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Abstract: A high-fat diet (HFD) is widely recognized as a significant modifiable risk for insulin
resistance, inflammation, Type 2 diabetes, atherosclerosis and other metabolic diseases. However, the
biological mechanism responsible for key metabolic disorders in the PAT of rabbits subject to HFD
remains unclear. Here, untargeted metabolomics (LC-MS/MS) combined with liquid chromatography
(LC) and high-resolution mass spectrometry (MS) were used to evaluate PAT metabolic changes.
Histological observations showed that the adipocytes cells and density of PAT were significantly
increased in HFD rabbits. Our study revealed 206 differential metabolites (21 up-regulated and 185
down-regulated); 47 differential metabolites (13 up-regulated and 34 down-regulated), comprising
mainly phospholipids, fatty acids, steroid hormones and amino acids, were chosen as potential
biomarkers to help explain metabolic disorders caused by HFD. These metabolites were mainly
associated with the biosynthesis of unsaturated fatty acids, the arachidonic acid metabolic pathway,
the ovarian steroidogenesis pathway, and the platelet activation pathway. Our study revealed that a
HFD caused significant lipometabolic disorders. These metabolites may inhibit oxygen respiration
by increasing the adipocytes cells and density, cause mitochondrial and endoplasmic reticulum
dysfunction, produce inflammation, and finally lead to insulin resistance, thus increasing the risk of
Type 2 diabetes, atherosclerosis, and other metabolic syndromes.

Keywords: high-fat diet; lipometabolic; metabolomics; perirenal adipose tissue (PAT); rabbit

1. Introduction

In recent years, the occurrence rate of obesity has fleetly increased, which poses a risk
for many medical diseases, causing concern for many public and health-related profession-
als. Obesity is a serious medical, social, and economic problem that has caused millions of
disabilities, concomitant diseases, and deaths [1,2]. The prevalence of obesity in humans is
widespread across all ages and both sexes and can be attributed to the interaction between
the environment and physiological factors [3,4]. Nowadays, the universality of a HFD is
one of the major contributors to the development of obesity. Moreover, many analyses
across various species (rats, mice, and pigs) have indicated that HFD is associated with
multiple metabolic syndromes, such as insulin resistance, Type 2 diabetes, cardiovascular
disease, fatty liver, hypertension, Alzheimer’s disease, and cancer [5–12]. PAT is a kind
of white adipose tissue that supports triglyceride (TG) storage for energy demands and
endocrine function. Broadly, studies have revealed that PAT plays a significant role in
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controlling lipid mobilization and reproductive function as well as modulating multiple
metabolic pathways [13,14]. Accumulated evidence shows that the main mechanisms lead-
ing to these metabolic diseases include endoplasmic reticulum stress and mitochondrial
dysfunction [15], excessive accumulation of metabolites in adipose tissue, imbalance of en-
ergy supply and metabolic homeostasis [16], reduction of reverse cholesterol transport [17],
aggravation of inflammation and reduction of insulin sensitivity [18]. Above all, one of the
most significant and destructive complications is abnormal lipid metabolism, which will
definitely worsen in the future [19].

With the popularity of metabolite research, the detection methods of metabolites have
also been innovated. Metabonomics is usually used as a tool to discover biomarkers, which
can analyze metabolites in biological fluids, tissues, and cells [20]. Moreover, untargeted
metabolomics analysis is a kind of metabonomics that can detect and analyze all small
molecule metabolites simultaneously without bias. Untargeted metabolomics analysis
can evaluate metabolites in detail, explain the categories of metabolites, and examine
the relationship between related metabolites in multiple ways [21]. Metabolites maintain
homeostasis in response to adverse biological responses. Previous studies have also
shown that the use of untargeted metabolomics analysis provides a basis for metabolic
syndrome in HFD-fed rats [22,23]. Therefore, untargeted metabolomics is used to identify
the phenotype-related metabolites and metabolic pathways to explain the specific functions
of metabolites and to understand the physiological effects.

Rabbits are economically important domestic animals raised primarily as a source of
animal protein, more recently used as a practical model for obesity-related studies [24]. A
previous study reported that the subcutaneous adipose tissue of HFD-fed New Zealand
white rabbits after 5 or 10 weeks plays a significant role in obesity-associated systemic low-
grade inflammation [25]. Additionally, there was a study that evaluated changes in blood
vessel function, using a HFD-rabbit model [26]. However, the overall metabolic change of
PAT in rabbits fed a HFD has yet to be elucidated. Thus, to gain further understanding of
the molecular consequences of obesity, we investigated the metabolic change in PAT from
the obese rabbit induced by a HFD by using untargeted metabolomics.

