathway maintains
planar cell polarity, as it is involved in regulation of modification of actin cytoskeleton structures and
cell motility. It is activated by binding of WNT5A, WNT7A and WNT11 ligands to non-canonical
FZD receptors along with tyrosine kinase co-receptors: protein tyrosine kinase 7 (PTK7), RAR-related
orphan receptor (ROR) and receptor like tyrosine kinase (RYK) [52]. WNT5A is a key regulator of
non-canonical WNT-signaling, however, it can play diverse roles in different types of cells, including
tumor cells. Different roles of WNT5A, especially in various cancers, are partially due to the existence of
two isoforms of WNT5A, WNT5A-long and WNT5-short [53]. Activation of DVL and further formation
of the disheveled associated activator of morphogenesis 1 (DVL-Daam-1) complex activates the RHO
GTPase that leads to activation of the RHO-associated kinase (ROCK) followed by modification
of actin cytoskeleton and cytoskeletal rearrangement. DVL also activates the RAC GTPase that
stimulates c-Jun N-terminal kinases (JNK) activity, which in turn positively regulates activator protein
1 (AP-1)-dependent genes. This network is involved in the modification of actin cytoskeleton structures
influencing the polarization and motility of cells [17,54].

The WNT/Ca2+-signaling pathway is associated with the release of Ca2+ from intracellular
stores. Interaction of WNT ligands with FZD activates phospholipase C (PLC) that hydrolyzes
phosphatidylinositol (4,5)-biphosphates (PIP2) to inositol (1,4,5)-triphosphates (IP3) and diacylglycerol
(DAG). DAG activates PKC kinase that in turn activates the small GTPase CDC42, while IP3 induces the
release of Ca2+ ions from intracellular depots. Release of Ca2+ activates Ca2+/calmodulin dependent
kinase II (CaMKII) and calcineurin (CaN). CaMKII phosphorylates TGFβ-activated kinase 1 (TAK1),
which induces Nemo-like kinase (NLK) activation, which in turn inhibits transcriptional activity of
canonical WNT-signaling. CaN via dephosphorylation activates nuclear factor of activated T-cells
(NFAT) that translocates to the nucleus and regulates the expression of target genes. WNT/Ca2+

pathway activation plays an important role in the regulation of cell motility and cytoskeleton
organization [17,54,55].

2. WNT Signaling in Cancer

As demonstrated in numerous studies, the aberrant activation of WNT-signaling contributes to
malignant cell transformation and neoplastic proliferation with further metastatic dissemination and
resistance to treatment [43,56]. Many surface markers of cancer stem cells (CSCs) (CD44, CD24, CD133,
LGR5/GPR49, ABC cassette genes, EpCAM) are direct targets of the WNT pathway. CSCs provide
the long-term maintenance of the tumor and contribute to poor clinical outcome of therapies [43].
Different genetic alterations can cause the inhibition of proteasomal degradation of β-catenin, resulting
in the hyperactivation of canonical WNT-signaling and enhanced nuclear β-catenin accumulation.
Genetic and epigenetic alterations affecting constituents of WNT pathways are tissue specific and
they differ in frequency between cancers [56]. Apart from the most frequent mutations of APC in
colorectal cancer and CTNNB1 in hepatocellular carcinoma, deregulations of several extracellular
modulators of WNT-signaling e.g., DKKs, sFRPs and WIF1 also contribute to cancer development.
These proteins antagonize canonical WNT-signaling by binding to LRP5/6 or inhibit the interaction
between WNTs and their receptors [6]. Moreover, vacuolar H+-ATPase (v-ATPase), an electrogenic H+
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transporter required for WNT-signaling activation may also trigger abnormal WNT/β-catenin-signaling
and contribute to WNT-signaling-dependent tumorigenesis. High expression of v-ATPase subunits
has been observed in colorectal, prostate, breast, ovarian and pancreatic cancer cells [23]. Furthermore,
it has also been demonstrated that β-catenin modulates the cancer microenvironment, participating in
creating the niche for cancer progression [57]. The pre-metastatic niche permits both the implantation
of tumor cells into distant organs as well as their survival [58–61]. However, high levels of nuclear
β-catenin do not always indicate poor prognosis [57]. For that reason, it is necessary to consider the
cell type-specific background in order to assess and understand the cellular outcome of aberrations in
WNT-signaling [62].

3. WNT Signaling in Melanoma

3.1. Genetic and Epigenetic Alterations

Deregulations in the canonical WNT-signaling in cancer may result from diverse mutations and
epigenetic mechanisms. Mutations in genes encoding distinct elements of the WNT pathway can
cause (i) loss of function of the destruction complex, (ii) increase in nuclear localization of β-catenin
resulting in β-catenin-mediated transactivation of several genes. Mutations are mostly detected in
genes encoding components of the destruction complex such as APC and AXIN, but the gene encoding
β-catenin, CTNNB1, is also frequently mutated in selected cancer types. High frequency of mutations
causing hyperactivation of WNT-signaling can be detected for example in colorectal cancer [63,64] and
mutations in APC leading to APC loss of function have been found in about 70% of cases [65–67].

In melanoma, frequencies of mutations in APC, AXIN1 and CTNNB1 are low, reaching according
to cbioportal.org 10%, 2.9% and 5.9%, respectively (Table 1), however, a significant interstudy
variability exists. An early study reported mutations in CTNNB1 in six of 26 melanoma cell lines,
and all these mutations affect phosphorylation of β-catenin rending it resistant to proteasomal
degradation [68]. Several later studies have shown much lower frequencies of mutations in CTNNB1
and APC, which put into question the importance of a genetic component in aberrant activity of
β-catenin in melanoma [69–73]. For example, only 1 of 65 primary melanomas harbored mutations
of CTNNB1, and one third of cases showed nuclear accumulation of β-catenin [69]. In another study,
while a CTNNB1 missense mutation and a truncating APC mutation were reported only in one out of
forty cell lines, it has been demonstrated that hypermethylation of APC promoter was present in about
15% of melanoma biopsies and cell lines suggesting transcriptional silencing [74]. This epigenetic
regulation was, however, not accompanied with increased WNT-signaling probably due to residual
activity of APC. Epigenetic regulation of WNT/β-catenin antagonists such as DKKs, WIF1 and sFRP2
contributes substantially to activation of β-catenin. DKK1, DKK2 and DKK3 downregulation has been
observed in melanoma cell lines and tissue samples, however, in contrast to other cancer types promoter
hypermethylation is responsible only for downregulation of DKK2 [75]. Promoter methylation of
WIF1 has been shown as leading to WIF1 silencing [76,77]. Luo et al. have found that methylation
of the sFRP2 promoter results in a significant decrease of sFRP2 in patient melanoma samples and
melanoma cell lines compared with the paired adjacent non-tumor tissue and non-transformed
melanocytes, respectively [78].
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Table 1. Frequency of mutations of genes encoding elements of the canonical WNT-signaling pathway
detected in melanoma.

