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Cytotoxic CD8 T lymphocytes (CTLs) play a pivotal role in the control of infection. Activated CTLs, however, often lose effector
function during chronic infection. PD-1 receptor and its ligand PD-L1 of the B7/CD28 family function as a T cell coinhibitory
pathway and are emerging as major regulators converting effector CTLs into exhausted CTLs during chronic infection with human
immunodeficiency virus, hepatitis B virus, hepatitis C virus, and other pathogens capable of establishing chronic infections.
Importantly, blockade of the PD-1/PD-L1 pathway is able to restore functional capabilities to exhausted CTLs and early clinical
trials have shown promise. Further research will reveal how chronic infection induces upregulation of PD-1 on CTLs and PD-L1
on antigen-presenting cells and other tissue cells and how the PD-1/PD-L1 interaction promotes CTLs exhaustion, which is crucial
for developing effective prophylactic and therapeutic vaccination against chronic infections.

1. Introduction

Our immune system is tasked with the formidable challenge
of balancing elimination of pathogenic entities and main-
taining tolerance to prevent autoimmune disease. T cells
are central to preserving this balance, and their proper reg-
ulation, primarily coordinated by the B7/CD28 family of
molecules, is of utmost importance. Optimal T cell ac-
tivation requires two signals. The first is an antigen-specific
signal generated by T cell receptor (TCR) recognition of
peptide-MHC presented by an antigen-presenting cell
(APC), while the second, antigen-independent, signal is
supplied by binding of one of the classic B7 family members,
B7-1 (CD80) or B7-2 (CD86) to CD28 on the T cell surface.
It is imperative that both signals are received, as antigen
recognition by the TCR without the costimulatory signal
can render T cells unresponsive or anergic. The B7/CD28
family has several additional members, which are capable of
either costimulating (positive) or coinhibiting (negative) T

cells depending on which receptor is ligated [1]. Integration
of such positive and negative signals ultimately determines
the outcome of T cell activation and subsequent effector
phase during response to an invading pathogen.

Chronic viral infections, such as human immunodefi-
ciency virus (HIV), hepatitis B virus (HBV), and hepatitis C
virus (HCV), are a significant burden on global public health
and present a unique and significant challenge to developing
vaccination strategies. The role of CTLs in controlling viral
infection is one of cardinal significance. Upon recognition
of viral antigen, as presented by APC, naive T cells expand
and differentiate into effector cells, dispersing throughout
the body specifically recognizing and eliminating the foreign
threat by targeting virus-infected cells. Following viral
clearance effector cells contract, however, a select number
remain as memory T cells that are capable of rapid expansion
and acquisition of effector functions upon re-exposure to the
same virus. The goal of both prophylactic and therapeutic
vaccinations is to elicit this type of response to either prevent
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or treat viral infection, respectively. However, the persistent
antigen stimulation during chronic viral infections often
renders CTLs “exhausted,” a state of dysfunction defined by
the progressive loss of key components of effector function.
Recent studies have revealed that programmed death-1 (PD-
1), an inhibitory member of the B7-CD28 family, is a master
regulator of CTL exhaustion (Figure 1).

2. The PD-1 Receptor and Its PD-L1 Ligand as a
T Cell Coinhibitory Pathway

PD-1 was discovered almost two decades ago on a T cell
hybridoma line undergoing activation-induced programmed
cell death, hence the name [2]. This original observation led
to the hypothesis that PD-1 may function as a cell death
inducer, but the expression seen was more likely due to T cell
activation, as it is now well established that PD-1 is upregu-
lated on activated T cells, B cells, and monocytes [3–5]. The
mechanism of PD-1 expression is not yet well explored, but
two different transcription factors, NFATc1 and T-bet, have
been implicated as positive and negative regulators of PD-
1 expression, respectively [6, 7]. Both transcription factors
were found to associate with regulatory elements in the PD-
1 gene. Using a T cell line that constitutively expresses PD-
1, it was found that blocking NFATc1 by cyclosporine A
resulted in a significant decline in PD-1 [6]. Conversely,
overexpression of T-bet was associated with a decline in PD-1
as well as other inhibitory receptors [7].