2. Materials and Methods
2.1. Ethics Statement

This study was approved by and conducted in strict accordance with the ethical
standards of the Institutional Animal Care and Use Committee of the College of Animal
Science and Technology, Sichuan Agricultural University, Sichuan, China.

2.2. Animals and Experimental Design

A total of 16 female Tianfu black rabbits (35 days of age) at the teaching farm of
the Sichuan Agricultural University were randomly divided into two groups: a control
group fed a SND (n = 8) and an experimental group fed a HFD (SND plus 10% lard, n = 8).
Detailed information on the feeding procedures can be found in a previous study [27].
Briefly, rabbits from both groups were fed twice a day with free access to water and under a
light/dark cycle of 12 h per day. The room temperature was about 22 to 26 ◦C. According to
the previous research method, the animals were classified as obese [27]. In short, the body
weight, body length, bust length and adipose tissue weight were used as the criteria for
selecting obese rabbits. After eliminating the substandard rabbits, 6 rabbits were selected
from the HFD (n = 6) and SND (n = 6) groups, respectively, for sampling. After being fed
for 5 weeks, the selected rabbits were humanely slaughtered by electrical stunning with
exsanguinations for sampling. The rabbit PAT samples were rapidly collected after rabbits
were euthanized and stored in Eppendorf tubes at −80 ◦C for subsequent analysis.

2.3. Histological Examination

In order to examine the histological changes of PAT, selected rabbits were humanely
slaughtered, and PAT was stained with hematoxylin-eosin. In brief, the tissue samples
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were fixed with a 10% neutral formaldehyde fixator for about 24 h and then washed with
clean water. After that, the tissue samples were dehydrated, embedded in paraffin, and
stained with hematoxylin-eosin. Then, the PAT sections (6 to 8 µm) were collected using a
microtome (RM2235, Leica, Nussloch, Germany). Furthermore, an alternative microscope
(DM1000, Leica, Nussloch, Germany) was used to capture images at a 200 × field of view.
In the end, PAT slices of rabbits from the two groups were analyzed by ImageJ software
(National Institutes of Health). We used ImageJ (available at https://imagej.nih.gov/ij/
accessed on 22 July 2021) to quantitatively analyze the staining sections of perirenal adipose
tissue in HFD and SND groups, respectively. Briefly, we calculated the PAT cells with more
than 4.38 pixels, and calculated the 5 parts (upper, lower, left, right and central regions) of
each staining section. Six cells were randomly selected from each region, with a total of
30 cells [28]. Finally, the standard error of mean was calculated, and the unpaired t-test
was used to compare the differences of PAT between HFD and SND.

2.4. Sample Preparation

Approximately 100 mg of the PAT sample from each rabbit was ground into powder
in liquid nitrogen. Homogenized samples were resuspended and vortexed by adding a
prepared mixture composed of 80% methanol and 0.1% formic acid. Then, the samples
were placed on ice and incubated for 5 min, followed by centrifugation at 15,000× g and
4 ◦C for 5 min. The methanol concentration of the supernatants was reduced to 53% by
LC-MS/MS grade water. After the samples were transferred to a new Eppendorf tube,
they were centrifuged at 15,000× g and 4 ◦C for 10 min. Lastly, the supernatants were
incorporated into the LC-MS/MS system to conduct the LC-MS/MS analysis [29].

2.5. Ultra-High Performance Liquid Chromatography-Tandem Mass Spectrometry
(UHPLC-MS/MS) Analysis

Chromatographic separation of differential metabolites was accomplished by injecting
PAT samples into a Hypesil Gold HPLC column (2.1mm× 100 mm, 1.9 µm) (Thermo Fisher,
Waltham, MA, USA) using a Vanquish UHPLC System (Thermo Fisher, Bremen, Germany)
coupled with a Q Exactive HF-X Hybrid Quadrupole-Orbitrap Mass Spectrometer (Thermo
Fisher, Germany) located at Novogene Co., Ltd. (Beijing, China). In detail, the Hypesil
Gold HPLC column was kept at 40 ◦C with a flow rate of 0.2 mL/min using a 17 min linear
gradient. The eluent B (Methanol) was the same for both positive and negative polarity
modes. However, the eluent A differed for the positive (0.1% FA in Water) and negative
(5 mM ammonium acetate, pH 9.0) polarity modes. The solvent gradient was set as follows:
2% B, 1.5 min; 2 to 100% B, 12.0 min; 100% B, 14.0 min; 100 to 2% B, 14.1 min; 2% B, 17 min.
The Q Exactive HF-X Hybrid Quadrupole-Orbitrap Mass Spectrometer was operated in
both positive and negative electron spray ionization (ESI+)/(ESI−) modes with a spray
voltage of 3.2 kV. Moreover, the settings were 320 ◦C for the capillary temperature, 40 arb
for the sheath gas flow rate, and 10 arb for the aux flow rate.

