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Abstract

Background: Graphical models have long been used to describe biological networks for a variety of important tasks
such as the determination of key biological parameters, and the structure of graphical model ultimately determines
whether such unknown parameters can be unambiguously obtained from experimental observations (i.e, the
identifiability problem). Limited by resources or technical capacities, complex biological networks are usually partially
observed in experiment, which thus introduces latent variables into the corresponding graphical models. A number of
previous studies have tackled the parameter identifiability problem for graphical models such as linear structural
equation models (SEMs) with or without latent variables. However, the limited resolution and efficiency of existing
approaches necessarily calls for further development of novel structural identifiability analysis algorithms.

Results: An efficient structural identifiability analysis algorithm is developed in this study for a broad range of network
structures. The proposed method adopts the Wright's path coefficient method to generate identifiability equations in
forms of symbolic polynomials, and then converts these symbolic equations to binary matrices (called identifiability
matrix). Several matrix operations are introduced for identifiability matrix reduction with system equivalency
maintained. Based on the reduced identifiability matrices, the structural identifiability of each parameter is
determined. A number of benchmark models are used to verify the validity of the proposed approach. Finally,
the network module for influenza A virus replication is employed as a real example to illustrate the application of the

proposed approach in practice.

Conclusions: The proposed approach can deal with cyclic networks with latent variables. The key advantage is that it
intentionally avoids symbolic computation and is thus highly efficient. Also, this method is capable of determining the
identifiability of each single parameter and is thus of higher resolution in comparison with many existing approaches.
Overall, this study provides a basis for systematic examination and refinement of graphical models of biological
networks from the identifiability point of view, and it has a significant potential to be extended to more complex

network structures or high-dimensional systems.
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Background

Although the reductionism approaches have led to tre-
mendous success in advancing our knowledge and un-
derstanding of individual biological components and
their functions, it has been broadly recognized that
many organic/cellular functions or disorders cannot be
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attributed to an individual molecule [1]. Instead, numer-
ous biological components interact with each other and
orchestrate various dynamic events that are critical to
the beginning and extension of life [2]. To systematically
investigate and understand such complex interactions, a
variety of biological networks (e.g., transcriptional and
post-transcriptional regulatory networks [3-6], func-
tional RNA networks [7-9], protein-protein interaction
networks [10, 11], and metabolic networks [12, 13]) have
necessarily been constructed based on experimental
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observations or predictions. Nowadays, biological net-
works are playing critical roles in biomedical research and
practice at multiple levels or scales (e.g., genetics [14], im-
munology [15], cancer [16], drug discovery [17, 18]), and
the associated modeling and computation techniques and
tools are under active development for network property
investigation, network structure identification, experimen-
tal data analysis and interpretation, and so on [1, 15-19].
Graphical models are one of the most powerful math-
ematical languages for biological network representation,
and have long been used for various quantitative analysis
tasks [19-21]. In particular, the determination of un-
known model parameter values from experimental data
is of fundamental importance to many other critical
tasks (e.g., computer simulation or prediction, network
structure refinement), and it should be stressed that par-
ameter identifiability is one of the first questions that
needs to be answered before any statistical method can
be applied to obtain accurate and reliable estimates of
unknown parameters [20]. More specifically, limited by
resources or technical capabilities, it is not uncommon
that only part of the nodes or interactions (i.e., edges) in
a biological network can be experimentally observed
such that the values of certain unknown parameters as-
sociated with those unobserved nodes or edges cannot
be uniquely determined from experimental data due to
the lack of information. However, even if all the nodes
and edges are observed, identifiability issues may still
occur due to, e.g., model misspecification. It is thus
necessary to develop identifiability analysis techniques
for graphical models with or without latent variables.
Since graphical models refer to a broad range of math-
ematical formulations [19-22], it is impossible to ex-
plore the identifiability analysis techniques for all
different types of graphical models in one study. Here
we focus on the structural identifiability analysis prob-
lem of static linear structural equation model (SEM),
which is a representative and generic graphical model
type that has been widely used in many different re-
search areas such as clinical psychology, education, cog-
nitive science, behavioral medicine, developmental
psychology, casual inference [23, 24], and systems biol-
ogy [25-27]. A number of previous studies have pro-
posed identifiability analysis techniques for linear SEMs
with or without latent variables [23, 24, 28—43]. More
specifically, the traditional method described in [23]
constructs a so-called system matrix from a given model
structure and derives the rank and order conditions
based on this matrix for identifiability analysis. However,
this approach can only handle comparatively simple
network structures (e.g., block recursive models [23])
without latent variables, and cannot deal with the disturb-
ance correlation between variables (i.e., nodes). To deal
with a broader range of model structures, investigators
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from different disciplines have made further attempts
by considering the topological or other features of
certain networks. For instance, several previous stud-
ies have derived the sufficient criteria for parameter
identifiability based on local characteristics of subnet-
works, including Pearl’s back door and front door cri-
teria [24], Brito and Pearl’s generalized instrumental
variable criterion [30], and Tian’s accessory set ap-
proach [41]. For certain network structures, sufficient
conditions for parameter identifiability have also been
established for the entire network instead of subnet-
works; e.g., Brito and Pearl’s conditions for bow-free
models [28], Brito and Pearl’s auxiliary sets condition
for directed acyclic graph (DAG) models [36], Drton’s
condition based on injective parametrization of mixed
graphs [35], and Foygel’s half-trek criterion for mixed
graphs [37]. While the criteria and conditions men-
tioned above are important progresses made in the
field, they only provide a partial or overall assessment
of parameter identifiability. To determine the iden-
tifiability of every single parameter in the model, Tian
[32] adopted the partial regression analysis technique,
but this approach can only handle a special class of
P-structure-free SEMs. Also, Sullivant et al. [34] tack-
led this problem using a computer algebra method,
which turns out to be applicable only to SEMs with a
small number of variables due to the prohibitive com-
putation costs associated with Grobner basis reduction.
Therefore, it is still necessary to develop more efficient
single-parameter-level approaches for structural identifia-
bility analysis of whole networks.