Gene Literature Data Melanoma
(cbioportal.org; 1284 Cases)

APC
15% [74]

10.0%11% [79]

2.7% [73]

AXIN1 – 2.9%

AXIN2 11% [79] 1.3%

BCL9 – 5.7%

CTNNB1

23% [68]

5.9%

4.6% [71]

3.3% [71]

11% [79]

1.6% [72]

1.5% [69]

5.4% [73]

3.2% [70]

3.7% [70]

FBXW7
8.1% [80]

3.4%
8.3% [81]

GSK3β – 1.2%

SFRP – 1.7%

WIF1 – 2.8%

3.2. Canonical Signaling

WNT-signaling plays an important function in skin. WNT/β-catenin-signaling guides the migration
of neural crest cells, multipotent precursor cells and drives them toward a melanocyte fate [82–84],
including terminal differentiation of melanoblasts to melanocytes [83]. WNT/β-catenin-signaling is
also responsible for the maintenance of homeostasis between melanocytes and keratinocytes in normal
epidermis [44,54]. The activation of MITF, a lineage-specific transcription factor, by the canonical
WNT-signaling plays an important role in melanocytes [85]. It has been observed that the fate of neural
crest cells depends on MITF, as cells with low MITF level differentiate toward e.g., neurons, glial cells
or cartilage, whereas cells with high MITF give rise to melanocytes [84]. In the context of melanocyte
lineage, β-catenin not only controls expression of MITF, but also modulates its function via direct
protein–protein interaction [86].

As melanoma cells utilize WNT/β-catenin-signaling for transformation and proliferation, whereas
non-canonical signaling for metastasis [87], β-catenin does not fully comply with the definition of an
oncogene in this cancer [88]. The exact role of WNT-signaling in melanoma initiation and progression
remains highly controversial to date despite extensive studies. While an increasing level of nuclear
β-catenin during cancer progression is characteristic for several cancer types including colorectal
cancer and hepatocellular carcinoma [89–92], the level of nuclear β-catenin is decreased in melanoma
during disease progression [62,93–97]. However, opposite results have been published as well [98–100].
β-catenin hyperactivation in melanoma is rarely caused by mutations of CTNNB1 [101]. β-catenin
has been shown to play a critical role in the early stages of melanocyte transformation [102,103].
The initiation of melanoma includes enhanced proliferation of cells together with suppression of
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senescence leading to abnormal growth of melanocytes [104]. Senescence is mediated by two main
tumor suppressor pathways: INK4α/RB and ARF/p53 [105]. The INK4α-ARF (CDKN2α) locus encodes
two proteins: p16INK4a and p14(p19)ARF, regulating RB1 and p53 pathways, respectively. Inactivation
of the genetic locus INK4α-ARF is important in overcoming the senescence barrier to oncogenesis [104].
In a variety of cancers, this locus is inactivated by mutations, whereas it has also been found that
p16INK4a expression can be silenced by activated β-catenin [103]. Delmas et al. observed the ability
of β-catenin to bypass senescence by silencing the p16INK4a through a conserved TCF/LEF site in
its promoter [103]. Activation of β-catenin in melanoma is a consequence of binding of WNT1
and WNT3A to their receptors FZD1/7 and co-receptors LRP5/6 and ROR1. These two ligands are
crucial for bypassing melanocyte senescence and inducing transformation of melanocytes [103,106].
While benign nevi have been found to be positive for nuclear β-catenin, loss of nuclear β-catenin
during melanoma progression to metastases has been reported [62,94,107]. The importance of canonical
WNT-signaling in melanoma initiation is mostly associated with β-catenin ability to regulate the
expression of a wide range of genes of the melanocyte lineage, and its involvement in regulation of
proliferation is most likely related to the activation of MITF expression [42,44,62,108–110]. The rheostat
model and phenotype switching model of MITF function in melanoma [111–113] suggest that a very
low MITF level or the absence of MITF results in cell senescence, a low level is characteristic for
invasive/dedifferentiated melanoma cells, whereas a high level of MITF pushes cells first toward a
highly proliferative phenotype and finally to differentiation. Therefore, MITF is considered to be a
master regulator of ‘phenotype switching’ between proliferative and invasive states, contributing
to the high plasticity of melanoma cells in response to changes in the tumor microenvironment,
including response to treatment [82,114–117]. Moreover, MITF plays an important pro-survival role in
melanoma cells [118]. Recently, a differentiation model of melanoma has been proposed, in which
the level of MITF is one of crucial factors determining subtypes of melanoma exerting differential
vulnerability to drug-induced stress [119]. In view of the correlation between β-catenin and MITF
expression, WNT-signaling also affects melanoma plasticity [120]. In actively proliferating melanoma
cells, nuclear β-catenin/LEF1 triggers the expression of MITF that in turn activates transcription of
several genes, including genes encoding cell cycle regulators p16, p21 and cyclin dependent kinase 2
(CDK2, pigmentation-related proteins such tyrosinase, dopachrome tautomerase (DCT) and Melan-A
and pro-survival factors e.g., BCL2 and BCL2A1 [42,118,121]. Active β-catenin-signaling leads to
increased differentiation in benign lesions [62,117] as it disrupts the regulatory balance between PAX3,
SOX10 and MITF towards terminal differentiation [83]. It has been found that β-catenin mediates
the activation of POU domain of transcription factor BRN2 that plays a complex role in regulation
of MITF [83,101]. BRN2 tends to be highly expressed in melanomas, which suggests that it can be a
positive regulator of melanoma survival and proliferation [83]. It has been reported that depending on
the cellular context, BRN2 can transcribe or repress MITF. It can drive MITF-mediated proliferation
in the presence of oncogenic BRAF, whereas in the absence of mutated BRAF it can represses MITF
promoting invasion [101]. Moreover, the proliferative MITFhigh subpopulation of melanoma cells
producing melanoma antigen recognized by T cells 1 (MART1) are less invasive, whereas when this
differentiation antigen is lost melanoma cells acquire highly invasive properties [122]. Differential
behavior of β-catenin in epithelial cancers and melanoma is associated with opposing features of
epithelial cells and melanocytes [99]. Therefore, it has been strongly emphasized that these diverse
effects of β-catenin in melanoma cells and epithelial-derived cancers may be connected with the activity
of MITF [62,99]. Arozarena et al. have shown the correlation between the expression of β-catenin and
MITF both in cell lines and melanoma biopsies [62]. When low β-catenin and highly invasive cells
were treated with forskolin, an agent upregulating MITF, the complete loss of membrane blebs and
F-actin cortex contraction was observed. In line with this, melanoma cells with high β-catenin and
high MITF levels have been characterized with an elongated filopodia phenotype and MITF reduction
significantly increased rounded blebbing cells [62]. The round shape morphology is regulated by
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phosphorylation of RHO/ROCK-mediated myosin light chain (MLC) that induces the contraction of
the cortical actin meshwork, regulating bleb retraction of cells.