2.6. Data Processing and Analysis

The raw data files generated by UHPLC-MS/MS were processed with Compound
Discoverer 3.1 (CD 3.1, Thermo Fisher) to determine the peak value for each metabolite.
The detailed parameters were set as follows: (a) the retention time tolerance was 0.2 min;
(b) the actual mass tolerance was 5 ppm; (c) the signal intensity tolerance was 30%; (d)
the signal ratio was 3; and (e) the minimum intensity was 100,000. Then, the peak values
were matched with the mzCloud (https://www.mzcloud.org/ accessed on 24 August
2020), mzVault, and MassList databases to obtain the exact and relative quantitative results.
To better observe the inter-group distributions and otherness, the program metaX was
used for PCA and PLS-DA. The quality of the PLS-DA models was assessed, using R2X,
R2Y, and Q2. R2X and R2Y are fractions of sum of squares explained by a given principal
component. Q2 represents the predictive ability of the PLS-DA model. Permutation tests
with 200 permutations were used to validate the models.

https://imagej.nih.gov/ij/
https://www.mzcloud.org/
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2.7. Identification and Analysis of Metabolites

Differently expressed metabolites were identified based on the value of VIP, the p-
value, and fold change (FC). In detail, the metabolites with variable importance in projection
(VIP) > 1, p-value < 0.05, and FC ≥ 2 or FC ≤ 0.5 were considered to be differential metabo-
lites. Moreover, volcano plots were used to filter metabolites of interest, using log2 (FC)
and -log10 (p-value). Differential metabolites were annotated with the Human Metabolome
Database (HMDB, https://hmdb.ca/metabolites, accessed on 24 August 2020), and LIPID
MAPS (http://www.lipidmaps.org/ accessed on 24 August 2020) databases, respectively,
to obtain a systematized overview. The differential metabolites-related metabolic pathways
and physiological functions were explored by using the Kyoto Encyclopedia of Genes
and Genomes (KEGG) database (https://www.genome.jp/kegg/pathway.html, accessed
on 24 August 2020). A differential metabolic pathway was considered to be significantly
enriched when the observed frequency of a metabolite (x/n) > expected frequency of a
metabolite (y/n), and p value < 0.05. Clustering heat maps were plotted with R package
Pheatmap (https://cran.r-project.org/web/packages/pheatmap/pheatmap.pdf, accessed
on 24 August 2020).

2.8. Statistical Analysis

In this study, statistical software available in R (R version R-3.4.3) (MathSoft, Auck-
land, New Zealand), Python (Python 2.7.6 version) (The Python Software Foundation,
Amsterdam, The Netherlands) and CentOS Linux (CentOS release 6.6) (Ctrl IQ) were used
to analyze the metabolic data. A univariate t-test was applied to calculate the statistical
significance, and only p-values < 0.05 were considered statistically significant. The p values
were adjusted for multiple hypotheses by using the Benjamini–Hochberg procedure, con-
trolling for the false discovery rate (FDR) (https://cran.r-project.org, accessed on 30 July
2021).

3. Results
3.1. PAT Histological Observations

The hematoxylin-eosin-stained PAT samples in the SND and HFD groups showed
a normal cell structure; however, a difference in the cell size and number was observed
(Figure 1). Compared with the SND group, the number of PAT cells in the HFD was
significantly increased (100.3 ± 1.453 vs. 77.33 ± 2.906, p = 0.0021); however, the area
of PAT cells was significantly decreased (779.45 ± 30.822 µm vs. 1759.59 ± 100.502 µm,
p < 0.0001).
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3.2. Quality Control of Metabolomics Data