In this study, we developed a novel and efficient ap-
proach for structural identifiability analysis of cyclic lin-
ear SEMs with latent variables. The proposed method is
applicable to both directed cyclic and acyclic graphs with
or without latent variables, and thus presents an exten-
sion of existing algorithms in terms of generality. Differ-
ent from other existing algebraic approaches, although
our method uses the Wrights path coefficient method to
generate identifiability equations in forms of nonlinear
symbolic polynomials, it avoids the expensive symbolic
computations (e.g., Grobner basis reduction) by convert-
ing identifiability equations to binary matrices, and is
thus highly efficient. Moreover, in contrast to other
methods that can only draw conclusions on the overall
identifiability of a model, the proposed method can de-
termine the identifiability of each single unknown par-
ameter, and is thus of higher resolution and enables
researchers to locate the problematic subnetwork
structures to refine model structures or improve ex-
perimental design. We collected a number of bench-
mark models from literature and verified the validity
of our method using those models. Finally, we applied
our method to the network module for influenza A
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virus (IAV) within-host replication to gain insights
into parameter identifiability and experimental design.

Methods

The key definitions and steps involved in the proposed
algorithm are described in this section, including the
definition of structural identifiability analysis for cyclic
SEMs, the generation of identifiability equations, the
conversion to identifiability matrices, and the symbolic-
free identifiability determination based on the reduced
identifiability matrices. The necessary theoretical justifi-
cation is also given.

SEM and structural identifiability

The structural equation models considered in this study
correspond to a mixed cyclic graph G = (V, D, U), where
V is a set of vertices, D a set of directed edges, and U a
set of undirected edges. That is, in the SEM, each model
variable Y; corresponds to a vertex V; (i=1,2,...,n), the
structure of the coefficient matrix C = [c;] is specified by
D (ie., c; exists if a directed edge from V; to V; is in D;
otherwise, ¢;; = 0 if no edge exists in D from V; to V, i =),
and the existence of disturbance correlation between two
variables is given by U. Here disturbance refers to all the
omitted causes of a variable, and disturbance correlation
is the correlation between two variables due to the
existence of common omitted cause(s) shared by the
two variables [24]. As suggested in a number of stud-
ies [24, 28-30, 32, 34, 35, 37, 44], it is not always ne-
cessary to classify the model variables into endogenous or
exogenous; therefore, following the notation in Drton et
al. [35], the SEM representation of a cyclic graph can be
given as follows

Y= Z ciYj+ e, Lj=1,n, (1)

j€Parent (i)

where c; denotes the weight of the directed edge
V;—V,, & denotes the random error that follows a
certain distribution (Gaussian or non-Gaussian [31, 38])
with mean zero, and Parent(i) denotes the set of parent
nodes of node i. Without loss of generality, all Y; s are as-
sumed to be standardized via necessary transform [45]. To
distinguish observed variables from latent variables, the su-
perscripts o and / can be used (i.e., Y and Y}). Furthermore,
let 0;; = Cov(Y, Y)) denote the covariance between two node
variables. Also, let w; denote the disturbance correlation
between Y; and Y by definition, ;=0 if no undirected
edge V; <> V; can be found in U. For convenience, we de-
note the covariance matrix and the disturbance correlation
matrix as X = [0j;] and Q = [w;j], respectively.

In general, the purpose of identifiability analysis is to ver-
ify whether certain unknown parameters can be uniquely
and reliably determined for given model structures with or
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without considering data noise or model uncertainty
[24, 28-30, 32, 34, 35, 37, 44]. Here the goal of struc-
tural identifiability analysis of SEMs is to determine
whether the unknown parameters in matrices C and Q
can be unambiguously determined for a given network
structure G = (V, D, U). This type of analysis does not take
specific data distribution or noise level into consideration
as its primary concern is not the robustness but the accur-
acy of parameter estimation via examining possible flaws
in model structure or experimental design. More import-
antly, the structural identifiability of a parameter can be
verified by checking its number of solutions to a system of
polynomial equations. That is, a parameter is globally
identifiable if only one solution exists, locally identifiable if
a finite number of solutions exist, and unidentifiable if an
infinite number of solutions exist [20].