PD-1 has two identified ligands, PD-L1 (B7-H1, CD274)
[5, 8] and PD-L2 (B7-DC, CD273) [9, 10], and both are
members of the B7 family. While PD-L2 expression tends to
be more restricted, found primarily on activated professional
APCs [9, 10], PD-L1 has a much more promiscuous expres-
sion profile. PD-L1 is expressed on cells of hematopoietic
lineage, including activated T cells, B cells, monocytes [5,
8], dendritic cells [11], and macrophages [12]. However,
it is also extensively expressed in peripheral nonlymphoid
tissues, with intermediate to high expression detected in
heart, skeletal muscle, placenta, lung, kidney, and liver [5,
8]. Interferon gamma (IFN-γ) is known to be a major
regulator of PD-L1 expression for a wide range of cell types.
A study looking at cancer-associated PD-L1 upregulation
found that IFN-γ induced the expression of the transcription
factor interferon regulatory factor 1 (IRF-1), which binds to
regulatory sites in the PD-L1 gene and is largely responsible
for the observed increase in PD-L1 [13]. PD-L1 can also be
upregulated on macrophages in a TLR-4-dependent manner
by LPS [12], which is reliant on Stat-1 signaling [14].

Binding of PD-L1 and PD-L2 to their PD-1 receptor
negatively regulates T cells, causing decreased proliferation
and production of effector cytokines, such as IL-2 and IFN-
γ [5, 11]. Complementary to this, blocking of the PD-
1/PD-L pathways results in enhanced proliferative capacity
of T cells [15]. While both PD-L1 and PD-L2 have short
cytoplasmic tails without known signaling motifs, the cyto-
plasmic domain of PD-1 has two structural motifs [4, 16–
19]. Proximal to the cell membrane (N-terminal) is an
immunoreceptor tyrosine-based inhibitory motif (ITIM)

[4] and distal to the cell membrane (C-terminal) is an
immunoreceptor tyrosine-based switch motif (ITSM) [17].
PD-1 ligation, along with TCR signaling, results in phos-
phorylation of the cytoplasmic domain tyrosines [16] and
recruitment of SHP-2, a Src homology 2-containing tyrosine
phosphatase, to the C-terminal tyrosine in the ITSM [16–
18]. SHP-2 then dephosphorylates TCR-associated CD-3ζ
and ZAP70 [18], resulting in inhibition of downstream
signaling. Specifically, activation of phosphatidylinositol 3-
kinase (PI3K) is blocked, which affects upregulation of the
cell survival gene Bcl-XL and decreases IL-2 production and
glucose metabolism [19]. The ITSM, not the ITIM, is the
critical motif for this signaling in both T cells [17] and B
cells [16]. It has been suggested that PD-L1 also mediates
an inhibitory signal by ligating B7-1 [20], although with the
short cytoplasmic tails characteristic of B7 family members it
is not clear how this signal may be mediated.

The inhibitory signal generated by PD-1 ligation with
its ligand PD-L1 along with the unique expression pattern
of PD-L1, both on hematopoietic cells and in nonlymphoid
tissues, suggests that this pathway may have a significant
role in regulating peripheral tolerance. In vivo data supports
this hypothesis as PD-1-deficient mice develop spontaneous
autoimmune disease. Aged C57BL/6 mice lacking PD-1
develop a lupus-like glomerulonephritis and destructive ar-
thritis [21], while deficient BALB/c mice develop fatal dilated
cardiomyopathy, dying as young as five weeks old [22].
Additionally, in a mouse model of adenovirus-induced liver
injury PD-1-deficient mice cleared infection faster but died
from severe liver-specific immunopathology [23]. Along
with loss of T cell coinhibition, another mechanism pro-
posed to explain this breakdown of tolerance involves stop
signals induced by TCR ligation. Such signals inhibit T cell
mobility, sustaining T-cell-APC interaction for formation
of the immunological synapse. It was found that the PD-
1/PD-L1 interaction constrains these signals in a model
where blocking of the pathway lowered T cell mobility and
enhanced T-cell-APC contacts [24]. Another mechanism
highlights that PD-L1 promotes CD4 T cell conversion to
induced T regulatory cells (iTreg), which are capable of
suppressing the response of effector T cells [25].