Aberrant expression of WNT/β-catenin antagonists (e.g., DKKs, WIF1, sFRPs) is common in
melanoma and is associated with elevated β-catenin level. Downregulation of DKKs has been detected
in melanoma cell lines and tissue samples [75]. Reduced level of WIF1 has been found to contribute
to constitutive activation of canonical WNT-signaling in melanoma cells, and WIF1 overexpression
resulted in downregulation of WNT-signaling and suppression of melanoma cell proliferation [76].
Differences in WIF1 expression have been observed between its level in the primary tumor and sentinel
lymph node (SLN) metastases [77]. Similarly, decreased expression of sFRPs, leading to upregulated
WNT/β-catenin-signaling is also common in melanoma, and sFRP1 has been shown as an appealing
candidate for a tumor suppressor [123]. Reduction of sFRP2 enhances the canonical WNT-signaling,
whereas demethylation of its promoter inhibits the nuclear retention of β-catenin in melanoma cells
and suppresses invasion [78]. Kaur et al. have found that sFRP2 is expressed by aged fibroblasts that
play an important role in melanoma progression and this expression is associated with melanoma
metastasis, therapy resistance and poor outcomes in elderly patients [82]. sFRP2 decreases β-catenin,
MITF and apurinic/apyrimidinic endonuclease 1 (APE1). APE1 is the redox effector involved in DNA
repair, so its decrease can attenuate the response of melanoma cells to DNA damage induced by
reactive oxygen species, making melanoma cells more resistant to vemurafenib [82].

3.3. Non-Canonical WNT Signaling

Non-canonical WNT-signaling, which is activated during melanoma progression, suppresses the
WNT/β-catenin-signaling [107,124]. The interaction of canonical and non-canonical WNT-signaling in
melanoma is presented in Figure 3. A lower level of nuclearβ-catenin was detected in metastases than in
primary melanoma in 343-melanoma samples [107]. Immunohistochemical analyses have revealed that
most metastatic melanoma exhibited strong WNT5A staining comparing to benign tumors and a high
WNT5A level in metastatic cutaneous melanoma is associated with poor outcome [125]. Therefore, it has
been suggested that lack of nuclear β-catenin and high level of cytoplasmic WNT5A can be indicatives
of unfavorable prognosis for melanoma patients [62,107,125]. Furthermore, inducible overexpression
of WNT5A in melanoma cells exhibiting low metastatic activity results in enhanced invasiveness [126],
whereas siRNA-mediated knockdown of ROR2, the WNT5A receptor, reduced the frequency and
severity of lung metastases in mice [127]. Pro-metastatic effects of WNT5A have been associated with
aerobic glycolysis promoted by WNT5A in melanoma cells [128]. WNT5A-mediated Ca2+-dependent
release of exosomes by melanoma cells has been reported [129]. Exosomes are the smallest type of
extracellular vesicles (30–180 nm in diameter), whose role in melanoma has been extensively discussed
recently [61]. Using recombinant WNT5A in melanoma cells expressing low endogenous WNT5A
induces a rapid release of exosomes containing the immunomodulatory cytokine interleukin 6 (IL-6) and
the pro-angiogenic factors interleukin 8 (IL-8), VEGF and matrix metalloproteinase-2 (MMP2), whereas
WNT5A depletion in melanoma cells expressing high endogenous WNT5A causes the reduction of
IL-6, IL-8, VEGF and MMP2. Release of immunomodulatory and pro-angiogenic molecules enhances
aggressiveness of melanoma cells and their capacity to metastasize [129]. Furthermore, it has been
reported that WNT5A increases autophagy, which mediates resistance to various anticancer drugs.
Knocking down autophagy-related gene 5 (ATG5) in WNT5Ahigh melanoma cells caused a reduction
of the WNT5A level and induction of β-catenin [130].
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Figure 3. Proposed model of the crosstalk between canonical and non-canonical WNT-signaling
in melanoma. In the canonical WNT pathway, WNT–FZD/LRP5/6 interaction initiates β-catenin
dependent signaling. β-catenin translocates to the nucleus to drive the transcription of target genes.
This is critical for early steps of transformation when melanocytes bypass senescence and start to
proliferate, thus promoting first the radial then vertical growth of melanoma. An increase of WNT5A
that activates non-canonical WNT-signaling inhibits β-catenin-signaling and enhances the invasiveness
of melanoma cells crucial for metastatic spreading of melanoma. Green and red arrows indicate increase
and decrease, respectively.

WNT5A can either inhibit or activate canonical WNT-signaling in diverse ways depending on the
receptor context [131]. Several of these mechanisms have been investigated in melanoma and the results
revealed that WNT5A exerts a dichotomous role in melanoma (Figure 3). It can either stabilizeβ-catenin
via adenosine diphosphate (ADP)-ribosylation factor 6 (ARF6) or suppress the WNT/β-catenin-signaling
either by binding to FZD receptors or in a seven in absentia homolog 2 (SIAH2)-dependent manner.
Binding of WNT5A to FZD4/LRP6 receptor complex activates ARF6 that in turn releases β-catenin
from N-cadherin, which stimulates the shuttling of β-catenin between the membrane, cytoplasm
and nucleus and enhances β-catenin-dependent transcription [132]. WNT5A that signals through
FXD2, FZD5 and ROR2 activates PKC/Ca2+-signaling [87]. Calpain-1 (CAPN) mediates the cleavage of
filamin A, promoting the remodeling of cytoskeleton and enhancing the motility of melanoma cells,
whereas CAMKII inhibits β-catenin activity [87]. PKC activates signal transducer and activator of
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transcription 3 (STAT3) leading to inhibition of MITF expression with concomitant downregulation
of melanocytic differentiation antigens (Melan A (MART1), DCT and gp100), thus promoting the
metastatic phenotype [87]. Furthermore, PKC influences the motility of melanoma cells through the
inhibition of metastasis repressor KISS-1 and E-cadherin and upregulation of metastasis-associated
molecules, CD44 and SNAIL, resulting in transition to an invasive phenotype [87,133]. WNT5A can
compete with WNT3A for binding to FZD2, and in this way LPR6 phosphorylation and β-catenin
accumulation can be inhibited [122,134].