For illustration purpose, we consider the mixed graph
example in Fig. 1. The corresponding linear SEM is
given as follows:

Yi=&

Y=g

Ys=cn1Y1 +c3aYs+ &3 2)
Yy =cpYy+cYs+e’

w12¢0

w23¢0

the coefficient and the disturbance correlation matrices
are

0 0 0 0
o o0 o0 o0
C= i 0 0 cx and
0 cap cz O
0 W12 0 0
_ | w12 0 W3 0
Q= 0 W3 0 0|’
0 0 0 O

(3)

respectively, and the covariance matrices for Fig. 1la, b
are

011 012 013 014
o o o o
5, = 12 0 023 0xu| .4
013 023 033 034
014 024 034 Oy4
011 O12 — Ou
012 022 — 02
Zb = _ _ _ _ )
1014 021 — 044
(4)
respectively, where the symbol “—” denotes unknown

covariance due to the existence of the latent variable Ys.
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latent variables; b With latent variable Y3 (labelled in red)

(a) &2

Fig. 1 A mixed graph example, where the dashed bidirectional arrow represents the disturbance correlation between the two variables. a Without

(b)

For the model corresponding to Fig. 1b, the structure
identifiability problem is to determine the number of so-
lutions of each unknown parameter in matrices C and Q
(i.e., €315 €345 Caps Ca3, W12 aNd Wo3).

Generating identifiability equations

Identifiability equations are obtained after eliminating all
latent variables so they are a set of equations that con-
tains only observed variables, unknown parameters and
maybe other constants. It has been shown that under
the assumption of normally-distributed disturbance, the
covariance matrix X can be expressed in terms of C
and Q

T = (1-C)'Q(I-C), (5)

where I denotes the identity matrix. If the unknown
covariance(s) in X can be eliminated, Eq. (5) will be-
come a set of equations that involve only the un-
known parameters in C and €, and thus has been
used as identifiability equations in previous studies
[23, 34]. However, this approach needs to calculate
the symbolic inversion of the matrix (I - C) such that
it can only handle small models with a few unknown
parameters even if with the use of the computer alge-
bra tools [34]. Therefore, here we consider the
Wright's method of path coefficients to generate iden-
tifiability equations [45, 46]. Briefly, the Worights
method considers the fact that two node variables are
correlated with each other if there exists a path be-
tween these two nodes in a given network structure,
and thus calculate the covariance between two node
variables by adding the products of edge coefficients
along each path. This approach can easily generate
the identifiability equations in forms of nonlinear
symbolic polynomials and has been previously verified
and used for identifiability analysis of SEMs [29, 30].
More specifically, for an acyclic linear SEM (also called
recursive SEM that corresponds to a directed acyclic
graph), the covariance o0;; of a pair of variables Y; and
Y; is calculated as o = Z H@l, where 6, is the co-
pathyedge;
efficient of the /-th edge in path k (ie, ¢, or

wpqassociated with a directed edge V,— V), or an undir-
ected V, <> V,). Note that each path includes at most one
undirected edge and must be unblocked [29, 30, 45,
46] (i.e., the two end nodes of a path are connected
in the directed graph part G = (V, D)). For a cyclic lin-
ear SEM (also called non-recursive), the directed
graph part G =(V,D) contains one or multiple cycles
such that we need to enumerate all distinct cycles
and paths. The key issue is that, for two nodes in the
same cycle, there are two different sets of paths V;—
~+—Vand V;— - —V; according to the Wright’s
method. That is, two different sets of equations can
be generated for o; and oy, respectively, although o
=0j;. Furthermore, for any latent variable Y; in a
SEM, the covariance between Y; and any other vari-
able is unknown and cannot be used to generate
identifiability equations (see X,, the corresponding co-
variance matrix of Fig. 1b). In short, the existence of
cycles or latent variables will lead to the increase or
decrease of the number of identifiability equations, re-
spectively, and thus will eventually affect the number
of solutions of unknown model parameters.

Back to the examples in Fig. 1, it can be shown that
the identifiability equations generated using the Wright’s
method for Fig. 1a, b are

012 = W12 + €31023

013 = €31 + W12C42C34

014 = €31C43 + W12Cap + €31023C42
023 = C42€34 + W23 + @12C31 )
024 = C4p + W23C43 + @12C31Ca3
034 = C43 1 W23Ca

034 = C34

and

012 = W12 + €31W23
014 = €31€43 + ®12€Ca2 + C31023C42
024 = Cap + @23C43 + @W12€31C43

(7)

respectively. In Fig. 1a, because the two nodes V3 and V,
are in the same cycle, we have 034 =cy3+ wy3cyy for
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V3 — V, and 043 = ¢34 for V4, — V3 in Eq. (6). In Fig. 1b,
since the node V3 is unobserved, the covariance o3, 023
and o034 are unavailable for identifiability analysis as
shown in Eq. (7).