The Pearson correlation coefficients between the positive and negative quality control
(QC) samples are shown in Figure S1. The Pearson correlation coefficient between the
QC samples is higher than 0.991 for both ESI+ and ESI−, indicating that the stability of
detection and quality of data are excellent. The PCA score plots show that the distributions
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of PAT metabolites from the SND and HFD groups differ (Figure 2A,B). All the PLS-DA
score plots for the SND and HFD groups (Figure 2C,D) are within the 95% confidence
interval, except for the 17th and 19th samples. Samples #17 and #19 are not within the
confidence interval. For the following analysis, these two samples are not included in the
experimental analysis. The values of the PLS-DA statistics are R2Y = 0.92 and Q2 = 0.67
for the ESI+ data, and R2Y = 0.91, Q2 = 0.66 for the ESI− data. These R2Y and Q2 values
indicate that the PAT metabolic differences between SND and HFD rabbits were quite
significant. Permutation tests were used to prevent over-fitting of the PLS-DA models.
The validation included 200 random permutation tests, which generated intercepts of R2
= 0.76 and Q2 =−0.69 for the ESI+ data and R2 = 0.68 and Q2 = −0.91 for the ESI− data
(Figure 2E,F), indicating that the PLS-DA models are credible and without over-fitting.
Thus, the PLS-DA models show an excellent predictive ability and reliability to determine
significant PAT metabolic disturbances in HFD rabbits.
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3.3. Differential Metabolites Analysis

The VIP of the first principal component of the PLS-DA model combined with the p
value was used to ascertain metabolites with differential expression in the SND and HFD
groups. The thresholds were VIP > 1.0, FC > 1.5 or FC < 0.665, and p value < 0.05 [30–32].
The value of FDR is shown in Tables S1 and S2. A total of 206 metabolites were detected,
of which 21 were up-regulated, and 185 were down-regulated (Tables S1 and S2). The
volcano maps in Figure 3A,B visually show the overall distribution of the differential
metabolites. Based on KEGG, HMDB and LIPID MAPS databases, a total of 50 metabolic
pathways were detected in the HFD group, compared with the SND group in the two
modes, of which fatty acids, phospholipids, and sterol lipids were identified as the main
metabolites (Tables S3 and S4). Then, on this basis, the metabolites chosen as potential
biomarkers to help explain metabolic disorders caused by HFD were those with VIP values
above 1 and a p value below 0.05 [33]. A total of 47 metabolites were detected, of which
13 were significantly up-regulated, and 34 were significantly down-regulated (Table 1). In
addition, hierarchical clustering analysis was conducted on the obtained metabolites of
the two groups to obtain the differences of metabolic expression patterns between and
within the same comparison group. So, the cluster heat map also showed the distribution
of differential metabolites between the HFD and SND (Figure 3C,D). These results further
illustrate that the metabolism of PAT was disturbed by HFD.

Table 1. Metabolites with significant difference were analyzed by LC-MS/MS to identify potential biomarkers of interest.

Metabolites’ Name Formula M 1 RT 2 VIP 3 Trend 4 and p Value (HFD vs. SND)

PC (2:0/16:1) C26H50NO8P 595.3491 13.322 1.563966765 ↓ **
PC (2:0/16:0) C26H52NO8P 597.36482 13.637 1.678708 ↓ *
PC (2:0/16:2) C26H48NO8P 533.312 13.083 1.257585 ↓ **
PC (7:0/8:0) C23H46NO8P 495.296 13.64 1.709003 ↓ **
PC (8:0/8:0) C24H48NO8P 509.3122 12.994 1.482654 ↓ *

PC (14:0e/3:0) C25H52NO7P 509.3481 15.092 1.797233 ↓ **
PC (14:0e/5:0) C27H56NO7P 537.3799 15.604 1.563913 ↓ **

PC (14:0e/15:0) C37H76NO7P 677.5239 15.723 1.590351 ↓ **
PC (15:1/18:2) C41H76NO8P 741.5327 16.04 1.638059 ↓ *
PC (16:0e/13:0) C37H76NO7P 660.4966 15.72 1.602117 ↓ **
PC (16:0e/20:4) C44H82NO7P 767.5806 16.279 1.665696 ↓ *
PC (16:2/18:5) C42H70NO8P 709.5431 15.675 1.384283 ↓ **
PC (17:2/22:6) C47H78NO8P 815.5423 15.998 1.250684 ↑ *
PC (18:1/18:2) C44H82NO8P 783.5737 16.245 1.218645 ↓ *
PC (18:1/19:2) C45H84NO8P 797.5907 16.194 1.176725 ↓ *
PC (18:2/19:2) C45H82NO8P 795.5781 15.76 2.130609 ↓ **
PC (18:4e/20:5) C46H76NO7P 785.5238 15.649 1.666749 ↑ **
PC (18:4e/22:6) C48H78NO7P 811.5374 15.781 1.790827 ↓ **
PC (19:2/18:4) C45H78NO8P 791.5449 16.305 1.457723 ↓ **
PC (20:2/20:3) C48H86NO8P 835.5957 15.534 1.313735 ↓ *
PC (22:3e/18:4) C48H84NO7P 817.594 15.407 1.361675 ↓ **
PC (20:3/20:3) C48H84NO8P 833.5871 15.567 1.34977 ↓ *

