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variance estimators
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Abstract

Appropriate imputation inference requires both an unbiased imputation estimator and an unbiased

variance estimator. The commonly used variance estimator, proposed by Rubin, can be biased when

the imputation and analysis models are misspecified and/or incompatible. Robins and Wang proposed

an alternative approach, which allows for such misspecification and incompatibility, but it is considerably

more complex. It is unknown whether in practice Robins and Wang’s multiple imputation procedure is an

improvement over Rubin’s multiple imputation. We conducted a critical review of these two multiple

imputation approaches, a re-sampling method called full mechanism bootstrapping and our modified

Rubin’s multiple imputation procedure via simulations and an application to data. We explored four

common scenarios of misspecification and incompatibility. In general, for a moderate sample size

(n¼ 1000), Robins and Wang’s multiple imputation produced the narrowest confidence intervals, with

acceptable coverage. For a small sample size (n¼ 100) Rubin’s multiple imputation, overall, outperformed

the other methods. Full mechanism bootstrapping was inefficient relative to the other methods and

required modelling of the missing data mechanism under the missing at random assumption. Our

proposed modification showed an improvement over Rubin’s multiple imputation in the presence of

misspecification. Overall, Rubin’s multiple imputation variance estimator can fail in the presence of

incompatibility and/or misspecification. For unavoidable incompatibility and/or misspecification, Robins

and Wang’s multiple imputation could provide more robust inferences.
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1 Introduction

Multiple imputation (MI)1 is the most commonly used technique for analysing incomplete data,
which are frequently encountered in health-related research. Imputations are repeatedly and
independently drawn from the posterior predictive distribution of the missing data given the
observed data, under a Bayesian model, to generate mð�2Þ imputed datasets. These imputed
datasets are then analysed separately using complete data methods, and the m sets of results are
combined using a simple set of rules. Appropriate imputation inference requires both an unbiased
imputation estimator and an unbiased variance estimator.
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MI was first developed for analysing large incomplete public shared datasets, for which there may
be many analysts, with a wide range of scientific questions, who may not have the specialized
knowledge required to generate statistically valid inferences when data are incomplete. It was
envisioned that the task of generating multiple imputed datasets would be undertaken by
someone with specialized knowledge of missing data methods.2 The analysts need only apply
standard complete data statistical procedures to each imputed dataset separately and then
combine the multiple estimates according to Rubin’s rules.1

At the time of imputation, it may not be possible to anticipate all analysis procedures that will
be applied to the imputed datasets. Consequently, the assumptions of a given analysis procedure
may differ to those of the imputation model. We define an analysis procedure to be incompatible
with an imputation model when one or more assumptions of the imputation model contradict
with those made by the analysis procedure. For example, the imputer may assume that two
subgroups have the same population mean of an incomplete variable (where missingness is
independent of subgroup status) whilst the analyst estimates the population mean in one
subgroup only.

As with any modelling or statistical procedure, the imputation model may be misspecified; that is,
the imputation model’s assumptions about the missing data mechanism (MDM) or the complete
data are incorrect. For example, the imputation model could incorrectly assume homoscedastic
errors. Similarly, for the analysis procedure.

The MI literature has focused primarily on generating methods and guidelines for reducing the
bias of the imputation estimator. However, correct imputation inference also requires an unbiased
imputation variance estimator and an efficient interval estimator with at least nominal coverage. In
certain settings of misspecification and incompatibility of the models, for an unbiased imputation
estimator, Rubin’s variance estimator was either upwardly or downwardly biased, which led to
conservative or anti-conservative confidence intervals, respectively.2–7

There are alternatives to Rubin’s MI. Robins and Wang have proposed imputing under a
frequentist procedure,5 that fixes the imputation model parameters at the observed data
maximum likelihood estimate, and an imputation variance estimator that allows for
misspecification and incompatibility of the imputation model and the analysis procedure, and for
non- or semi-parametric analysis procedures. However, it is unclear whether the Robins and Wang
MI procedure is an improvement over Rubin’s MI in situations typical of the use of imputation in
practice. Also, the Robins and Wang imputation variance estimator is considerably more complex to
compute than Rubin’s and importantly is more technically difficult for the analyst, although the
greater burden of calculating the variance estimator is still placed on the imputer. With ever faster
computers, a simpler solution could be to calculate the variance of the imputation estimator using
re-sampling methods. Full mechanism bootstrapping (FMB) is a bootstrapping approach to
imputation that can be applied to parametric problems.8,9

In this paper, we have conducted the first comparative evaluation of Rubin’s MI, our modified
version of Rubin’s MI, Robins and Wang’s MI and FMB with respect to variance estimation and
interval estimation. We have compared these four methods of imputation inference in four scenarios
of incompatibility and misspecification of the imputation and analysis models that can occur in
practice, via a data example (see Sections 2 and 4) and simulations (see Sections 5 and 6). In Section
2, we describe a motivating example for seeking an alternative to Rubin’s MI. Section 3 describes all
four methods considered in the context of a specific example. Section 4 revisits the motivating
example, applying these methods to data from the British Child and Adolescent Mental Health
Study 1999 (B-CAMHS99).10 In Sections 5 and 6, we present our simulation study and conclude
with a general discussion in Section 7.
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2 Motivating example

There are several examples in the literature, where observations used for estimation at the
imputation stage of MI are not used or available at the analysis stage. For example, confidential
information may be used to improve estimation of the imputation model but cannot be disseminated
to the analysts. Or, when external data are used to account for measurement error using MI and the
external data are not included at the analysis stage because it may not be representative of the target
sample.11 We briefly describe a case study where external data were used to impute measurements,
which were not collected for any of the subjects of the target study.