The PD-1/PD-L1 pathway regulates T cell functional
capabilities by inhibiting proliferation and production of
associated effector cytokines. In concert with the wide ex-
pression of PD-L1 in peripheral nonlymphoid tissues, the
negative regulatory function of this pathway makes it im-
portant for preventing T-cell-mediated autoimmunity and
immunopathology. However, this type of protective regula-
tion can be usurped by pathogens, allowing them to escape
immune recognition and establish a chronic infection. Over-
whelming evidence shows that this does occur, particularly
for chronic viral infections where CTL overexpression of PD-
1 renders T cells exhausted.

3. PD-1/PD-L1-Mediated CTL Exhaustion in
Chronic LCMV Mouse Model

During acute infection, activated pathogen-specific CTLs
proliferate and acquire effector functions, such as cytokine
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Figure 1: PD-1/PD-L1-mediated cytotoxic T lymphocyte exhaustion during chronic viral infection. During chronic viral infection, the
persistent presentation of antigen causes CD8 T cells to highly upregulate PD-1, a T cell coinhibitory receptor. PD-L1, the ligand for PD-1, is
also upregulated on APC or resident tissue cells during chronic viral infection. This severe overrepresentation of the inhibitory PD-1/PD-L1
pathway is a major cause of exhaustion in CD8 T cells. Exhausted CD8 T cells are functionally deficient and have decreased proliferative
capacity, cytokine production, and cytotoxic capacity and are metabolically deficient. Exhausted CD8 T cells are ineffective at clearing virus
and, in turn, the chronic infection persists.

production and cytotoxic capability, which enable them to
effectively clear infection. Following clearance, a small pool
of pathogen-specific memory T cells remain that have the
ability to very rapidly reactivate and acquire their killing
functions following re-exposure to the same pathogen.
However, during chronic viral infection this does not occur,
as pathogen-specific CTLs are found to be functionally
deficient and unable to eliminate infection. These exhausted
CTLs are defined by their impaired proliferative capacity,
cytokine production and loss of cytotoxic capabilities. [26,
27]. Additionally, as compared to normal T cells, exhausted
CTLs have metabolic deficiencies and altered expression
of genes involved in chemotaxis, adhesion, and migration
[28]. This phenomenon was originally defined using a well-
established mouse model of chronic viral infection in mice,
lymphocytic choriomeningitis virus (LCMV) [26, 27]. The
Armstrong strain of LCMV causes an acute infection that
is cleared by the immune system, generating a robust CTL
memory. On the other hand, the Clone 13 strain of LCMV
establishes a chronic infection in mice that renders CTLs
exhausted and unable to clear infection.

In a study conducted to reveal mechanisms that lead to
exhaustion, the genetic profile of exhausted CTLs from a
chronic LMCV infection was compared to that of functional
CTLs responding to an acute LCMV infection [29]. The
novel finding was that exhausted CTLs have significant over-
expression of PD-1, whereas the functional LCMV-specific
CTLs had no appreciable expression of PD-1. Expression of
PD-1 was found to correlate with the defined functional im-
pairment seen in exhausted T cells and, in turn, higher

viral loads. Blocking the PD-1/PD-L1 pathway, with an
anti-PD-L1 antibody, in chronically infected mice resulted
in enhanced CTL response that caused a decrease in viral
loads. PD-1 expression by exhausted CTLs is dependent on
persisting antigen-specific stimulation, as loss of presenta-
tion of specific epitope during chronic infection leads to
functional restoration and decreased PD-1 expression on
epitope-specific CTLs [30]. Persistent antigen stimulation
during chronic viral infection has a progressive effect on loss
of CTL function and correlated increase in PD-1 expression,
meaning that more exhausted CTLs (PD-1hi) are less suscep-
tible to functional rescue by PD-1 blocking than others (PD-
1int) [31]. Further research will help to reveal how persistent
antigen stimulation upregulates PD-1 and PD-L1 expression.