LPC 15:0 C23H48NO7P 481.3167 14.571 1.951213 ↓ *
LPC 19:0 C27H56NO7P 597.40091 15.577 2.003144 ↓ *

PE (2:0/16:2) C23H42NO8P 491.2647 13.081 1.33104 ↓ **
PE (5:0/13:1) C23H44NO8P 493.2803 13.564 1.864231 ↓ **
PE (2:0/18:1) C25H48NO8P 521.31072 14.223 1.958401 ↓ **

PE (17:1/18:1) C40H76NO8P 729.53193 16.438 2.004323 ↓ **
PE (18:2/18:2) C41H74NO8P 739.5142 16.165 1.086091 ↓ *
PE (18:2/20:4) C43H74NO8P 763.50059 15.487 1.856928 ↓ **
PE (20:3/20:4) C45H76NO8P 789.5234 15.926 1.857655 ↑ *

LPE 16:1 C21H42NO7P 451.2696 14.594 1.583397 ↓ **
LPE 17:0 C22H46NO7P 467.3011 14.966 1.396921 ↓ **
LPE 17:1 C22H44NO7P 465.2855 14.621 2.160675 ↓ **
LPE 20:4 C25H44NO7P 501.2857 14.407 1.723687 ↑ *
LPS 18:2 C24H44 N O9 P 521.27548 13.894 1.839273 ↑ **
LPS 18:0 C24 H48NO9 P 525.30639 14.412 1.545101 ↓ *

PG (18:2/20:4) C44H75O10P 794.51067 15.605 1.039475 ↑ *
SM(d19:1/19:0) C43H87N2O6P 758.6277 15.612 1.201017 ↑ *

Arachidonic acid C20H32O2 304.23985 14.263 1.235326 ↑ *
Adrenic acid C22H36O2 332.27124 14.649 1.732588 ↑ *

Docosapentaenoic acid C22H34O2 330.2556 15.208 2.095414 ↑ **
Docosahexaenoic acid C22H32O2 328.23993 14.209 1.90978 ↑ **

Methyltestosterone C20H30O2 302.22456 14.414 2.348698 ↑ **
2-Hydroxyestradiol C18H24O3 288.17234 10.513 1.100492 ↓ **
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Table 1. Cont.

Metabolites’ Name Formula M 1 RT 2 VIP 3 Trend 4 and p Value (HFD vs. SND)

Epitestosterone C19H28O2 288.2084 13.648 1.387 ↓ *
Cholecalciferol C27H44O 384.3388 15.714 1.61838 ↓ **

4-Pyridoxic acid C8H9NO4 183.0533 7.482 1.766454 ↓ **
L-Methionine C5H11NO2S 149.0511 1.964 1.568533 ↑ *

NOTE: 1 m: molecular weight. 2 RT: retention time. 3 VIP: the importance projection of variables is used to reflect the contribution of
quantitative value of each sample to the difference, generally, VIP > 1. 4 Trend and p value (HFD vs. SND): * p < 0.05; ** p < 0.01.
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3.4. Metabolic Pathway Analysis

To study the changed pathways induced by HFD, an exhaustive KEGG pathway
analysis was conducted. Significance was ascertained, using a hypergeometric test with a
threshold p value ≤ 0.05 to filter out pathways with p values higher than 0.05. In detail, the
major identified metabolic pathways were platelet activation, arachidonic acid metabolism,
ovarian steroidogenesis, biosynthesis of unsaturated fatty acids, ferroptosis, and vitamin
B6 metabolism (Tables S3 and S4). The top 20 signaling pathways are shown in the positive
(Figure 4A) and negative (Figure 4B) KEGG enrichment plots obtained with MetaboAnalyst.
Among these pathways, the vitamin B6 metabolic signaling pathway, arachidonic acid
metabolic pathway, biosynthesis of unsaturated fatty acids, platelet activation, serotonergic
synapse, ovarian steroidogenesis, and ferroptosis were highly enriched in the HFD rabbit
group. Given that PAT is an organ for lipid storage and metabolism, we picked some
pathways associated with the lipid cycle for a more detailed analysis of the metabolites
(Figure 4C). These metabolites are mainly phospholipids, fatty acids, steroid hormones, and
L-methionine, implying that these molecules may be the key molecules in the development
of obesity.
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4. Discussion

Feeding a HFD is the most common method for animal models of obesity, thus
HFD continues to be an indispensable method for discovering mechanisms of metabolic
syndromes [34]. Similarly, untargeted metabolomics, an effective method to measure
metabolites, plays an important role in understanding the physiological functions of
metabolites and the potential causes of metabolic disorders [20].