The B-CAMHS99 measured conduct, hyperactive and emotional problems in 15 year olds using
the strengths and difficulties questionnaire (SDQ).12 Researchers wished to compare the results of
this study to previous UK population studies, which had used the Rutter A scale.13 A calibration
study was undertaken, which measured both the Rutter A scale and the SDQ scale on an
independent sample of adolescents.10 These external data were used to impute the Rutter A
subscales (for conduct, hyperactive and emotional problems) in the B-CAMHS99 study, but were
not included at the analysis stage.

In this scenario, the imputations were generated using extra information that was not utilized by
the analyst; i.e. that the target and external data were assumed to be identically distributed. Rubin
calls such imputation superefficient from the analyst’s perspective.2 Superefficient imputations can
cause Rubin’s MI variance estimator to be positively biased.3,5

3 Methods for imputation inference

We describe Rubin’s MI and its modified version, Robins and Wang’s MI and FMB. Robins and
Wang have described their complex method for a general missing data setting.5 To aid further
understanding of this method we restrict ourselves to a more simplified setting, which we describe
in Section 3.1. The description of Rubin’s MI and FMB remains the same for a more general missing
data setting.

3.1 Notation and setup

Suppose g random variables Y ¼ ðY1, . . . ,YgÞ are intended to be observed on n subjects. We use
subscripts i and j to index subjects and variables, respectively, ði ¼ 1, . . . , n; j ¼ 1, . . . , gÞ. Let
y ¼ ð yijÞ denote a (n� g) matrix, whose i, j element is yij. Row i of matrix y is denoted by
yi ¼ ð yi1, . . . , yigÞ. The rows of the matrix are assumed to be independent and identically
distributed. In practice, some subjects have missing observations, and we write y ¼ ðyobs, ymisÞ

with obs and mis denoting the observed and missing parts, respectively. In our simplified
example, missingness is confined to one variable and without any loss of generality, we assume
variable Yg is incompletely observed for t (t< n) subjects. The MDM is assumed to be ignorable for
Bayesian inference,14, p.120 and hence is also ignorable for likelihood inference.

Let, eY denote p� 1 ð1 � p� 1 � g� 1Þ variables in the set Y1, . . . ,Yg�1 and eyi the row vector of
observations on eY for subject i. The imputation model is the normal linear regression
yigjeyi � Nðeyil, �Þ, where l is a column vector of dimension p� 1. Let h ¼ ðl, �ÞT, a (p� 1) vector
of unknown parameters.

Let, ykig denote the kth imputed value of variable Yg for subject i, and yki is row i of the kth
imputed dataset yk ¼ ðyk1, . . . , yknÞ

T
ðk ¼ 1, . . . ,mÞ. If yig is observed then ykig ¼ yig, and so yki ¼ yi,

for all k. Let €Y denote q ð1 � q � g� 1Þ variables in the set Y1, . . . ,Yg�1 and €yki the set of
observations on €Y for subject i of the kth imputed dataset. Similarly, ~yki is the set of observations
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on ~Y for subject i of the kth imputed dataset. Note, in this example, €yki ¼ €yi and ~yki ¼ ~yi for all k.
In the interest of completeness, we have included the superscript k.

The analysis procedure is the normal linear regression model ykigj €y
k
i � Nð €yki b,!Þ, where b is a

column vector of dimension q. The imputation estimate for the vector of coefficients b ¼

ð�1, . . . ,�qÞ
T is denoted by b̂I ¼ ð�̂I1, . . . , �̂IqÞ

T and, for j ¼ 1, . . . , q, the variance estimate for �̂Ij is

V̂I
j , with V̂I ¼ ðV̂I

1, . . . , V̂I
qÞ

T.