WNT5A can act through SIAH2 via the GSK3-β-independent pathway to promote degradation of
β-catenin [135–137]. This mechanism of switching from WNT/β-catenin-signaling to non-canonical
WNT-signaling has been associated with resistance to targeted therapy [136]. A high level of WNT5A
promotes the resistance to vemurafenib, highlighting the opposing roles of different WNT pathways
in melanoma [87]. Melanoma cells exerting a high level of WNT5A when exposed to vemurafenib
treatment or other stress, developed a sort of drug resistant state (pseudosenescence), still retaining
invasive capacity and the ability to form metastases. Furthermore, the pseudosenescent WNT5A-high
cells were capable to express factors similar to those secreted by senescent fibroblasts and were
positive for senescence markers, e.g., β-galactosidase, Src homology 2 domain containing F (SHF) and
methylated of histone H3 on lysine 9 (H3K9Me). This WNT5A-mediated senescence-like response
may be the mechanism that allows the tumor to evade therapy by undergoing growth arrest [122].

FZD3 has been found to be associated with β-catenin-independent-signaling and upregulation
of this receptor is associated with melanoma progression and a reduced patient survival, whereas
down-regulation of FZD3 suppresses growth and metastasis of melanoma [138]. Overexpressed FZD3
has been detected in 20% of melanoma patients whose tumors were deprived of infiltrating T cells
indicating the importance of this receptor in immune evasion [139]. Moreover, it has been observed
that FZD3 effectively modulates the activity of the mitogen-activated protein kinase/extracellular
signal-regulated kinase (MAPK/ERK) pathway that is critical for melanoma maintenance. Therefore,
FZD3 blocking agents may enhance the efficacy of melanoma treatment when used in combination
with available kinase inhibitors and immunotherapy [138,139].

4. Crosstalk between WNT Signaling and Key Oncogenic Pathways Involved in Melanoma
Development, Progression and Response to Treatment

The complex interactions existing between diverse signaling pathways create the opportunity for
a cancer cell to compensate for a blockade of a single pathway. The crosstalk consisting of multiple
interactions and feedback loops is crucial for the cellular response to microenvironmental changes,
including treatment. WNT-signaling is an important part of the crosstalk between key oncogenic
pathways involved in melanoma development, progression and response to treatment. Elements
of the WNT-signaling pathways both depend on and regulate activities of diverse pathways such
as MAPK/ERK and phosphatidylinositol-3-kinase (PI3K)/AKT as well as transcriptional regulators
including p53 and MITF. Figure 4 shows main signal transduction pathways and transcriptional
regulators that interact with the WNT-signaling pathways in melanoma.
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Figure 4. Main signal transduction pathways and transcriptional regulators that interact with the
WNT-signaling pathways in melanoma. Figure shows the possible crosstalk between different
pathways, however, some of the interactions are genetic context-, disease stage- or treatment-dependent.
See the text for more details. APC—adenomatosis polyposis coli; AXIN—axis inhibition protein;
BCL—B-cell CLL/lymphoma protein; BRG-1—brahma-related gene-1; CBP—(CREB)-binding protein;
CK1α—casein kinase 1α; COX-2—cyclooxygenase 2; DVL—disheveled; FZD—frizzled receptor;
GSK3β—glycogen synthase kinase 3β; iASPP—inhibitor of apoptosis-stimulating protein of
p53; LEF—lymphoid enhancer-binding factor 1; LRP—low-density lipoprotein receptor related
protein; MITF—microphthalmia-associated transcription factor; PTEN—phosphatase and tensin
homolog deleted on chromosome ten; PYGO—pygopus; mTOR—mammalian target of rapamycin;
PI3K—phosphatidylinositol-3-kinase; RAS—Rat sarcoma.; ROR—RAR-related orphan receptor;
RTK—receptor tyrosine kinase—SIAH2—seven in absentia homolog 2.

WNT-signaling can interact with MAPK/ERK and PI3K/AKT-signaling in diverse ways. Moreover,
growing evidence indicates that this crosstalk in melanoma depends on the genetic context and several
mechanisms are considered as tumor stage-dependent or unique for melanoma. In an early study, it was
shown that WNT/β-catenin and MAPK/ERK pathways synergized in order to induce melanoma without
the need for p16INK4a mutations and β-catenin could cooperate with N-RAS [103]. Next, it was found
that inhibition of BRAFV600 enhanced the activity of β-catenin in the presence of WNT ligands [140].
This combination of BRAF inhibition and WNT/β-catenin activation was accompanied by AXIN1
degradation and inhibition of GSK3β, whereas hyperactivated MAPK/ERK-signaling stabilized AXIN1
that inhibited WNT-signaling in melanoma [140]. This negative crosstalk between MAPK/ERK and
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WNT/β-catenin-signaling was considered as melanoma specific since in colon cancer and many other
cancers, activation of WNT/β-catenin-signaling leads to the stabilization of both β-catenin and RAS and
activation of MAPK-signaling [141,142]. In another study performed in a mouse model of melanoma
and human biopsies, β-catenin stabilization was associated with increased activation of MAPK/ERK
and PI3K/AKT-signaling in BRAF activated and PTEN inactivated highly metastatic melanomas [98].
Full activation of AKT was detected, however, only in a small subset of melanomas [98]. These results
suggest that the crosstalk between MAPK/ERK, PI3K/AKT and WNT/β-catenin-signaling depends
on the genetic context. When phenotypic effects of the WNT/β-catenin pathway were compared
in wild-type and mutated PTEN melanomas, the invasiveness and bioenergetics of melanoma
cells were found to be regulated by WNT3A/β-catenin in a PTEN-dependent manner [57]. A most
recent report has demonstrated that there is a high variability in the activity of PI3K/AKT and
WNT/β-catenin pathways in melanomas with BRAFV600E and wild-type PTEN [143]. Moreover,
the activity of these pathways can be largely modified in the response to targeted therapeutics and after
the development of drug resistance [140,143,144]. Nuclear localization of β-catenin can be increased by
prostaglandins, which indicates the potential crosstalk between WNT-signaling and the cyclooxygenase
2 (COX-2)/prostaglandin pathway [145]. COX-2 is a target gene of β-catenin transcription, and in
addition, β-catenin contributes to the stabilization of COX-2 mRNA [145].