Feeding rabbits with a HFD will result in damage to the normal function of PAT,
destruction of the balance between lipid formation and degradation, and overaccumulation
of lipids in PAT. The LC-MS/MS metabolite analyses showed that the PAT lipid cycle in
rabbits fed a HFD was disturbed, resulting in significant changes in the levels of phos-
pholipids, fatty acids, steroid hormones, and L-methionine (Figure 4C). Concordant with
previous studies, heat maps also showed significant differences in metabolites between
HFD-fed rats, compared with control (normal diet), and this long-term HFD diet led to the
development of obesity-related insulin resistance syndrome in rats [35]. Similarly, feeding
mice with a HFD caused a metabolic imbalance that resulted in metabolic disorders, such as
insulin resistance and nonalcoholic steatohepatitis [36]. Hematoxylin-eosin staining of PAT
showed differences between HFD and SND groups. To further confirm that there is such a
difference between them, we used ImageJ to quantify the cells of PAT. The results certainly
showed a significant increase in the number of HFD cells and a significant decrease in the
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area, indicating an increase in cell density in the HFD group, which is consistent with a
previous study on human visceral fat [37]. It may cause the absorption of oxygen in lipids
to be inhibited, resulting in an imbalance of lipid metabolites and lipid accumulation.

The symptoms of obesity closely resemble the spectrum of metabolic changes in PAT,
including phospholipids, fatty acids, steroid hormones, and amino acids, among which
phospholipids and lysophosphatides are the most abundant metabolites. Phospholipids are
the main components of plasma membranes, including phosphatidylethanolamines (PEs)
and phosphatidylcholines (PCs), which are precursors of lysophosphatidylethanolamine
(LPEs) and lysophosphatidylcholines (LysoPCs/LPCs), respectively [38]. In our study, PCs
and PEs were the most frequently found phospholipids (most of them downregulated in
HFD rabbits), whereas levels of all LPCs were reduced. Concerning the 14 PCs and 8 PEs
in PAT, some PCs, such as PC (18:4e/20:5) and PC (17:2/22:6), increased in HFD rabbits,
which was similar to a previous study in humans, where some PCs were shown to be
significantly higher in the obese group than that in the control group [39]. The level of PE
(18:2/18:2) was lower in mice fed a HFD than for mice fed a normal diet [40], consistent
with our results. Further, the level of LPCs (LPC 15:0, LPC 19:0) decreased in rabbits
fed a HFD for 4 weeks, which was partially in agreement with a decrease in plasma in
human obesity and Type 2 diabetes [41], and a low-abundance of LPCs in the serum of
hyperlipidemic mice fed a HFD [42]. PE is methylated to PC [43]. Changes in phospholipid
levels can inhibit calcium ion transport and affect the transfer of phospholipids between
the endoplasmic reticulum (ER) and mitochondria, inducing ER stress and mitochondrial
dysfunction, which will decrease fatty acid oxidation and acetyl CoA levels [15]. Of course,
this is only the speculation made by previous studies that phospholipids may act as a bad
metabolite for the characterization of mitochondrial dysfunction. In our next experiments,
we will focus on the setting of mitochondria to further improve our research. In addition,
an imbalance in the PC/PE ratio will affect the mitochondria-associated ER membranes,
leading to an excessive accumulation of sphingomyelin (SM) in the ER, inducing the
activation of PKC, inhibiting the activity of AKT and disrupting the energy supply and
metabolic homeostasis [16]. SM is produced by group transfer in phosphatidylcholine
combined with the associated skeleton, which is closely related to sphingomyelin synthase
(SMS). A significant increase in SM may reduce reverse cholesterol transport, increasing the
risk of atherosclerosis lesions and other metabolic diseases [17]. Further, as an important
signal molecule, reduced levels of LPC combined with some cell-specific G-coupled protein
receptors can cause an increase in insulin secretion through glucose stimulation, which
will damage β cell function, leading to insulin resistance, stimulate the production of
adipocytes, and aggravate the risk of obesity and other diseases [15,44]. These are the
factors that may cause insulin resistance. The decrease in LPCs in rabbits from this study
may be related to an increase in insulin resistance; thus, LPCs could be considered as
potential biomarkers for metabolic diseases caused by obesity due to HFD. Our results
here indicate that SM levels were significantly up-regulated in the HFD, compared to the
SND rabbit groups, in agreement with reports of obesity and insulin sensitivity in obese
adult humans [45] and a study on the plasma metabolic fingerprints of atherosclerosis
rabbits [46]. These results suggest that changes in phospholipids levels may reduce insulin
sensitivity, lead to insulin resistance, and increase the risk of atherosclerosis.