3.2 Rubin’s MI inference

Missing values are imputed independently m times, to generate m imputed datasets. Imputations are
drawn independently from the posterior predictive distribution of the missing data given the
observed data under a Bayesian model. For k ¼ 1, . . . ,m, the analysis model is fitted to each

imputed dataset yk separately, generating regression coefficients estimate b̂k ¼ ð�̂k1, . . . , �̂kqÞ
T with

associated variance estimates Ŵk
1, . . . , Ŵk

q, where Ŵk
j is the variance estimate for coefficient

estimate �̂kj . The set of m coefficient estimates is combined into one MI inference using a simple
set of rules. When the estimand of interest is a set of regression coefficients it is simpler to apply these
rules separately to each regression coefficient as follows

�̂Ij ¼ m�1
Xm
k¼1

�̂kj ,
�Wj ¼ m�1

Xm
k¼1

Ŵk
j

Bj ¼ ðm� 1Þ�1
Xm
k¼1

ð�̂kj � �̂
I
j Þ
2

V̂I
j ¼

�Wj þ
mþ 1

m
Bj

Confidence intervals are based on the Student’s t-distribution. When n is small a modified degrees
of freedom formula is recommended.15 The modified degrees of freedom ��j is calculated, separately
for each regression coefficient, as follows

�̂j ¼
ð1þm�1ÞBj

�Wj þ ð1þm�1ÞBj

, �j ¼ ðm� 1Þ 1þ
m

mþ 1

�Wj

Bj

� �2

�̂obsj ¼ ð1� �̂j Þ
�comj þ 1

�comj þ 3

 !
�comj , ��j ¼ f�

�1
j þ ð�̂

obs
j Þ
�1
g�1

where �comj is the degrees of freedom about �j when there are no missing values.
We shall also consider a modification in which the within imputation variances, Wk

j , are
calculated using the robust sandwich variance estimator.16,17 This modification only affects the
calculation of the variance of the imputation estimate; the imputation estimate remains the same
as for Rubin’s MI. We refer to this modified method as ‘robust Rubin’s MI’.

3.3 Robins and Wang’s imputation inference

The Robins and Wang variance estimator for imputation does not require multiply imputed
datasets, although it may be more efficient when a dataset is multiply imputed.5 To our
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knowledge, there does not exist any commercial or freely available software that calculates this
variance estimator. All derivatives involving scalars, vectors and matrices are defined as in,18 e.g.
for n� 1 vectors a and b, define @a=@bT ¼ ½@ar=@bc�, a square matrix of dimension n where c and r,
respectively, refer to column and row numbers.

The m sets of imputations are drawn independently from the predictive distribution of the missing
data given the observed data under the imputation model evaluated at ĥ, the observed data
maximum likelihood estimate of h. Therefore, each set of imputations is drawn conditionally on
the same parameter estimate. In our simple case, ĥ is the complete case estimate of h (i.e. estimation
is based on the n–t subjects with observed Yg). The m imputed datasets are then stacked into a
mn� g dataset ðy1, . . . , ymÞT.

The analysis procedure is applied to the stack of imputed datasets ðy1, . . . , ymÞT, treating the
mn rows as independent, and the estimate of b is the Robins and Wang imputation estimate b̂I.
The analysis procedure can be non-, semi- or fully parametric such that b̂I is the solution to the
estimating equation

Xn
i¼1

m�1
Xm
k¼1

uki ðĥ,bÞ ¼ 0

where uki ðĥ, bÞ ¼ €yki ð y
k
ig � €yki bÞ for our example.

To calculate the Robins and Wang variance estimator, both the imputer and analyst must
generate additional information. The imputer supplies two further datasets based on the score

function of the imputation model. The analyst must generate a dataset and a matrix, which are

both based on the estimating equation of the analysis procedure evaluated at b ¼ b̂I. The

analyst then inputs these pieces of information into a set of matrix formulae to generate V̂I.

Below we provide details on how to calculate these pieces of information and the matrix
formulae.

The score function of the imputation model is the derivative, with respect to h, of its log-
likelihood function. The contribution from subject i to the log-likelihood function is
log f ð yigjeyi, hÞ ¼ 0:5ð� log 2�� log � � ��1ð yig �eyilÞ2Þ and its derivative is column vector
@ log f ð yigjeyi, hÞ=@h ¼ ½@ log f ð yigjeyi, hÞ=@l, @ log f ð yigjeyi, hÞ=@��T, where

@ log f ð yigjeyi, hÞ=@l ¼ yig �eyil
�

� �eyTi
@ log f ð yigjeyi, hÞ=@� ¼ 1

2
�
1

�
þ
ð yig �eyilÞ2

�2

� �

For subject i, when yi is completely observed let sobsi ¼ sobsi ðĥÞ ¼ ð@ log f ð yigjeyi, hÞ=@hÞTjh¼ĥ
and

when yi is incompletely observed let sobsi be a zero row vector of dimension p. Conversely, for
k ¼ 1, . . . ,m, when yi is incompletely observed let sk,mis

i ¼ sk,mis
i ðĥÞ ¼ ð@ log f ðykigjeyki , hÞ=@hÞTjh¼ĥ

and when yi is completely observed let sk,mis
i be a zero row vector of dimension p. For each k we

then have n� p dataset Smis, k
¼ ðsmis, k

1 , . . . , smis, k
n Þ

T and stacking these m datasets we have
Smis
¼ ðSmis, 1, . . . ,Smis,m

Þ
T.
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For the second dataset based on the score function of the imputation model, first calculate the
derivative of column vector @ log f ð yigjeyi, hÞ=@h with respect to row vector hT, which is the p� p
matrix