Transcription factors responding to diverse signal transduction pathways play a key role in integrating
multiple signals to give rise to the optimal phenotype confronting the cancer developmental stage and
microenvironmental insults [85]. MITF, a melanocyte and melanoma specific transcription factor is under
control of many signaling pathways and activeβ-catenin contributes to its transcription [85]. MAPK/ERK,
PI3K/AKT and WNT/β-catenin-signaling pathways are also able to post-translationally modify
MITF [115]. ERK-mediated phosphorylation of MITF results in increased binding of p300/CBP [146]
as well as proteasomal degradation [147,148]. It is worth to note that WNT/β-catenin, MAPK/ERK
and PI3K/AKT-signaling can converge to regulate nuclear transport of MITF [149]. Phosphorylation
of MITF by ERK1/2 primes MITF for phosphorylation by GSK3β [149], a kinase that is inhibited by
both PI3K/AKT and WNT/β-catenin-signaling. This dual phosphorylation is an example how multiple
signaling pathways can converge to control the activity of a specific transcription factor. MITF activity
is also dependent on the non-canonical WNT pathway as PKC can activate STAT3 leading to inhibition
of MITF expression with concomitant downregulation of melanocytic differentiation antigens (Melan A
(MART1), DCT and gp100), thus promoting the metastatic phenotype [87,101].

The WNT5A impact on p53 activity is another example of the influence of non-canonical
WNT-signaling on the transcription factor-mediated phenotype of melanoma cells. As shown most
recently, a high expression of WNT5A is observed in wild-type p53 melanomas representing 80% of
this cancer, and more important, WNT5A can promote a slow-cycling phenotype of melanoma cells
by increasing the half-life of wild-type p53 [150]. WNT5A expression can be enhanced by aging or
treatment of melanoma with targeted therapy or irradiation [82,121,151]. Following different types
of stress, a slow-cycling phenotype is induced, which in turn may promote melanoma survival,
plasticity and heterogeneity. However, WNT5A can stabilize p53, p53-induced apoptosis is inhibited,
and melanoma cells are arrested. As p53 has been shown to inhibit WNT-signaling [152–154], a feedback
loop WNT-p53-WNT that is possible in wild type p53 melanomas has been suggested [150]. A possible
explanation is that PKC activated by WNT5A phosphorylates the inhibitor of apoptosis stimulating
protein (iASPP) leading to its nuclear localization, which prevents p53-induced apoptosis [133,155].
As SIAH2 is a target of p53 [156,157], WNT5A-stabilized p53 may in turn increase SIAH2 expression
and β-catenin degradation in melanoma [150]. Most recently, it has been shown that β-catenin can
be a direct partner of SOX10 via protein–protein interactions, which reduces SOX10 protein level
in melanoma cells [158]. These results suggest that SOX10 considered as functionally crucial for
melanoma survival can be suppressed by WNT/β-catenin-signaling. Of note, SOX10 level has not
been reduced by main targeted therapeutics used in melanoma treatment [117,158], and in selected
vemurafenib- or trametinib-resistant melanoma cell lines has been even increased [143]. Interestingly,
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SOX10 expression in hepatocellular carcinoma has been shown to correlate with enhanced level of
β-catenin, and active β-catenin forming a stable SOX10/TCF4/β-catenin complex is necessary for the
oncogenic effects of SOX10 [159]. These examples illustrate how direct and indirect interactions of
WNT-signaling with transcription factors can influence the melanoma cell phenotype.

5. WNT-Signaling in Cancer Immunity

Various studies indicate that WNT-signaling is associated with several aspects of immunity,
and alterations in WNT-signaling can be connected with the deregulation of immune response against
cancer, both innate and adaptive [56,160–167]. Tumors can be classified as having or lacking a
T-cell-inflamed microenvironment [168] and immunotherapeutic interventions, including checkpoint
inhibitors such as antiprogrammed death 1 (PD-1), programmed death-ligand 1 (PD-L1) and
anti-cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) antibodies have shown efficacy in patients
with a preexisting T cell-inflamed cancer microenvironment [169]. Therefore, understanding the
mechanisms underlying T cell exclusion is of clinical relevance. Most recently performed analysis of
tumor microenvironment has revealed that about one-third of solid tumors have poor T cell infiltration,
and tumor-intrinsic WNT/β-catenin-signaling inversely correlates with a T cell-inflamed phenotype in
90% of tumor types [170]. Authors suggest that activation of WNT/β-catenin in tumor cells is one of the
possible mechanisms of intrinsic resistance to immunotherapy. The link between the WNT/β-catenin
pathway and immune exclusion has been first identified in melanoma [171,172]. Gene expression
profiling and exome sequencing of 266 individual melanoma metastases has revealed that about
48% of the non-inflamed melanomas exert active WNT/β-catenin pathway with elevated expression
of genes under control of this signaling [171]. Mutations potentially leading to the WNT/β-catenin
pathway activation, either gain-of-function mutations in CTNNB1 (8%) or loss of function mutations
(11%) in genes encoding negative regulators of WNT/β-catenin-signaling have been detected in these
metastases [171]. Genetically engineered mouse models expressing conditionally active β-catenin have
been used to show that melanomas with enhanced activation of WNT/β-catenin lack T cell infiltrate,
which is due to insufficient recruitment of CD103/CD8α dendritic cells (DCs) [172]. This escape
of immunity developed after activation of WNT-signaling in melanoma cells is accompanied by
reduced secretion of CC-motif chemokine ligand 4 (CCL4), a chemokine that attracts the immune cells
(Figure 5). The CCL4 expression is downregulated by β-catenin via activating transcription factor 3
(ATF3) [172]. Interestingly, no therapeutic effect of anti-CTLA-4 and anti-PD-L1 was observed in mice
with melanoma expressing active β-catenin unless DCs were injected to activate tumor antigen-specific
T cells. As immune evasion mediated by WNT/β-catenin-signaling frequently operates already in
primary melanomas, it has been suggested that β-catenin-based stratification of patients may improve
immunotherapeutic outcomes [173].