Arachidonic acid (ARA) and adrenic acid are omega-6 polyunsaturated fatty acids.
In the current study, levels of ARA were higher in the HFD than in the SND rabbit group,
in agreement with the significant increase in the serum ARA levels in rats fed a HFD [47].
According to our identification results, ARA was the main metabolite of the arachidonic
acid metabolic, ovarian steroidogenesis, biosynthesis of unsaturated fatty acids, and ferrop-
tosis metabolism pathways. However, a ‘one-to-many’ type of relationship was pointed
out between metabolic pathways that were annotated and identified compounds. ARA
matched 18 associated metabolic pathways, which showed that at least ARA was compara-
tively important for PAT. The most important metabolic pathway for ARA in this study
was platelet activation (p < 0.01). Under normal circumstances, the release of fatty acids in
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PAT is strictly controlled to meet energy requirements. Conversely, metabolic disorders
cause an excessive release of fatty acids relative to the tissue requirements. It is widely
accepted that disturbances in the fatty acid metabolism will lead to increased inflammatory
signaling, which is a central factor in insulin resistance [18]. ARA promotes the production
of several prostaglandins, which are associated with lipopolysaccharide (LPS)-induced
inflammation [48]. It is hypothesized that the increase in ARA is associated with PAT
metabolic disorders and may induce inflammation to further produce insulin resistance.
Previous studies have shown that the concentration of body fat and adipocytokines in the
(HFD + ARA) group was significantly increased after six weeks of induction [49]. Further,
excessive levels of ARA can cause oxidative stress and activate pro-inflammatory signals
that induce endoplasmic reticulum (ER) stress, leading to insulin resistance [50,51]. Hence,
ARA can be used as an indicator of PAT metabolic disorders in obese patients consuming
HFD. Endogenous adrenal acid is produced by ARA, and it is mainly oxidized in the
peroxisome. Consistent with the results here, the plasma levels of adrenal acid were found
to be up-regulated in an adipose hepatitis model, and primarily caused by instability of
peroxidase β-oxidation [52]. Docosahexaenoic acid (DHA) and docosapentaenoic acid
(DPA) are long-chain omega-3 polyunsaturated fatty acids (PUFAs). The levels of DPA
and DHA were significantly elevated in PAT from HFD-fed rabbits, compared to SND-fed
rabbits. The higher levels of DPA and DHA in the HFD rabbit group disagreed with the
significantly lower levels of DPA and DHA in 12-week-old rats fed a HFD, relative to rats
in the control group. Further, a strong positive association existed between the reduced
levels of these two metabolites and the insulin sensitivity index [35]. A possible expla-
nation is that a higher concentration of n-3 PUFAs inhibits the release of free fatty acids
from PAT [53], which in turn inhibits the inflammatory signaling pathway and decreases
the risk of insulin resistance, thus playing a protective role. In addition, DHA and DPA
have strong anti-inflammatory effects and can activate peroxisome, thus increasing insulin
sensitivity [53,54]. The levels of DPA and DHA in the HFD rabbit group were significantly
increased, which may indicate a protective effect. Therefore, rabbits in the HFD group
may have insulin resistance and other metabolic syndromes, but they may also produce
metabolites, such as DHA and DPA, to protect them against adverse factors. However, no
free fatty acids were detected in the plasma/serum of the HFD rabbits; thus, additional
research is needed.

Steroid hormones, such as testosterone, 2-hydroxyestradiol, and epitestosterone,
were also found in this study. These hormones play vital roles in the production and
metabolic function of adipose tissue via hormone receptors. Levels of testosterone, 2-
hydroxyestradiol, and epitestosterone were significantly lower in PAT from the HFD than
the SND rabbit group. The hormone 2-hydroxyestradiol has strong inhibitory effects
on NADPH during lipid peroxidation in rat microsomes. In addition, lipid peroxides
depend on specific ions at the initial stage and are strongly inhibited by oxygen absorp-
tion [55], which may inhibit the PAT lipid metabolic pathway and cause lipid accumulation.
Changes in testosterone were the result of rats being fed HFD to induce insulin resis-
tance [56], strongly suggesting that changes in the rabbit testosterone levels are due to
rabbits being fed HFD, inducing insulin resistance. Furthermore, a study showed that
testosterone gradually increased in visceral fat rather than in subcutaneous adipose tissue
in human females [37]. This result agreed with the significantly increased adipocytes
cells and density of PAT in HFD rabbits, relative to SND rabbits. Thus, changes in the
2-hydroxyestradiol and testosterone levels in this study may have led to lipid accumulation
by increasing adipocytes cells and the density of PAT and inhibiting the absorption of
oxygen by lipid metabolism. However, the specific mechanism of steroid hormones in PAT
needs further study.