Generating identifiability matrices

The identifiability equations are symbolic polynomials
and are nonlinear with respect to unknown parameters.
Simplifying and solving such equations using the com-
puter algebra algorithms usually presents significant
computational challenges [34]. Here we propose a novel
and efficient approach, and the basic idea is to convert
the identifiability equations to binary matrices, called
identifiability matrices.

For each identifiability equations, one identifiability
matrix is generated. More specifically, each column of
the matrix corresponds to an unknown parameter, and
each row corresponds to a monomial H 0. If the i-th

edge;
monomial of an identifiability equation contains the j-th
unknown parameter, then the corresponding matrix
element m; is equal to 1, otherwise ;= 0. Note that
when generating the identifiability matrices, constant
terms or known coefficients are not considered since
they have no effects on the identifiability of unknown
parameters. For illustration purpose, the list of identifia-
bility matrices generated from Eq. (6) is given as follows

€31 €34 C42 C43 W12 W23

0'000010
219 00 00 1/

‘100000]

Blo1 1010
[1 0 0 1 0 0]
014 010107
101001

0923 0

(=]
o
(=]
S
—_

(=]
(=]
—_
(=]
(=]
(=]

0924 0

(=]
(=]
—_
(=]
—

5|00 0 1 00
1o 001 0 0 1)

0x[0 1 0 0 0 0]

From Eq. (7), we can generate three matrices for oi,,
014 and oy, respectively, which are the same as those
from Eq. (6) and thus not shown here.
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Reducing identifiability matrices

If all elements are O in an identifiability matrix M, it is
simply a zero matrix (denoted by My). Such matrices
may occur during the reduction process. However, a
zero matrix is not useful to identifiability analysis be-
cause it contains no unknown parameters. Therefore,
once an identifiability matrix becomes a zero matrix
after a certain number of reduction operations, it can be
removed. For the same reason, a zero row in an iden-
tifiability matrix can also be deleted.

Given an identifiability matrix M with a row number
Nip(M) greater than 1, if all the rows in M are the same,
such a matrix is called a repeated matrix (denoted by
Mpy). The corresponding identifiability equation of a re-

peated matrix is o, = a1H91 + aZHHZW + aKHGZ ,
I I I

where all the monomials are the same except for the
constant coefficients {a;, a,, ...,ax} in the front. Since

the equation can be simplified to oy :A«Hﬁl, where
I

A=aj;+ay+ - +ay the repeated identifiability matrix
can be replaced by a single row without loss of infor-
mation (denoted by Mg;).

Further notations are needed to describe the relation-
ships between two identifiability matrices. First, if all the
rows in matrix M, are from another matrix M;, M, is
called a sub-matrix of M;, denoted by M, = Sub(M;), and
the remaining part is denoted by Rem(M; _,). Second, for
two identifiability matrix M; and M, (Nz(M;) = Nx(M5,)),
if a sub-matrix of My, denoted by M3, can be found such
that it has the same number of rows as M,, and every
element “1” in M, is also a “1” in Mj, then we call
M, includes M,, denoted by M, C M;. An example of
such a relationship is given in Fig. 2a for illustration
purpose. Third, given two identifiability matrices M;
and M, such that Ni(M;) = Nx(M,) and M, < M;, then
M;=(M; - M,) is called a complement matrix, denoted
by Comp(M; — M,). See Fig. 2b for illustration of the com-
plement matrix concept.

Now the key issue is that the identifiability matrices
before and after reduction should be equivalent; that is,
the two sets of matrices should lead to the same conclu-
sions on parameter identifiability. Let M; ~ M, denote
two equivalent matrices, here we show that the following
operations for matrix reduction can meet the require-
ment of identifiability equivalency (see Additional file 1
for theoretical justification):

i) Row swap. Let R; and R; (i # /) denote two different
rows of an identifiability matrix M;, and let M,
denote the matrix generated after swapping R; and
R;, then M; ~ M.

ii) Redundant row removal. Let R; and R; (i = )
denote two different rows of an identifiability matrix
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M Sub(M,)

1
o1 o1t o {000‘

1 01 0 0 O 00 Om
0 [T 0 o1 :
M, cM,

{0 0 011 0]

the same or become different in different matrices

0 0 0 0[L[1] (a)

Fig. 2 lllustration of a sub-matrix and matrix inclusion; and b complement matrix. Different colors are used to highlight the elements that remain

M, M, c M,

o1 o0l1l1o 00 0[1/1 o0
010 o0l1]1 000 of1l1

Comp (M, -M,)
{o 1 000 0}

01 0 01[0]0 (b)

M;. If R; = R; and let M, denote the matrix
generated after removing R; or R;, then M; ~ M.
iii) Row deletion. Let M; and M, be two identifiability

matrices, which correspond to two different

identifiability equations, such that Nz(M;) > 1 and

M, C M;. Also, let M3 = sub(M;) be a submatrix

consisting of M;’s rows that M, has in M;. See

Fig. 3 for examples.