As activation of tumor-intrinsic WNT/β-catenin-signaling is enhanced in non-T cell-inflamed
tumors, the WNT-signaling inhibitors may be useful for restoring immune cell infiltration to
support immunotherapy.
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Figure 5. Mechanisms of immune exclusion in melanoma through WNT/β-catenin-signaling [172].
β-catenin induces expression of ATF3 and ATF3 represses transcription of CCL4. CD103+ dendritic
cells and cytotoxic CD8+ T-cells are not recruited to melanoma, which leads to non-inflamed tumor.
When β-catenin-signaling is inactive in melanoma cells, ATF3 is not expressed, which restores CCL4
production and secretion. This stimulates recruitment of immune cells, including CD103+ dendritic cells
that activate CD8+ T cells. Recruitment of tumor specific CD8+ T cells in the tumor microenvironment
results in immune inflamed melanoma. ATF3—activating transcription factor 3; β- cat—β- catenin;
CCL4—CC-motif chemokine ligand 4.

6. WNT-Targeted Therapies

The important role of WNT-signaling in the development and adult life as well as its implication
in a wide spectrum of diseases, including cancer has already attracted the attention of medical
and biotech companies. Ongoing research is focused on the development of specific inhibitors
of WNT/β-catenin-signaling for cancer therapies, and only very few modulators of non-canonical
signaling are known. Based on the recent advances in cancer biology, targeting of WNT-signaling in
cancer cells has to be put into perspective of its effectiveness either in reversing resistance to anticancer
drugs or in inhibition of tumor evasion. It is important to underline that it is difficult to target only
the WNT pathway without interfering with other signaling pathways. Diverse compounds of natural
origin or synthetic, peptides and antibodies that are in preclinical studies are shown in Table 2. Natural
compounds targeting WNT-signaling have been discussed extensively [174,175], and therefore only
few of them are included in Table 2.



Int. J. Mol. Sci. 2020, 21, 4852 16 of 31

Table 2. WNT/β -catenin pathway inhibitors in melanoma (preclinical study).

Compound Target
Mode of Action Research Model References

C59
porcupine inhibitor (synergizes

with CTLA4-targeting antibodies
in mouse melanoma models)

WM266 human melanoma cell line;
B16/F10 mouse melanoma cell line;

patient derived Hu-175, Hu-422, Hu-424,
Hu-451 human melanoma cell lines

[176]

WNT-2Ab WNT2 antibody LOX, FEMX melanoma cell lines; [177]

FJ9 DVL inhibitor LOX melanoma cell line [178]

G007-LK

tankyrase
inhibitor

(sensitizes melanoma to PD-1
immune checkpoint blockade)

B16/F10 mouse melanoma cell line [179]

fisetin
(i) GSK3-β
inhibitor B16F10 mouse melanoma cell line [180]

(ii) activator of GSK3-β, DKK1 and
WIF-1; FZD and LRP5/6 inhibitor

451Lu human melanoma cells; athymic
(nu/nu) female nude mice [181]

lupeol blocking the translocation of
β-catenin to the nucleus

Mel 928, Mel 1241 and Mel 1011 human
melanoma cell lines [182]

pentoxifylline β-catenin DMBC11, 12, 17, 19, 21 patient-derived
melanoma cell lines [183]

PKF115-584 β-catenin SKMEL28, A375, BLM, SKMEL19 and
451Lu human melanoma cell lines [100]

Several agents influencing WNT-signaling have reached the clinical trials (Table 3). Many of these
inhibitors cause, however, severe side effects associated with impairment of tissue homeostasis and
tissue regeneration, and off-target effects of WNT inhibitor are still an unresolved problem. Most of
the clinical trials are conducted with patients with colorectal cancer (Table 3), and so far, melanoma
patients were included only in one clinical trial (NCT01351103).

Table 3. Overview of clinical trials (current and past clinical trials) evaluating activity of drugs targeting
WNT pathway in melanoma, colorectal cancer and hepatocellular carcinoma (https://clinicaltrials.gov).

Compound Company Target/Mode of
Action Type of Cancer Trial Identifier (phase/status) Ref.

WNT974
(with LGX818 &

cetuximab)
Array BioPharma porcupine inhibitor metastatic colorectal

cancer

NCT02278133
(Phase 1; Phase 2/ completed;

updated: October 2017)
[184,185]

LGK974
(monotherapy or
combined with

PDR001)

Novartis
Pharmaceuticals porcupine inhibitor

BRAF mutant
colorectal cancer &

melanoma

NCT01351103
(Phase 1/

recruiting; updated: June 2020)
[184,185]

ETC-1922159
(with pembrolizumab)

EDDC, A*STAR
Research Entities porcupine inhibitor colorectal cancer

NCT02521844
(Phase 1/active, not recruiting;

updated: October 2019)
[186]

CGX1321 Curegenix, Inc. porcupine inhibitor

colorectal
adenocarcinoma
hepatocellular

carcinoma

NCT03507998
(Phase 1/

recruiting; updated: May 2019)
[187]

CGX1321
(with pembrolizumab) Curegenix, Inc. porcupine inhibitor colorectal cancer

NCT02675946
(Phase1/

recruiting updated: September 2019)
[187]

PRI-724 Prism Pharma
Co., Ltd.

interaction of
β-catenin and CBP colorectal cancer

NCT01302405
(Phase 1 terminated due to low enrollment,

updated: August 2017)
[188]

DKN-01
(monotherapy or
combined with

sorafenib)

Johannes Gutenberg
University Mainz DKK1 inhibitor hepatocellular

carcinoma

NCT03645980
(Phase 1; Phase 2/recruiting; updated:

August 2019)
none

OMP-54F28 (ipafricept)
with sorafenib OncoMed

Pharmaceuticals, Inc.

FZD8 decoy
receptor for

WNT ligands

locally advanced or
metastatic

hepatocellular cancer
solid tumors

NCT02069145
(Phase 1/completed; updated: August 2017)

[189]
OMP-54F28
(ipafricept)

NCT01608867
(Phase 1/completed; updated: July 2017)

https://clinicaltrials.gov
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Table 3. Cont.

Compound Company Target/Mode of
Action Type of Cancer Trial Identifier (phase/status) Ref.