L-methionine produces methionine, and it functions not only as an essential amino
acid, but also as a physiological effector [57]. We found higher levels of L-methionine in
HFD than in SND rabbits. The methionine cycle provides methyl units for various reactions,
including methylation in lipids. The S-adenosine methionine (SAM) is used as a major
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methyl donor molecule, and it is synthesized from the essential amino acid methionine [58].
Choline, produced by phosphatidylcholine, and the subsequent substances produced by
choline oxidation, such as betaine, can not only help to adjust cell volume, but also act as
methyl donors in the homocysteine–methionine (HM) cycle, transporting excess fatty acids
to corresponding organelles for metabolism [59]. Methionine supplementation increases
the homocysteine (Hcy) concentration and is associated with vitamin B6. Therefore, in our
study, one possible explanation is the excessive accumulation of fatty acids in PAT of rabbits
fed with a HFD, and the increase in the L-methionine level, thus further increasing the
level of Hcy, and finally disturbing the HM cycle. However, previous studies have reported
that high circulating Hcy concentrations are related to an elevated risk of atherosclerosis,
steatohepatitis and lipid metabolic disturbances [60,61]. Changes in the HM cycle after
feeding lean Iberian sows with a HFD were associated with obesity-related diseases and
Type 2 diabetes [62], indicating that the higher levels of L-methionine may be related to
atherosclerotic diseases and Type 2 diabetes by affecting the HM cycle.

5. Conclusions

Histological examination and untargeted metabonomics analysis revealed that rabbits
fed a HFD exhibited PAT metabolic disorders, affecting unsaturated fatty acid synthesis,
and the arachidonic acid metabolic, ovarian steroidogenesis, and platelet activation path-
ways. Phospholipids and excessive levels of ARA may cause mitochondrial dysfunction
and inflammation, and induce ER stress, leading to insulin resistance. Steroid hormones
may inhibit oxygen absorption by increasing the adipocytes cells and density of PAT. L-
methionine may increase the risk of Type 2 diabetes and atherosclerosis by affecting the
HM cycle. Contrary to previous studies, we found significantly elevated levels of DHA
and DPA, which are inversely associated with obesity in both humans and animals. This
aspect merits further research. The metabolic changes and biomarkers identified in this
study may serve as a foundation for future therapeutic interventions against lipometabolic
disorders.
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.3390/ani11082289/s1. Figure S1: Pearson correlation coefficient between positive and negative QC
samples. The left is positive ion mode and the right is negative ion mode. Table S1: Total positive
metabolites with difference in PAT of rabbits fed either a SND (n = 6) or HFD (n = 6) was analyzed
by LC-MS/MS. Table S2: Total negative metabolites with significant difference in PAT of rabbits fed
either SND (n = 6) or HFD (n = 6) was analyzed by LC-MS/MS. Table S3: KEGG enrichment analysis
of differential positive metabolites in PAT of rabbits fed either a SND (n = 6) or HFD (n = 6). Table S4:
KEGG enrichment analysis of differential negative metabolites in PAT of rabbits fed either a SND
(n = 6) or HFD (n = 6).
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Abbreviations

PAT perirenal adipose tissue
HFD high-fat diet
SND standard normal diet
HPLC high performance liquid chromatography
MS mass spectrometry
PCA principal component analysis
PLS-DA partial least squares discriminant analysis
FC fold change
QC quality control
ARA arachidonic acid
PEs phosphatidylethanolamines
PCs phosphatidylcholines
SM sphingomyelin
SMS sphingomyelin synthase
ER endoplasmic reticulum
SAM s-adenosine methionine
SAH methyltransferase inhibitor S-adenosylhomocysteine
LPS lipopolysaccharide
DPA docosapentaenoic acid
DHA docosahexaenoic acid
PUFAs polyunsaturated fatty acids
LPEs lysophosphatidylethanolamine
LysoPCs/LPCs lysophosphatidylcholines
Hcy homocysteine
HM homocysteine–methionine
LC liquid chromatography
LC-MS/MS liquid chromatography-tandem mass spectrometry
TG triglyceride
KEGG kyotoencyclopedia of genes and genomes
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