o If Rem(M;_,) = M and Comp(M3 — M,) = M,
then M; can be reduced to Ren(M; _ ) without
altering the parameter identifiability;

o If Rem(M;_,) = M and Comp(M3 — M,) = Mp,

Rem(Ml_g) :|
Mp;

without altering the parameter identifiability;

o If Rem(M; _,) = M and Comp(Ms — M,) = My,
then M; can be reduced to Mg; without altering
the parameter identifiability;

o If Rem(M; _,) = M and Comp(Ms3 - M,) = M,
(i.e., My = M, = M3), and take the row which has
the least “1” elements in M; to form a new
matrix My, then M; can be reduced to M,
without altering the parameter identifiability.

then M; can be reduced to [

The reduction process is iterative, and it stops until we
cannot reduce the identifiability matrices further more.
For illustration purpose, the whole reduction process for
the identifiability matrices from Fig. 1a is shown in Fig. 4.
The computation complexity of the reduction process
depends on the number of rows in the identifiability
matrices (denoted by m). In the worst scenario where
every pair of rows need to be compared, the computing
cost is O(m?); however, the efficiency can be improved if
all the rows can be sorted before row comparison accord-
ing to the positions of the “1” elements from left to right.

Determining parameter identifiability
After all identifiability matrices are reduced to the sim-
plest forms using the operations described in the

previous section, the identifiability of all the unknown
parameters can be determined. The simplest case is to
find out the globally identifiable, That is, if a matrix has
only one row and this row has only one “1” element, the
parameter corresponding to that “1” element is then glo-
bally identifiable, because the associated identifiability
equation is in the form 6;=const. For example, the
matrix of the bottom o34 matrix in Fig. 4 has only one
row with only one “1” element, so the parameter c34 cor-
responding to the “1” element is globally identifiable.

After removing all the matrices for globally identifiable
parameters, the remaining matrices all have more than
one “1” elements and they need to be regrouped and
decoupled. That is, if the i-th columns of matrices M;
and M, both contain one or more “1” elements, M; and
M, will be in the same group. Here we describe the
algorithm for grouping the identifiability matrices (see
Fig. 5 for illustration).

(i) Apply the bit-OR operation to the first two rows,
and then to the result and the 3rd row, and so on
until the last row of a matrix to generate an indicator
vector R, such that each “1” element in this vector
indicates the existence of a certain parameter;

(ii) Initialize an output vector R,,, as the vector R,
that contains largest number of “1” elements
among all R, s;

(iii) Check each of the R, vectors to verify whether
it has any common “1” element with R,,, using
the bit-AND operation. If the bit-AND result is
not a zero vector, then the identifiability matrix
corresponding to R, will be added to the current
group. Then update R,,; by applying the bit-OR
operation to R,,; and the bit-AND result;

(iv) Repeat Step (iii) until no more matrices can be
added to the current group;

(v) Remove all the matrices of the current group, and
repeat steps (ii) to (iv) until all different groups are
found.
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M, cM,
{0@0 11 o
ol oo o
M, L
0 0 m 0 l Rem(M,.,)
1 o[ o ol il o 1] o ofi]
0 000 @
M, =M,

Ml
oftlolho l
1o ool 10
oltlo ool b)

M, cM

2 1

[0 0 o@ o}

0000 0]/l

[omommo} l ;[om:[mooo]

Ml
000 0f[o M,
i of1loo o ,Jo0 0 0 01 0]

o1 o1 o1 @

Fig. 3 Several examples of the row deletion operation. Different colors are used to highlight the elements that remain the same or become
different in different matrices. (a) Case 1 of reducing M; by M ; (b) Case 2 of reducing M; by M, ; (c) Case 3 of reducing M; by M, ; (d) Case 4 of

reducing M; by M,
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[0 0 0 01 0] 000010 000010
off O,
“2[@ 0 0 0 o i 110000 1] 10000 1]
6'100000' [1 0 0 0 0 0] (1 0 0 0 0 0]
O, O,

“lo1 101 0f Plofd 1 01 o)== ""l0[0 1 01 0]
(10 01 0 0] (1 001 0 0] (100 1 0 0]
0'140000 _;0'14_0()@000_ 0'14_001000_
[ o[ o ofi ] ) _ ]
- j o1 1 00 0fo1 000
01 1000 6500000 1|1 ,o.000001
050 00001 100010 A 100010
(1 000 1 0] - - - i
_ - [0 0 0 0] [0 0 1 0 0 0]
001000 0001 1 00010
ou|0 0 0 10 024100110 624100110
100 1 1 0] L . - -
0 001 0 0 03400100 034000100
O.