@

@lT

@ log f ð yigjeyi, hÞ
@l

� �
@

@�

@ log f ð yigjeyi, hÞ
@l

� �
@

@lT

@ log f ð yigjeyi, hÞ
@�

� �
@

@�

@ log f ð yigjeyi, hÞ
@�

� �
266664

377775

where

@

@lT

@ log f ð yigjeyi, hÞ
@l

� �
¼ �

1

�
eyTi eyi

@

@�

@ log f ð yigjeyi, hÞ
@l

� �
¼ �

1

�2
eyTi ð yig �eyilÞ

¼
@

@lT

@ log f ð yigjeyi, hÞ
@�

� �� �T

@

@�

@ log f ð yigjeyi, hÞ
@�

� �
¼

1

2�2
�
ð yig �eyilÞ2

�3

For subject i with observed yig define

dTi ¼ diðĥÞ
T
¼ � n�1

Xn
i¼1

@

@hT
@ log f ð yigjeyi, hÞ

@h

� �� �����
h¼ĥ

" #�1
sobsi ðĥÞ

T

When yig is incompletely observed di is a zero row vector of dimension p. These n row vectors

form the second dataset D ¼ ðd1, . . . , dnÞ
T. The imputer’s role is now completed and the stacked

imputed datasets ðy1, . . . , ymÞT and datasets Smis and D are passed on to the analyst.

Evaluating uki ðĥ, bÞ at the imputation estimate b̂I, the analyst generates m ðn� qÞ datasets

Uk ¼ ðuk1ðĥ, b̂
IÞ, . . . , uknðĥ, b̂

IÞÞ
T
ðk ¼ 1, . . . ,mÞ. These m datasets are stacked to form dataset

U ¼ ðU1, . . . ,UmÞ
T. The matrix generated by the analyst is s ¼ sðĥ, b̂IÞ, which is calculated by

differentiating column vector uki ðĥ, bÞ
T with respect to row vector bT, to generate a square matrix

of dimension q

@uki ðĥ, bÞ
T

@bT
¼

@uki ðĥ, bÞr
@�c

" #
; r, c ¼ 1, . . . , q
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where r and c, respectively, denote the row and column of the matrix and uki ðĥ, bÞr ¼ ykirð y
k
ig � €yki bÞ.

We can then calculate

s ¼ sðĥ, b̂IÞ ¼ �ðnmÞ�1
Xn
i¼1

Xm
k¼1

@uki ðĥ, bÞ
T

@bT

 !����
b¼b̂I

¼ n�1
Xn
i¼1

€yki
T

€yki

The analyst now inputs datasets D,Smis and U and matrix s into the following matrix formulae

ui ¼ uiðĥ, b̂
IÞ ¼ m�1

Xm
k¼1

uki ðĥ, b̂
IÞ

j ¼ jðĥ, b̂IÞ ¼ ðnmÞ�1
Xn
i¼1

Xm
k¼1

ðuki ðĥ, b̂
IÞÞ

Tsmis, k
i

K ¼ KðĥÞ ¼ n�1
Xn
i¼1

dTi di, X ¼ Xðĥ, b̂IÞ ¼ n�1
Xn
i¼1

uTi ui

D ¼ Dðĥ, b̂IÞ ¼ Xþ jKjT þ n�1
Xn
i¼1

jdTi ui þ ðjd
T
i uiÞ

T
� �

C ¼ n�1s�1Dðs�1ÞT

Finally, for j ¼ 1, . . . , g� 1, the jth diagonal entry of matrix C is the variance estimate
corresponding to the coefficient imputation estimator �Ij , i.e. V̂

I
j ¼ �jj.

3.4 Full mechanism bootstrapping

FMB can be applied to parametric and non-parametric problems,8 and under all three MDM
assumptions.19 Unless, the MDM is assumed to be missing completely at random (MCAR) then
FMB requires modelling of the MDM. In Efron’s worked example of the procedure a deterministic
imputation model was used. Shao and Sitter9 describe FMB with a random regression imputation
method.

FMB is implemented as follows:8

(1) Impute the incomplete dataset y once to generate imputed dataset yI. Apply the analysis

procedure to dataset yI. The estimate of b is the imputation estimate b̂I.