4. PD-1/PD-L1-Mediated CTL Exhaustion in
HIV Infection

The reversal of CTL exhaustion by PD-1/PD-L1 blockade
in murine chronic LCMV infection, even in absence of
CD4 T cell help [29], bade exciting news for HIV research.
HIV represents a huge burden on both global health and
economics. In 2009, there was a reported 33.3 million people
living with HIV and 2.6 million new infections that same
year [32]. HIV is characterized by a persisting infection
that targets and significantly depletes CD4 T cells, which
are important helpers for generation of an optimal CTL
response. There has been limited success in development of
either a prophylactic or a therapeutic vaccine to combat HIV.
Vaccine design faces the significant problem of overcoming
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the limited functional capacity of CTLs in chronic HIV
infection, as these cells are essential for viral control. As with
the murine LCMV model, PD-1 was found to be upregulated
on virus-specific CTLs from HIV-infected patients [33,
34]. In vitro experiments demonstrated that HIV-specific
PD-1-expressing CTLs were exhausted, having decreased
proliferative capacity and secretion of effector cytokines,
but were capable of functional rescue by blockade of the
PD-1/PD-L1 pathway [33, 34]. Interestingly, both patients
receiving highly active antiretroviral therapy (HAART) [34]
and patients naturally maintaining low viral replication,
called long-term nonprogressors (LTNP) [35], had lower
levels of PD-1 expression on their CTLs. However, when
HAART therapy was discontinued HIV-specific T cells
reacquired their elevated levels of PD-1 expression [34]. PD-
1 negatively regulates T cells by abrogating positive TCR
and costimulatory signaling, which is a likely way the PD-
1/PD-L1 pathway impairs CTL function. PD-1 is capable
of upregulating a unique set of genes in exhausted CTLs,
which includes the AP-1 family transcription factor basic
leucine transcription factor (BATF) [36]. Overexpression of
BATF resulted in an exhaustion-like T cell dysfunction, while
silencing of the BATF gene was able to rescue function in
impaired HIV-specific CTLs [36]. Simian immunodeficiency
virus (SIV), a nonhuman primate model of HIV, similarly
has functionally deficient CTLs during chronic infection.
PD-1 expression increased on SIV-specific T cells over time,
with higher expression on T cells from lymph nodes or
genital mucosa, which are the major sites of viral replication,
as compared to those from peripheral blood [37]. High
expression of PD-1 on SIV-specific CTLs correlated with the
decreased proliferative capacity characteristic of exhausted T
cells, which was reversible with blockade of the PD-1/PD-L1
pathway [37, 38].

Virus-specific CD4 T cells from HIV-infected patients
also show higher PD-1 expression that correlates with a res-
cuable exhaustion phenotype [33]. HIV-specific CD4 T cells
from the lymph nodes were found to have higher expression
of PD-1 than those from the blood [39]. This illustrates that
continued antigen recognition is an important causation of
increased PD-1 expression and resulting exhaustion. Like
HIV-specific CTLs, CD4 T cells from patients receiving
HAART had reduced PD-1 expression [39]. Monocytes from
HIV-infected patients also show elevated levels of PD-1
expression, which correlates with higher levels of IL-10, a
classic anti-inflammatory cytokine, and inhibition of CD4
T cell function [40]. Even before the discovery that PD-1 is
expressed on exhausted T cells, the importance of the PD-
1/PD-L1 pathway in chronic infections was hinted at by the
observation that PD-L1 is upregulated on monocytes and B
cells in HIV-infected patients [41]. Higher PD-L1 expression
is also seen in dendritic dells from HIV patients, as compared
to those from patients receiving HAART or from LTNP [42].
In the same study, ligation of dendritic cell-expressed PD-L1
with PD-1 resulted in decreased maturation and increased
apoptosis [42]. In vitro exposure of human monocyte-de-
rived macrophages to replication competent HIV also re-
sulted in an increase of PD-L1 expression [43]. These data
show that HIV is a master manipulator of the immune re-

sponse, usurping the immunoregulatory functions of the
PD-1/PD-L1 pathway, on both T cells and APCs, to evade
recognition and establish a chronic infection. It appears that
the current HAART regimen is capable of some reduction
in T cell exhaustion and perhaps clinical application of PD-
1/PD-L1 blockade, shown to reanimate exhausted T cells,
could enhance this even further.