34_001001_ 10 0 1 0 1] 1001 0 0 1]
o,[0 10 0 0 0] oufo oo 0o S 0mo 00 o

Fig. 4 The reduction process of the identifiability matrices from Fig. Ta. In the left column, we subtract matrix 0, from matrix 04 in the middle

column, we then subtract matrix 034 from matrices 013 and o053; and finally, we get the reduction result in the right column
A\

Rpu_l 1{0 0 0 0_] Ryl 0 0 01 0] R,,[0 01|10 0]
({00 0 0 0 110 0 01 0 0 olof1lo o]
0y, 0 Oy
1 00 0] 000 0 o0lllo 10 01|10 0]
Initialize an
output vector R[] 0 0 0_] R [0 of1[1 of1] R0 011 01
1[0 0 00/ 0 [0 0 [1{]0] 0 |0 [0 0 [0[|1] 0|0
0.
a0/ (1] 0 0 10| 0| o,[0 00/|t] 0 ft] [0 0]|L[|0] 0 |1
N ean 110/ 0 0|1 0 0 010/(1] 010
o Generate the indicator vectors
Test whether it has 1
any common “1”
element with the
vt Rl 0 0 0 0] Rpu[t- 10000
Ry 0 0 0l o] Ryp[t-0- 001 0f
pl13
R.[00 110 0 Ry [0 0 WK o 0]
Add the current matrix to t]l1e Rl — R 0 0 O] RPT}H—I—QhO—I—O]»
current group and remove it out p23
R0 0110 1] R, —>R[0 0 0
; R0 0110 1] Ry[o ofF [ off]
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End
(a) The flowchart of reduction process (b) An example of the reduction process with two groups

Fig. 5 lllustration of the grouping algorithm. a The reduction process flowchart; b An example of the reduction process with two matrix groups
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The identifiability of all the parameters in the same
group are determined together. According to the defin-
ition of identifiability matrix, one can tell that all the
matrices of the same group correspond to a system of
coupled polynomial equations, and the critical issue here
is to determine the number of solutions of each param-
eter to these equations. Garcia and Li [47] have theoret-
ically investigated this problem and shown that for a
system of # polynomial equations with #» complex vari-

n
ables, the number of solutions is equal to g = H%‘»

i=1
where ¢, is the degree (the power of the highest ordered
term) of equation i. Therefore, every unknown variable
of the system has a unique solution when ¢ =1, and has
multiple solutions if ¢ > 1. Based on the work of Garcia
and Li, we establish the theoretical connection between
parameter identifiability and the grouped identifiability
matrices, and the theoretical proof is given in Additional
file 2 for interested readers.

Theorem 1

For the reduced identifiability matrices in the same
group, let N,; denote the number of matrices, let Np de-
note the number of unknown parameters, and let N,
be the maximum number of the “1” elements in one row
of all the matrices.

e When Np> Ny, all the parameters in the same
group are unidentifiable;

e When Np= N, the parameters are globally
identifiable if N, =1, and locally identifiable if
Nmax > 1;

e When Np< Ny, the parameters are at least locally
identifiable.

Based on Theorem 1, we can determine the structural
identifiability of each parameter for the models in Fig. 1.
That is, for the model in Fig. 1a, one can tell that the
parameter c3, is globally identifiable. The remaining
matrices are of the same group; and the number of
matrices is N = 6, the number of unknown parameters
is Np=5, and N, =5 is greater than 1. Therefore, all
the unknown parameters {c31, 42, €43, W12, W3} are locally
identifiable. Similarly for the model in Fig. 1 bone can
tell Ny;=3 and Np=5 so all the parameters {c31, ¢34, Ca2,
Cy43, W19, Wo3) are unidentifiable.

Results and discussion

Overview of the framework

Graphical models have long been used to describe
biological networks for a variety of important tasks
like network structure identification. Many such quantita-
tive analyses involve determination of unknown model
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parameters from experimental data, and identifiability
analysis is a necessary step to perform before parameter
estimation to assure the accuracy or robustness of the
estimates. In particular, structural identifiability ana-
lysis can help to locate mis-specified substructures of
models or improve experimental design with consider-
ing unobserved variables. A number of previous stud-
ies have proposed identifiability analysis techniques
for structural equations models, with particular atten-
tion paid to specific network structures (e.g., directed
acyclic graphs) or experimental conditions (e.g., with-
out latent variables). Also, existing methods usually
give an overall assessment instead of verifying the
identifiability of each single parameter, and the use of
symbolic computation algorithms (e.g., Grobner basis
reduction) is computationally expensive and has sig-
nificantly limited the applications of these methods in
more complex biological network structures and mod-
erate to high-dimensional systems.