(2) Sample with replacement n rows from yI to obtain bootstrapped dataset yI�.
(3) Set observations in yI� to missing by applying the same missing data pattern (MDP) as for y if

MCAR is assumed. Otherwise, infer missingness under a model for the MDM.
(4) Singly impute the incomplete dataset from step 3, using the same imputation model as in step 1,

to generate the bootstrapped imputed dataset yI~.
(5) Apply the analysis procedure to dataset yI~ and store the estimate of b as bootstrap

replication b̂I~.
(6) Repeat steps 2–5 T times to obtain T bootstrap replicates.
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Standard bootstrap formulae20 can be applied to the bootstrap replicates b̂I~ to calculate the
bootstrap variance and confidence intervals for each �̂Ij . Currently, there does not exist an algorithm
or formula for the calculation of the acceleration constant, which is used to generate the bias-
corrected and accelerated bootstrap confidence intervals. However, calculating the acceleration
constant based on the formula used to construct non-parametric bias-corrected and accelerated
confidence intervals can give a reasonable approximation.8

4 Return to motivating example

We applied the methods of Section 3 to data from the B-CAMHS99 study discussed in Section 2.
The data (from the B-CAMHS99 study) consisted of fully observed measurements for sex and the
SDQ subscales in 855 (433 boys and 422 girls) adolescents aged 15. The external data consisted of
fully observed measurements for sex, the SDQ subscales and Rutter A subscales in 380 (203 boys
and 177 girls) adolescents with median age 15 years (interquartile range 13–15 years).

For the purposes of this case study, each Rutter A subscale was imputed separately under an
ordinal logistic regression model, with the three SDQ subscales (for conduct, hyperactive and
emotional problems) and sex as covariates. The analysis of interest was a linear regression of the
Rutter A subscale, with sex and the constant term as covariates, estimated in the B-CAMHS99 study
only. We generated 50 imputed datasets for Rubin’s MI, robust Rubin’s MI and Robins and Wang’s
MI, and 2500 bootstrap replications for FMB.

Table 1 presents the results of the analyses of the B-CAMHS99 study. As expected, all point
estimates were comparable. Robins and Wang’s MI had the smallest standard errors and narrowest
confidence intervals for all cases. The maximum percentage difference in the standard errors of
Rubin’s MI and Robins and Wang’s MI was just under 23%, and the corresponding Rubin’s
confidence interval was 26.5% longer than the Robins and Wang’s confidence interval. In almost
all cases, FMB had smaller standard errors than Rubin’s MI, and the maximum percentage
difference in the standard errors was just under 14%. The larger standard errors of Rubin’s MI
(or robust Rubin’s MI) indicate potential inflation due to superefficient imputations. Robust
Rubin’s MI showed little improvement over Rubin’s MI.

5 Simulation study methods

We compared the methods described in Section 3 in four scenarios of incompatibility and
misspecification of the imputation and analysis models. The simulation study was based on a
hypothetical dataset of one binary variable, sex (0 denoting male and 1 denoting female), and
four continuous variables, age, height, weight and natural log of insulin index (hereafter referred
to as loginsindex). The data were generated under the following model

sex � Bernoullið�Þ, age, heightjsex � Nð�0 þ �1sex,�Þ

weight ¼ �0 þ �1sexþ �2ageþ �3heightþ 	
sex
� errorW

loginsindex ¼ �0 þ �1sexþ �2ageþ �3weightþ 	
sex!� errorL

ð1Þ

where errorW and errorL are error distributions and 	sex ¼ 1 when sex¼ 0 and 	sex ¼ 	 when sex¼ 1.
Model (equation (1)) was based on a dataset of standard anthropometric measurements of 951

young adults enrolled in the Barry Caerphilly Growth study.21 The parameters of the data model
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were set to the estimates from an analysis of this dataset. The values, to four significant figures, of
these parameters were:

� ¼ 0:4577, �0 ¼ ð25:02, 1:774Þ, �1 ¼ ð�0:03616, � 0:1336Þ,

� ¼
0:5521 0:001574

0:001574 0:003705

� �
, �0 ¼ �32:98

�1 ¼ �2:314, �2 ¼ �0:01566, �3 ¼ 65:38, 
 ¼ 12:29, �0 ¼ 1:854, �1 ¼ 0:2908, �2 ¼ 0:08003, �3 ¼
0:01119,! ¼ 0:7887 and 	¼ 0.5. Different scenarios were created by setting parameters �1, �1, 	 and
�1 to their null values; zero vector for �1, 0 for �1 and �1, and 1 for 	. The values of the remaining
parameters were fixed.

The analysis model was the normal linear regression of loginsindex on weight, with adjustment
for other variables. The aim of the simulation study was to evaluate the methods with respect to the
imputation variance estimator when the imputation estimator was unbiased. To avoid bias in the
imputation estimator due to the MDMwe set weight to be missing, for a subset of subjects, under an
MCAR mechanism. The missing weight measurements were imputed under a normal linear
regression model. Both imputation and analysis models included a constant term and assumed
that the variance of the error terms was constant for all values of the outcome variable (i.e.
homoscedasticity). Unless otherwise stated, error distributions errorW and errorL were normal,
weight measurements were missing in men and women and the imputation and analysis models
were fitted to the entire sample. The scenarios considered were as follows:

Scenario 1: Subgroup analysis. We set the true conditional distributions of age, height, weight and
loginsindex to be the same in men and women; i.e. �1 ¼ ð0, 0Þ, �1 ¼ 0,�1 ¼ 0 and 	¼ 1. Weight
measurements were missing (completely at random) in men only. The covariates of the
imputation model were age, height and loginsindex. The covariates of the analysis model were
age and weight, and the model was only fitted to the men’s observations. There was
incompatibility between the imputation and the analysis model since only the imputation
model assumed that the continuous variables were identically distributed in men and women.