5. The PD-1/PD-L1 Pathway in Other
Chronic Infections

PD-1/PD-L1-pathway-mediated CTL exhaustion is also
important for other clinically relevant chronic infections.
Hepatitis B virus (HBV) and hepatitis C virus (HCV) are
two of the most prevalent chronic viral infections in the
United States, with about 1-2% of the population afflicted
[44]. Annually there are about 15,000 deaths in the USA
from liver diseases caused by chronic infection with HBV or
HCV [44]. As with HIV, chronic viral hepatitis causes virus-
specific CTLs to become exhausted, allowing virus to escape
immune recognition and establish a persistent infection [45,
46]. HBV-specific CTLs from chronically infected patients
expressed PD-1, which correlated with exhaustion that was
reversed by blocking the PD-1/PD-L1 pathway [47, 48].
Additionally, in comparison to healthy subjects, chronic
HBV patients had elevated PD-L1 expression on peripheral
blood mononuclear cells [48], specifically dendritic cells
[49]. In vitro, these PD-L1hi dendritic cells from chronic HBV
patients rendered healthy CTLs and CD4 T cells hyporespon-
sive [49]. CTLs from patients with chronic HCV infection
also have high expression of PD-1 that is associated with an
exhausted phenotype [50]. A study following HCV-infected
patients throughout the course of their disease found
that patients with higher PD-1 expression on T cells during
acute infection tended to progress to having a chronic infec-
tion [51]. The liver is the major site of infection for HCV,
and intrahepatic virus-specific CTLs from chronic patients
have higher PD-1 expression [52] and are less susceptible
to functional restoration by PD-1/PD-L1 blockade [53], as
compared to circulating virus-specific CTLs.

PD-1/PD-L1-mediated T cell exhaustion is most well
defined for LCMV, HIV, HBV, and HCV; however, there
has been some investigation into this pathway in additional
pathogens, including other viruses, bacteria, parasites, and
even helminthes. Herpes simplex virus 1 (HSV-1) is a per-
sistent virus that establishes a latent infection with viral
reservoirs in neural ganglia [54]. It was found that higher
corneal scarring, associated with reactivated HSV-1 infection
in a murine model, correlated with higher PD-1 mRNA
expression in the cornea and ganglia, suggesting a possible
role for PD-1-mediated T cell exhaustion [54]. This is
supported by a subsequent study where a higher level of
latency, and in turn corneal scarring, correlated with higher
numbers of PD-1-expressing CTLs and CD4 T cells [55].
Additionally, mice lacking either PD-1 or PD-L1, but not
PD-L2, had reduced HSV-1 latency [56]. HSV-1-specific
CTLs activated without the help of CD4 T cells have
high PD-1 expression and characteristics of exhaustion that
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are reversible with blockade of the PD-1/PD-L1 pathway
[57]. Friend virus, which establishes a chronic infection
and ultimately causes leukemia in mice, also has PD-1-
expressing exhausted CTLs that can be rescued by PD-
1/PD-L1 blockade, leading to virus control [58]. Helicobacter
pylori causes a chronic gastric infection that is not cleared
and eventually can cause gastritis, ulcers, and gastric cancer
[59, 60]. Following H. pylori chronic infection, PD-L1 was
upregulated on dendritic cells [60]. This was also true
for gastric epithelial cells (GECs) [59], which are resident
nonhematopoietic cells shown to be capable of T cell activa-
tion. In vitro, PD-L1hi GEC had reduced capacity to induce
proliferation in CD4 T cells, which was reversed by blocking
PD-L1 [59]. Furthermore, analysis of gastric biopsies from
H. pylori-infected patients found that gastric CD4 T cells
had higher levels of PD-1 expression, which correlated with
density of the pathogen [61]. In chronic Mycobacterium bovis
infection in mice, dendritic cells in chronic granulomas had
higher PD-L1 expression than those in acute granulomas,
suggesting that these cells may facilitate latent tuberculosis
infection by decreasing protective T cell responses [62].
Dendritic cells also upregulate PD-L1 expression in chronic
Leishmania donovani infection, and in conjunction with the
observed increase in CTL PD-1 it is likely that this pathogen
manipulates the PD-1/PD-L1 pathway to avoid immune
recognition [63]. In vivo blockade of PD-L1 partially rescued
CTL function and decreased parasite burden in the spleens
of L. donovani-infected mice [63]. Chronic infection with
Toxoplasma gondii, an extremely prevalent parasite, caused
a gradated increase in PD-1 expression on exhausted CTLs
as disease persisted [64]. Blockade of the PD-1/PD-L1
pathway during chronic T. gondii infection rejuvenated the
exhausted CTLs, leading to control of parasite reactivation
and prevention of mortality in a mouse model [64]. Finally,
PD-L1 on macrophages [65], as well as PD-L2 on dendritic
cells [66], were found to be upregulated following infection
with the helminth Schistosoma mansoni and are associated
with chronic morbidity [66].