In this study, we develop a novel and efficient
structural identifiability analysis technique to deal
with a broader range of biological networks. To the
best knowledge of the authors, the proposed method
makes several worthwhile progresses in comparison
with the previous work. First, the covariance between
two observed variables can always be calculated (e.g.,
sample covariance) and thus treated as known, and a
symbolic equation can be generated for this covari-
ance by considering the effects of one variable on the
other propagating through the path(s) between the
two nodes. We adopt the Wright's path coefficient
method [45, 46] for identifiability equation generation,
which is not only more efficient than the approach of
symbolic matrix inversion [34] but also can deal with
cyclic networks with latent variables. Second, the
computer algebra algorithms nowadays are only cap-
able of efficiently solving nonlinear symbolic equa-
tions with a small number of variables, we propose a
novel strategy to convert each symbolic equation to
an identifiability matrix, and we also develop the ne-
cessary operations (e.g., row deletion) for identifiability
matrix reduction without jeopardizing the equivalency
of the identifiability results. Third, we present a strat-
egy for regrouping the reduced identifiability matrices,
and provide the guidelines with theoretical justifica-
tion for determining parameter identifiability from the
grouped matrices. The several contributions described
above are in the same order of the algorithm pipeline,
as depicted in Fig. 6. Finally, it should be stressed
that the proposed algorithm is highly efficient because
the main operations involved here are simple matrix
manipulations like logical bitwise operations or matrix
row deletion. For instance, it will take 0.3 to 4.5 s on
a modern desktop computer to obtain the identifiability
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analysis results for a SEM with 4 nodes, 3 directed edges
and 3 undirected edges using the computer algebra
method [34]; however, it will only take several millisec-
onds or less to reach the conclusions using the method
proposed in this study as binary matrix operations are ex-
tremely efficient. It should be mentioned that many exist-
ing methods cannot be directly compared with the
proposed method because they are not designed for static
SEMs or they necessarily require human intervention. For
example, DAISY has been proposed for determining par-
ameter identifiability of ODE models [48]; and the method
of identifiability tableaus [49] is based on Jacobian matrix
that involves partial derivatives, while our method is based
on a system of polynomial equations and does not require
the calculation of derivatives.

Verification using benchmark models

In order to verify the validity of the proposed method,
we have collected a number of benchmark models avail-
able in public literature to check whether the identifia-
bility results obtained using our method are consistent
with those obtained by other existing methods. Since
these existing models do not contain any latent variable,
we also consider a model with latent variables at the end
of this section to show the capacity of our method.

The first benchmark model is for investigating the ef-
fects of smoking on lung cancer [24], the graph contains
three nodes (variables), two directed edges, and one un-
directed edge (disturbance correlation). All the parame-
ters in this model are found to be globally identifiable
and the detailed analysis process have been shown in
Fig. 6b. The second benchmark model was previously
studied by Sullivant et al. [34], and its graph contains
three nodes, one directed edge, and two undirected
edges. Again, all the parameters in the second model
turn out to be globally identifiable and the analysis de-
tails are given in Additional file 3. The third benchmark
model investigated by Drton et al. [35] is for an acyclic
graph with four nodes, three directed edges, and three
undirected edges. From the same literature (Ref. [35]),
we collected the fourth benchmark model that is more
complicated in terms of number of variables and their
interactions. The fifth benchmark model derived from
the work of Kline el al. [22] is a cyclic graph with six
nodes, six directed edges and three undirected edges.
The purpose of this model is to show that the proposed
approach can deal with cyclic graphs. We derived the
sixth benchmark model from the work of Drton et al.
[35]. This cyclic graph has six nodes, six directed edges,
and three undirected edges; however, for this model, we
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also considered the case of multigraph (i.e., there exist
both a directed edge and an undirected edge between
two nodes), which has been paid particular attention in
the previous study of Brito and Pearl [36]. We reported
the structural identifiability analysis details and results of
the third to sixth models also in Additional file 3.

While the identifiability results obtained using our
method for all the benchmark models above are consist-
ent with the conclusions in the existing literature, we
have not found a model with explicit latent variables in
literature. We thus derived such a model from the work
of Kline [23] by assuming that node V3 is unobserved.
As shown in Fig. 7, the mixed graph has 6 nodes, 2 cy-
cles, and one latent variable V3 (labelled in red).

There are 9 parameters {31, C34, C42, €43, C53, C56) Coar
Co5, W12} In this model. Because the latent variable Y3 is
not observed, the covariance between Y3 and other vari-
ables is unavailable for identifiability analysis. Therefore,
only the following identifiability equations can be
generated:

012 = W12

014 = €31Ca3 + @W12Ca2

015 = €31€53 + €31€43C64C56 + @12C42C34C53 + W12€42C64C56
016 = €31€53C65 1 €31C43C64 + @12€42C6a + @12C42€34C53C65
024 = C49 + ®12€31C43

025 = €42€64C56 + C42€34C53 + @12€31C53 + W12€31€43C64C56 -
026 = C42C6a t+ €42€34C53C65 + W12€31C53C65 + W12€31C43C64
045 = €34C53 + CeaCsp

046 = Cea 1 C34C53C65

0;;6 = Cs6

056 = Cé5

(8)

The identifiability matrices in Fig. 8a can be generated
according to the identifiability equations above, and
these identifiability matrices are then reduced following
the process shown in Fig. 8b. Finally, the reduction re-
sults in Fig. 8c are obtained, from which we can tell that
the two matrices associated with o, and o046 become
empty and are labelled as eliminated. This observation
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suggests that there exist two redundant identifiability
equations. Also, one can tell from Fig. 8c that all the
other matrices have only one row with one “1” element.
Therefore, all model parameters are globally identifiable
despite the existence of a latent variable. This example
model thus illustrates the capability of the proposed ap-
proach handling models with latent variables.