Scenario 2: Heteroscedastic errors. We set the true conditional distributions of age, height, weight
and loginsindex to have different means in men and women; i.e. �1, �1 and �1 were set to their non-
null values stated earlier. Additionally, among women the variance of weight and loginsindex was
set to be 1/4 of the variance in men; i.e. 	¼ 1/2. The covariates of the imputation model were sex,
age, height and loginsindex, and the covariates of the analysis model were sex, age and weight.
The imputation and analysis models were compatible but incorrectly specified because they
assumed homoscedastic errors.

Scenario 3: Omitted interaction. We set the true conditional distributions of age, height, weight and
loginsindex to have different means in men and women. The variances of weight and loginsindex
were set to be the same in men and women; i.e. 	¼ 1. The covariates of the imputation model
were sex, age, height and loginsindex, and the covariates of the analysis model were sex, age,
weight and the interaction between weight and sex. The imputation model was correctly specified
but because the analysis model included an unnecessary interaction term the imputation and
analysis models were incompatible.

Scenario 4: Moderate and severe non-normality. This scenario was motivated by a simulation study
that investigated the performance of MI methods with non-normal distributions.22 Unlike these
authors, we were only interested in the effect of the shape of the error distribution, not the size of
the error variances. The true conditional distributions of age, height, weight and loginsindex were
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set to be the same in men and women, i.e. �1 ¼ ð0, 0Þ, �1 ¼ 0,�1 ¼ 0 and 	¼ 1. For moderate
departures from non-normality, we investigated nine different parameter specifications by setting
independently the distributions of errorW and errorL to be the uniform distribution, Student’s
t-distribution with six degrees of freedom or the log-normal distribution expfNð0, 1=42Þg. For
severe departures from non-normality, we investigated eight different parameter specifications by
setting independently the distributions of errorW and errorL to be the uniform distribution,
Student’s t-distribution with three degrees of freedom or the log-normal distribution
expfNð0, 1Þg. All error distributions had mean zero and unit variance. The imputation and
analysis models were the same as in the subgroup analysis scenario, although both models
were fitted to the entire sample. The imputation and analysis models were compatible, but
misspecified because they assumed a normal error distribution.

For all scenarios, we repeated the simulation study for sample sizes n¼ 100 and n¼ 1000 and
probabilities 0.6 and 0.4 that weight was observed. For the subgroup analysis scenario only, the
probability that weight was observed was one among women and 0.6 or 0.4 among men. For each
combination of scenario, parameter specification, sample size and observation probability we
generated 2500 independent simulated datasets. Based on 2500 simulations the Monte Carlo
standard error for the true coverage probability of 0.95 is

p
ð0:95ð1� 0:95Þ=2500Þ ¼ 0:0044,23

implying that the estimated coverage probability should lie within the range 0.941 and 0.960
(with 95% probability). For Rubin’s MI and robust Rubin’s MI, we imputed the data using the
independent Jeffrey’s prior. For FMB, the data were imputed using the same frequentist imputation
method used for Robins and Wang’s MI. Each incomplete dataset was imputed 50 times for
Rubin’s MI, robust Rubin’s MI and Robins and Wang’s MI, and 2500 bootstrap samples were
generated for FMB.

6 Simulation study results

Table 2 presents the results of imputation inference according to the methods of Rubin, robust
Rubin and Robins and Wang in the four scenarios of misspecified or incompatible imputation and
analysis models, where the probability of observing weight was 0.4. For moderate departure from
normality and severe departure from normality, we have reported the results corresponding to the
error distributions errorW � expfNð0, 1=42Þg, errorL � expfNð0, 1=42Þg and errorW � Student’s
t with three degrees of freedom, errorL � expfNð0, 1Þg. The results for other parameter
specifications are summarized in the text below.

First consider the left-hand side of Table 2, corresponding to sample size 1000. The imputation

estimates, �̂I3, for the subgroup analysis, heteroscedastic errors and omitted interaction scenarios

were unbiased; that is, the Monte Carlo 95% confidence interval �̂I3 	 1:96�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varð�̂I3Þ=2500

q
contained the true value of �3. For each of these three scenarios, the mean of the Robins and
Wang variance estimate, V̂I

3, was close to the sampling variance of �̂I3 and the confidence interval
coverage probability was close to the nominal level. For the subgroup analysis and omitted
interaction scenarios, Rubin’s variance estimates were upwardly biased (i.e. the mean of V̂I

3 was
larger than the sampling variance of �̂I3), leading to conservative confidence intervals that were on
average wider than those of Robins and Wang. Conversely, for the heterogeneous errors scenario,
Rubin’s variance estimate was downwardly biased and the coverage probability of the confidence
intervals was more than 4% below the nominal level. The robust Rubin’s MI method performed
similar to Rubin’s MI for the subgroup analysis and omitted interaction scenarios and showed a
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slight improvement over Rubin’s MI (i.e. higher coverage probability) for the heterogeneous errors
scenario.