6. Blockade of the PD-1/PD-L1 Pathway as an
Emerging Immunotherapy

Functionally deficient exhausted CTLs are a significant cause
and consequence of chronic viral infection. This presents
a major challenge to vaccine designs that aim to either
prevent or eliminate such infections by mediating T cell
response. Whether developing a prophylactic vaccine to
prevent disease in healthy individuals or a therapeutic vac-
cine to clear disease in infected individuals, it is imperative
to keep this considerable hurdle in mind. This is aptly
illustrated in a chimpanzee model of vaccination against
HCV, where although viremia was initially controlled during
the acute phase of infection, ultimately the majority of
animals developed a persistent disease [67]. Analysis for
PD-1 in the liver revealed that expression was significantly
higher in the animals that developed a chronic infection
despite vaccination [67]. The critical role that the PD-
1/PD-L1 pathway plays in development of CTL exhaustion

represents an exciting and promising target for defeating
this challenge. Following the original observation of the
importance of PD-1 in CTL exhaustion, there has been a
deluge of studies in chronic viral infection models that show
the remarkable potential of manipulating the PD-1/PD-L1
pathway to enhance viral clearance.

Blockade of the PD-1/PD-L1 pathway is able to restore
functional capabilities to exhausted CTLs in the LCMV mu-
rine model of chronic viral infection [29, 31] and in ex
vivo experiments with CTLs from patients with chronic
HIV [33–35] or chronic viral hepatitis [47, 50, 52, 53].
Promising results have been seen in combing PD-1/PD-L1
blockade with prophylactic and therapeutic vaccination. In
nonhuman primates that were treated with a SIV-specific
prophylactic vaccine in conjunction with antibody to block
PD-1, it was found that the antibody had an adjuvant-
like quality and induced higher numbers of SIV-specific
T cells as compared to vaccine alone [68]. In a mouse
model of human papilloma virus (HPV), which can cause
cancer, prophylactic vaccination against HPV combined with
soluble PD-1 to block the PD-1/PD-L1 interaction resulted
in enhanced HPV-specific CTL response and a potent
antitumor effect [69]. During an established chronic LCMV
infection, therapeutic vaccination along with PD-1 blockade
reversed CTL exhaustion and enhanced LCMV-specific CTL
response and viral clearance [70]. This effect held true even
without CD4 T cell help [70], indicating promise for the
likely low CD4 T cell counts in HIV-infected individuals.