Applications to real biological networks

Numerous biological networks can be found in a variety
of databases or knowledge repositories [50, 51]; limited
by resources, here we only consider a subnetwork struc-
ture of the within-host influenza virus life cycle as an ap-
plication example. More specifically, influenza A virus
(IAV) can infect multiple species including birds and hu-
man, and it has long been a major threat to public health
by causing seasonal epidemics or sporadic pandemics
[52]. A systematic understanding of IAV infection and
immune response mechanisms is thus of significant sci-
entific interest nowadays. For this purpose, a compre-
hensive map of the influenza virus life cycle together
with molecular-level host responses has been previously
constructed from hundreds of related publications by
Matsuoka et al. [53], including several critical network
modules like virus entry, virus replication and transcrip-
tion, post-translational processing, transportation of
virus proteins, and packaging and budding. Here we
choose the subnetwork of virus replication, to which
particular attention has been paid by many previous ex-
perimental studies [54—57].

However, influenza A virus replication is a complex
process, involving many different biomolecules. It is
therefore usually infeasible for one single experimental
study to observe all the components and their interac-
tions simultaneously, leading to the presence of latent
variables. In addition, such complex molecular interac-
tions cannot always be described by a directed acyclic
graph due to the existence of, e.g., feedback loops.
Therefore, we consider the IAV replication network
module as a suitable example of cyclic graphical models

Fig. 7 A mixed graph with feedback loops and one latent variable

v
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Fig. 8 The reduction process of Example 2. The left arrow means that the left matrices are reduced by the right matrices. a The original
identifiability matrices; b The reduction process; ¢ The reduction results

with latent variables. We thus derived the mixed graph
in Fig. 9a from Matsuoka’s work [53], which contains 22
nodes, 30 edges, and one cycle. The 5 pre-selected latent
variables are labelled in red, and the observed nodes are
in green. After applying the proposed algorithm to this
network structure, the structure identifiability analysis
result is visualized in Fig. 9b, where 16 globally identifi-
able edge coefficients are in green, 6 locally identifiable
edge coefficients in blue, and 8 unidentifiable edge coef-
ficients in red.

From the results in Fig. 9b, we can also tell that local
network topological structures may have an important
effect on parameter identifiability. For example, the NP
inhibitor node has an in-degree 0 and is unobserved,
which is the direct reason why all the edges starting
from such a node are unidentifiable. In addition, both
the cRNA and cRNP nodes have a comparatively high
total degree (an in-degree 4 and an out-degree 1 for both
nodes); however, the cRNP node is unobserved such that
all the edges connected with it are unidentifiable, while

the four incoming edges to the cRNA nodes are globally
identifiable. The implication of such observations on ex-
perimental design is that, the nodes with an in-degree or
out-degree 0 and the nodes with a high total degree
(e.g., hub genes) are suggested to be experimentally ob-
served to reduce the identifiability problem.

Conclusions

In this study, we proposed a novel method for structural
identifiability analysis of cyclic graphical models with ex-
plicit latent variables. Briefly, to deal with a broader
range of network structures, the Wright’s path coeffi-
cient method is adapted to generate the identifiability
equations and particular attention has been paid to cyc-
lic mixed graphs (as well as the multigraph case, see
Benchmark Model 5 in Additional file 3) with explicit la-
tent variables. To achieve high computing efficiency, the
identifiability equations are converted to binary identifia-
bility matrices and the necessary strategies have been de-
veloped for matrix reduction and regrouping. Parameter
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(a) The mixed graph.

and the unidentifiable coefficients are in red

(b) The analysis result.

Fig. 9 Identifiability analysis of the influenza A virus replication module. The read nodes are unobserved variables and the green nodes are
observed variables in both a and b. In b, the globally identifiable edge coefficients are in green, the locally identifiable coefficients are in blue,

identifiability can then be verified at the single param-
eter level based on the reduced and grouped identifiabil-
ity matrices after a connection between the number of
non-zero matrix elements and the theoretical work of
Garcia and Li. The validity of the proposed approach
was theoretically justified and further verified using
existing benchmark models. In addition, the proposed
approach was applied to a real network structure for in-
fluenza A virus replication to gain insights into experi-
mental design.

In summary, this study provides a basis for efficient
model refinement and informative experiment design,
and thus may facilitate investigators to expedite our
understanding of network structure and interaction
mechanisms in complex biological systems. However,
we recognize that many real biological networks are
high-dimensional with complex nonlinear interactions.
Therefore, the proposed approach will need to be ex-
tended to deal with more realistic problems in the
future.
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Additional file 1: Identifiability Preservation by Matrix Reduction. This
file contains the theoretical justification for the proposed identifiability
matrix reduction operations. (PDF 92 kb)

Additional file 2: Proof of Theorem 1. This file includes the details of
theoretical derivation of Theorem 1. (PDF 62 kb)
Additional file 3: Validation Using Benchmark Models. This file contains

5 benchmark models selected from related literature for verifying the
validity of the proposed method. (PDF 100 kb)
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