OMP-18R5
(vantictumab)

OncoMed
Pharmaceuticals

FZD receptors
(1, 2, 5, 7, 8)
inhibitors

solid tumors
NCT01345201

(Phase 1/completed;
updated: September 2016)

[190]

Foxy-5 WntResearch AB WNT5A mimetic
colorectal cancer

NCT02655952 &
NCT02020291

(Phase 1/completed; updated: December 2018)
NCT03883802

(Phase 2/recruiting; updated: April 2019)

[191,192]
Metastatic colorectal

cancer

OMP-131R10
(with FOLFIRI)

OncoMed
Pharmaceuticals, Inc.

anti-R-spondin3
antibody colorectal cancer NCT02482441

(Phase 1/completed; updated: August 2018) [193]

niclosamide

Michael Morse, MD FZD1
internalization and
BCL-9 inhibition,

c-JUN upregulation

colorectal cancer NCT02687009
(Phase 1/terminated, updated: February 2020) [194–200]

Charite University,
Berlin, Germany

metastatic colorectal
cancer

NCT02519582
(Phase 2/

recruiting; updated: September 2018)
[201]

genistein Sofya Pintova GSK3-β inhibitor colorectal cancer NCT01985763
(Phase 1; Phase 2/completed; updated: May 2019) [202,203]

resveratrol University of
California, Irvine

β-catenin/
TCF interaction colorectal cancer NCT00256334

(Phase 1/completed updated: June 2014) [204]

curcumin
(dietary supplements:
Mirtoselect®®®® &

Meriva®®®®)

Ente Ospedaliero
Ospedali Galliera

β-catenin/
TCF interaction colorectal adenoma

NCT01948661
(Phase not applicable, trial without FDA-

defined phases
/active, not recruiting; updated: August 2018)

[205]

EDDC, Experimental Drug Development Center.

As shown in Tables 2 and 3, WNT pathways can be affected by drugs at various stages.
The first stage, WNT ligand activation and binding, is the most intensively investigated part of
the WNT/β-catenin pathway. Porcupine, an enzyme with the acyl-transferase activity necessary for
palmitoylation of WNT ligands, was one of the first targets [6,8,14]. The porcupine inhibitor WNT974
(also known as LGK974) is under clinical evaluation in several cancer types, including melanoma
(NCT01351103) [184,185] (Table 3). C59 is another porcupine inhibitor investigated in melanoma that
diminished WNT/β-catenin-signaling. It synergizes with anti-CLA-4 antibody in the B16 melanoma
model, suggesting a synergistic enhancement in antitumor immunity [176]. A monoclonal antibody
(WNT-2Ab) against human WNT2 ligand has been developed to induce apoptosis in melanoma cells
exerting WNT2 overexpression, and WNT-2Ab treatment downregulated β-catenin target genes, e.g.,
CCND1 and c-Myc [177]. Phase 1 clinical trial for Foxy-5 (formylated 6-amino-acid peptide fragment),
a WNT5A-mimicking peptide has already been completed in colorectal cancer and has shown a
promising therapeutic value [191,192]. FZD receptors are potential targets of WNT directed therapies.
The attenuation of WNT-signaling can be achieved by ubiquitylation-mediated degradation of FZD by
anti-RSPO3 mAb (OMP-131R10). Phase 1 clinical trial employing OMP-131R10 has been completed
with colorectal cancer patients [193]. OMP-18R5 (Vantictumab), a human monoclonal antibody has
been used to inhibit ligand binding by targeting FZD receptors (FZD 1, 2, 5, 7, 8) [190]. The activity of
OMP-54F28 (Ipafricept, completed phase I clinical trial) is based on the competition with FZD8 for
ligand binding. OMP-54F28 is a recombinant fusion protein that consists of cysteine-rich domain of
FZD8 and Fc domain of immunoglobulin and it functions as a trap for FZD8-binding of WNTs [189,206].
FZD can also be targeted by niclosamide, a plant derived compound that is capable of inducing FZD1
internalization and DVL down-regulation [194,207]. It downregulates B-cell lymphoma 9 (BCL9)
that impairs the formation of active β-catenin/TCF/LEF triple-complex and upregulates c-JUN [200].
Niclosamide has already entered clinical trials in colorectal cancer. Poor systemic bioavailability
of niclosamide led to the development of pro-drugs with better pharmacokinetic properties [208].
DKK1 inhibitors also belong to molecules targeting WNT-signaling, as DKK1, initially characterized
as tumor suppressor may also function as tumor promoter [209]. DKN-01, a humanized monoclonal
neutralizing antibody against DKK1 recognized as having potential therapeutic implications [210],
has entered clinical trials. There are also WNT-signaling inhibitors that target FZD-DVL interaction e.g.,
FJ9 that disrupts the interaction between FZD7 and DVL. FJ9 has been found to downregulate canonical
WNT-signaling and induce apoptosis in lung cancer and melanoma cells [178]. Another group of
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inhibitors belongs to intracellular drugs targeting the destruction complex. Tankyrases are the enzymes
that degrade AXIN1 and AXIN2 through poly ADP-ribosylation. A very recent report indicates that
inhibition of tankyrase by G007-LK can be used to overcome WNT/β-catenin-mediated resistance to
immune checkpoint inhibitors [179]. While previously used tankyrase inhibitors caused bone loss [211]
and intestinal toxicity [212], no such signs were observed in mice treated with G007-LK [179]. Growing
evidence indicates that dietary factors along with alteration in the gutactivator protein 1 microbiota
can affect WNT-signaling. Genistein, a soy-derived isoflavone, for which clinical trial phase 1 and 2
has been completed in CRC, inactivates WNT-signaling by GSK3-β targeting [202,203,213]. Fisetin
(3,7,3′,4′-tetrahydroxyflavone) is a dietary flavonoid that inhibits GSK3-β and activates β-catenin
in melanoma cells [180]. Another plant-derived molecule known to modulate WNT-signaling in
melanoma is a triterpene lupeol, (lup-20(29)-en-3β-ol). It has been found that lupeol prevented the
translocation of β-catenin to the nucleus, therefore decreased nuclear β-catenin level and expression
of β-catenin target genes e.g., coding region determinant-binding protein (CRD-BP), MITF and
CCND1 [182]. Pentoxifylline, a drug approved by the FDA for the treatment of peripheral arterial
disease, markedly reduced the level of active β-catenin in the nucleus of melanoma cells with high
basal expression of β-catenin [183].