The PD-1/PD-L1 pathway is essential for maintain-
ing peripheral tolerance and preventing both spontaneous
autoimmunity and immunopathology during T cell response
to disease. Therefore, blocking of this pathway to combat
chronic viral infection could pose a serious risk for devel-
oping such problems. This is illustrated in a study where
blocking the PD-1/PD-L1 pathway during chronic LCMV
infection in mice caused serious immunopathology directed
at PD-L1-expressing splenic fibroblastic reticular cells
(FRCs) [71]. This immunopathology was CTL mediated, as
eliminating this immune population abrogated destruction
of FRCs [71]. This concern is somewhat relieved by the
results of an in vivo nonhuman primate study and a clinical
trial in humans. Blocking PD-1 in nonhuman primates
with chronic SIV infection resulted in rapid expansion of
previously exhausted SIV-specific CTLs, in both the gut
and peripheral blood, and a significant decrease in viral
load [72]. This therapy was shown to be safe, and it
ultimately decreased progression to AIDS-like symptoms and
prolonged survival [72]. In a phase-1 clinical trail, PD-1
blockade, by means of a humanized anti-PD-1 antibody, was
tested in patients with advanced hematologic malignancies
[73]. The treatment proved to be safe and well tolerated
in all patients, ultimately showing clinical benefit in 33%
of those in the trial [73]. One study found that PD-1/PD-
L1 blockade was able to enhance expansion of pathogen-
specific regulatory T cells (Tregs) [74]. This suggests that
blockade may be safe because it expands effector cells that,
while apt at controlling infection, have the potential to
be immunopathogenic, but it also expands Tregs that are
capable of abrogating such destruction. Exhausted CTLs
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express multiple inhibitory receptors, including PD-1, and
several studies have illustrated that combining blockade of
PD-1 with other inhibitory molecules has a synergistic effect
on reversing CTL exhaustion. In murine chronic LCMV
infection coblockade of the PD-1/PD-L1 pathway with IL-10
[75] or LAG3 [76] resulted in better functional restoration
of CTLs than blocking any receptor alone. Additionally, in
vitro blockade of both PD-1 and CTLA-4 on exhausted
CTLs from chronic HCV infection resulted in a collective
increase in reacquisition of CTL functional capabilities [53].
In nonhuman primate chronic SIV infection, PD-1/PD-L1
blockade therapy was also shown to increase the number of
SIV-specific B cells and, in turn, anti-SIV antibodies [72, 77].

Tuberculosis is one of the most common and lethal
opportunistic infections in HIV-infected patients. In 2009,
it was a leading cause of death among HIV-infected indi-
viduals, causing approximately 380,000 deaths in that year
alone [32]. Two independent studies infected PD-1 deficient
mice with Mycobacterium tuberculosis (TB), expecting to
see the enhanced survival seen in other infection models
in these mice. Shockingly, TB-infected PD-1-deficient mice
were severely susceptible to infection and died significantly
faster than their wild-type counterparts [78, 79]. PD-L1-
deficient mice were also more susceptible to infection but
less so than the PD-1-deficient mice [79]. HIV is a promi-
nent chronic infection being investigated for PD-1/PD-L1
blocking therapies. However, the high prevalence of TB in
HIV-positive individuals and the severe mortality seen in TB-
infected mice lacking PD-1 could be a serious impediment to
therapeutic strategies blocking this pathway to control HIV
infection. It is imperative to see if in vivo blockade of the
PD-1/PD-L1 pathway has the same lethal effect as the gene
knockout mice as it is possible that transient, rather than
complete, elimination of these molecules will have less severe
effects in TB infection. If transient blockade of the pathway
still has such severe consequences, it would be of utmost
importance to eliminate the possibility of TB infection in
an HIV-positive individual before commencing any therapy
involving PD-1 or PD-L1.

7. Conclusion

The PD-1/PD-L1 T cell coinhibitory pathway has emerged
as a potent regulator of CTL exhaustion during chronic viral
infection. This was established in the murine LCMV model
and was expanded to clinically relevant human viral diseases,
such as HIV. Studies have shown that blocking the PD-
1/PD-L1 pathway can restore function to exhausted CTLs,
enhancing both prophylactic and therapeutic vaccinations in
tested models. This is very promising as CTLs are critical to
viral clearance and exhaustion presents a major hurdle to
treating chronic infections. Continuing work towards better
understanding of how this pathway operates is important
and will facilitate development of new vaccine strategies that
can overcome CTL exhaustion.
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