For the moderate non-normality scenario, the imputation estimate was unbiased and the
confidence interval coverage probability was close to the nominal level for all three methods.
However, for the severe non-normality scenario, the imputation estimates were upwardly biased
for all three methods and for both sample sizes. Robins and Wang MI under-estimated the sampling
variance of �̂I3 the least and had the highest coverage probability, although this was still 3% below
the nominal level. The robust Rubin’s MI method was an improvement on Rubin’s MI such that the
confidence interval coverage probability for robust Rubin’s MI was less than 1% below that of
Robins and Wang’s MI.

Now consider the right-hand side of Table 2, corresponding to sample size 100. The results for
Rubin’s MI and robust Rubin’s MI followed the same patterns as noted for sample size 1000. There
was a deterioration in the performance of Robins and Wang’s MI when applied to a dataset of
sample size 100. Firstly, the imputation estimates for all but the subgroup analysis scenario were
(slightly) upwardly biased. Secondly, the Robins and Wang variance estimates were downwardly
biased for all scenarios, resulting in confidence interval coverage probabilities that were at least 3%
below the nominal level.

Table 3 reports the corresponding results for FMB. The FMB imputation estimates were
unbiased for both sample sizes, and for all scenarios except severe non-normality. However,
estimation of �3 was less efficient than for the other methods. Of the three types of confidence
intervals, in almost all cases the percentile confidence interval had the highest coverage
probability for the same average confidence interval width.

For the subgroup analysis, heterogeneous errors, omitted interaction and moderate non-
normality, when the sample size was 1000 Robins and Wang MI outperformed FMB; i.e. had the
narrowest average confidence interval and at least nominal coverage. When the sample size was 100,
for the subgroup analysis and omitted interaction scenarios FMB with the percentile confidence
interval was marginally better than Rubin’s MI because (for comparable coverage probabilities) the
bootstrap confidence intervals were narrower on average than those of Rubin’s MI. The relative
inefficiency of FMB to Rubin’s MI was outweighed by the upward bias of Rubin’s variance
estimates. For the heterogeneous errors scenario, sample size 100, FMB with the percentile
confidence interval had the highest coverage probability, although still outside the expected range
(0.941–0.960). For the moderate non-normality scenario, Rubin’s MI was the best method for
sample size 100, with close to nominal coverage and the narrowest mean confidence interval
width. For the severe non-normality scenario, and for both sample sizes, FMB had the highest
coverage probabilities, although still below 0.941.

When the probability of observing weight was 0.6, the pattern of results was the same as in Tables
2 and 3, although the differences between the methods were less marked. Across the nine different
error distributions investigated for the moderate non-normality scenario, and for the severe non-
normality specifications errorW � expfNð0, 1Þg, errorL � uniform and errorW � Student’s
t-distribution with three degrees of freedom, errorL � uniform the results were virtually identical
to those reported for moderate departures from normality in Tables 2 and 3. Across the remaining
six error distributions investigated for severe non-normality, the pattern of the results was very
similar to the severe non-normality scenario in Tables 2 and 3, so that the conclusions drawn
with respect to the comparisons of the methods remained the same. For the other coefficients of
the analysis model, either the pattern of results was the same as in Tables 2 and 3 but with smaller
differences between the methods, or all methods had coverage probabilities of 94–95%, with Robins
and Wang MI having the narrowest confidence interval on average and FMB having the widest.
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For the subgroup analysis and interaction scenarios in several instances, the Robins and Wang
variance estimate was smaller than the corresponding variance estimate that resulted from analysing
the fully observed data, i.e. data without missing observations (data not shown). This is due to the
fact that the imputations are superefficient with respect to the analysis procedure; i.e. the
imputations contain extra information that is not contained in the true data.2

We conducted a second simulation study to assess the robustness of FMB when data were missing
at random (MAR) and the MDM (for simulating missingness in a bootstrapped dataset) was not
modelled; that is, missingness was simulated using the observed MDP as above. The design of this
simulation study was based on the simulation study described above, with three modifications. There
were three changes. First, data were simulated to be missing dependent upon the outcome variable
of the analysis model (loginsindex), thus ensuring the complete case analysis produced biased
estimates. Second, the imputation and analysis models were compatible and correctly specified.
Third, we conducted two FMB methods: FMB with the MDM correctly modelled (which we
shall call FMB correct MDM) and FMB with missingness simulated using the observed MDP
(which we shall call FMB observed MDP). For both sample sizes, when data were MAR,
omitting to model the MDM for FMB resulted in downwardly biased variance estimates, which
led to under-coverage of the confidence intervals. Variance estimates were not downwardly biased
when the MDM was correctly modelled (FMB correct MDM). For sample size 1000, any differences
in the performances of Rubin’s MI, robust Rubin’s MI, Robins and Wang’s MI and FMB correct
MDM were very small. For sample size 100, the Robins and Wang method outperformed the other
methods with respect to point estimation but its variance estimates were again downwardly biased.
For interval estimation only FMB correct MDM with the percentile confidence interval provided
coverage probabilities greater than 0.941 for all coefficients. (Results of this simulation study are
available upon request from the authors.)