As demonstrated above, there is a large group of natural or synthetic compounds, peptides and
antibodies that are capable of affecting, either inducing or inhibiting, the WNT-signaling pathways at
various stages. Compounds that have been investigated in melanoma are shown in Figure 6.
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Figure 6. Compounds and antibodies affecting WNT/β-catenin-signaling pathway that were investigated
in melanoma (preclinical studies, except for LGK974, which is tested in the clinical trial NCT01351103).
APC—adenomatosis polyposis coli; AXIN—axis inhibition protein; BRG-1—brahma-related gene-1;
BCL-9—B-cell CLL/lymphoma 9 protein; CBP—cAMP response element-binding protein; CK1α—casein
kinase 1 α; CK1γ—casein kinase 1 γ; DKK1—Dickkopf-1; DVL—disheveled; ER—endoplasmic
reticulum; FZD—frizzled; GSK3β—glycogen synthase kinase 3β; LRP5/6—lipoprotein receptor
related protein 5/6; PYGO—pygopus; TKNS—tankyrase; β-TrCP—beta-transducin repeat–containing
protein; Ub—ubiquitin.
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While inhibition of WNT-signaling represents an immensely appealing strategy for the development
of anticancer therapeutics, none of drugs targeting WNT-signaling is yet available in clinical practice [4,214].

7. Conclusions

WNT-signaling is extremely complex and context-dependent in cancer, including melanoma.
Deregulation of WNT-signaling contributes to cancer initiation, progression, modulation of immune
microenvironment and resistance to treatment. While WNT-signaling alterations start with APC
mutations in about 70% of colorectal cancer patients, mutations are not the major cause of these
deregulations in melanoma. Moreover, transcriptionally active β-catenin is associated with less
invasive disease and more favorable prognosis for melanoma patients, in contrast to other cancers,
in which nuclear β-catenin is a driving force of both initiation and progression. It is thought that
β-catenin-suppressed invasion occurs through a cell-type specific mechanism involving transcription
factor MITF, one of the β-catenin target genes. On the other hand, low efficacy of immunotherapy is
observed in melanomas with elevated level of β-catenin. The identification of therapeutic targets is
further complicated by the crosstalk between WNT-signaling pathways and other signaling pathways
crucial for melanoma development such as MAPK/ERK and PI3K/AKT, as well as the plasticity of
melanoma cells in response to microenvironmental insults. Therefore, finding a therapeutic window
for effective modulation of the WNT pathway in melanoma is a challenging task. A low number of
clinical trials investigating WNT/β-catenin modulators in melanoma patients is the consequence of the
controversial role of WNT-signaling in melanoma.
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Abbreviations

AP-1 activator protein 1
APC adenomatosis polyposis coli
APE1 apurinic/apyrimidinic endonuclease 1
ARF6 adenosine diphosphate (ADP)-ribosylation factor 6
ARM armadillo
ATF3 activating transcription factor 3
ATG5 autophagy-related gene 5
AXIN axis inhibition protein
B9 L B-cell lymphoma 9-like
BCL-9 B-cell CLL/lymphoma 9 protein
β-TrCP beta-transducin repeat–containing protein
BRG-1 brahma-related gene-1
CaMKII Ca2+/calmodulin dependent kinase II
CaN calcineurin
CAPN calpain
CBP (CREB)-binding protein
CCL4 CC-motif chemokine ligand 4
CDK2 cyclin dependent kinase 2
cer1 Cerberus protein
CK1 γ casein kinase 1 γ
CK1α casein kinase 1α
CK1ε casein kinase 1ε
CRC colorectal cancer
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CSCs cancer stem cells
CTD C-terminal domain
CTLA-4 anti-cytotoxic T lymphocyte-associated antigen 4
Daam-1 disheveled associated activator of morphogenesis 1
DAG diacylglycerol
DCs dendritic cells
DCT dopachrome tautomerase
DKK Dickkopf
DVL disheveled
ER endoplasmic reticulum
EVI/WLS Evenness interrupted/Wntless
FGF fibroblast growth factor
FOXOs forkhead box class O family member proteins
FRA1 FOS-related antigen 1
FZD frizzled
GSK3β glycogen synthase kinase 3β
H3K9me methylation of histone H3 on lysine 9
HCC hepatocellular carcinoma
iASPP inhibitor of apoptosis-stimulating protein of p53
ICAT inhibitor of β-catenin and TCF4
IL-β interleukin-1β
IP3 inositol (1,4,5)-triphosphates
IQGAP1 IQ IQ motif containing GTPase activating protein 1(IQGAP1)
JNK c-Jun N-terminal kinases
KRM Kremen
LGR leucine-rich repeat-containing G-protein coupled receptor
LGR5/RSPO G-protein coupled receptor 5/a roof plate-specific spondin
LPPs lipoprotein particles
LRP5/6 lipoprotein receptor related protein 5/6
MAK metastasis associated kinase
MART1 melanoma antigen recognized by T cells 1
MITF microphthalmia-associated transcription factor
MLC myosin light chain
MMP matrix metalloproteinase
NFAT nuclear factor of activated T-cells
NLK Nemo-like kinase
NPC nuclear pore complex
NTD N-terminal domain
NUPs nucleoporins
OCT4 octamer-binding transcription factor 4
PAR1 protease-activated receptor 1
PCP planar cell polarity-signaling pathway
PD-L1 programmed death-ligand 1
PIP2 phosphatidylinositol (4,5)-biphosphates
PKC protein kinase C
PLC phospholipase C
PP2A protein phosphatase 2A
PPP(S/T)P Pro-Pro-Pro(SerTrp)Pro
PTK7 protein tyrosine kinase 7
PYGO pygopus
RNF43 ring finger protein 43
ROCK Rho-associated kinase
ROR RAR-related orphan receptor
RSPO R-spondin, roof plate-specific spondin
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RTK receptor tyrosine kinase
RYK receptor like tyrosine kinase
sFRPs secreted frizzled-related proteins
SHF Src homology 2 domain containing F
SIAH2 seven in absentia homolog 2
SLN sentinel lymph node
SMAD mothers against decapentaplegic homolog
SRY sex-determining region Y
STAT3 Signal Transducer Moreover, Activator Of Transcription 3.
SWI/SNF SWItch/Sucrose non-fermentable chromatin-remodeling complex
TAK1 TGFβ-activated kinase 1
TCF/LEF T cell factor/lymphoid enhancer-binding factor 1
TGF-β transforming growth factor-β
v-ATPase vacuolar H+-Adenosine Triphosphatase.
VEGF vascular endothelial growth factor
WIF1 WNT inhibitory factor 1
WISE WNT modulator in surface ectoderm
WISP1 WNT1-inducible-signaling pathway protein 1
ZNRF3 zinc and ring finger protein 3
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