7 Discussion

We have conducted the first comparative evaluation of Rubin’s MI, a modified version of Rubin’s
MI, Robins and Wang’s MI and FMB. Our simulation study shows that Rubin’s MI variance
estimator failed in four common scenarios of misspecification of the imputation and analysis
models, and of incompatibility between them. The variance estimates were substantially
upwardly or downwardly biased, resulting in confidence intervals that over- and under-covered,
respectively. For moderate sample size (n¼1000) and all scenarios apart from severe non-
normality, Robins and Wang’s MI produced the narrowest confidence intervals on average,
with close to nominal coverage. When the imputation and analysis models were both
misspecified due to severe non-normality all methods had the same biased imputation estimate,
but the larger imputation variance estimate of FMB resulted in confidence intervals with coverage
probabilities closest to the nominal level.

A key feature of Rubin’s MI is the separation of the imputation procedure from the substantive
analysis. This has the advantage that the more technical process of imputation can be done by a
specialist, following which multiple analyses can be done on the imputed datasets by non-specialists
using standard software. However, this separation may also lead to incompatibility between the
imputation and analysis models, when assumptions made during imputation are not carried forward
to the analysis stage. For example, estimation for domains (i.e. subgroups or subpopulations) is
common for the analysis of survey data and, in particular for large surveys analysed by many users,
imputations can be generated ignoring the domain indicator.24 In some situations, such as the
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subgroup analysis and omitted interaction scenarios of our simulation study, incompatibility can in
principle be avoided, if the imputer provides sufficient documentation of the imputation model to
future users. However, in some instances incompatibility may be unavoidable; e.g. for confidentiality
reasons the provider of the imputed data may only disseminate to the users a subset of the
observations (or records) used during the imputation stage.11,25

Misspecification of imputation and analysis models is a more general problem, which will arise
whenever model assumptions are not justified. We investigated two scenarios, in which
misspecification was due to heteroscedastic errors and non-normality. Our results suggest that
when misspecification arises from heteroscedastic errors, there has to be a sizable difference
between the subgroup variances in order for Rubin’s imputation variance estimator to materially
under-estimate the sampling variance of the imputation estimator. In this case, heteroscedastic
errors in the imputation and analysis models could have been accommodated by conducting
separate MI analyses in men and women.

A limitation of the Robins and Wang MI method is that it makes large sample assumptions,
which led to downwardly biased variance estimates and confidence interval coverage when applied
to small datasets. A major disadvantage of the Robins and Wang method is that calculation of the
imputation variance estimate is considerably more complicated than for Rubin’s MI and FMB,
with a greater burden placed on both the imputer and the analyst. To our knowledge, there is no
generally available software implementing the Robins and Wang method. The analyst must make
available derivatives of the estimating equations for use in calculation of variance estimates, and
these become harder to calculate as the complexity of the analysis procedure increases. Also, the
complexity of the calculations conducted by the imputer increases when there is multiple
incomplete variables with a general MDP. For this reason, our simulation scenarios were
restricted to data missing in a single variable, as were the scenarios considered in the papers
proposing the approach. The Robins and Wang method requires the data to be imputed under
a single imputation model. Therefore, currently, it cannot be applied if imputation is conducted
using chained equations imputation,26 a flexible and commonly used method of imputation that
imputes under two or more imputation models. In contrast, calculation of the variance of an
imputation estimator by Rubin’s MI method and FMB is straightforward for more complex
MDPs and analysis procedures, and can be applied when data are imputed using chained
equations imputation.

A limitation of FMB was its inefficiency relative to the other imputation inference methods.
Furthermore, FMB requires modelling of the MDM when data are MAR, which is not required
by the MI methods of Rubin or Robins and Wang. A further simulation study we conducted showed
that FMB required modelling of the MDM when data were MAR. Further work is needed to
compare Rubin’s MI with FMB when data are MAR and the missing data model assumed by
FMB is incorrectly specified.

In summary, accurate inference requires an unbiased estimator and variance estimator. Rubin’s
MI variance estimator may be biased in the presence of incompatibility between the imputation and
analysis models and model misspecification. This can lead to over- or under-coverage of confidence
intervals. These limitations should be noted in guidelines on the appropriate use of Rubin’s MI,27

which should emphasize how incompatibility can be avoided, and the pitfalls that can arise because
of model misspecification. The simplicity and flexibility of Rubin’s MI mean that it is likely to
remain the method of choice to deal with data that are MAR. However, where these problems of
incompatibility and misspecification cannot be avoided, Robins and Wang MI has the potential to
provide more robust inferences, should the considerable challenges in provision of software
implementing the procedure be overcome.
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