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Multimodal medical images are useful for observing tissue structure clearly in clinical practice. To integrate multimodal in-
formation, multimodal registration is significant. /e entropy-based registration applies a structure descriptor set to replace the
original multimodal image and compute similarity to express the correlation of images. /e accuracy and converging rate of the
registration depend on this set. We propose a newmethod, logarithmic fuzzy entropy function, to compute the descriptor set. It is
obvious that the proposed method can increase the upper bound value from log(r) to log(r) +∆(r) so that a more representative
structural descriptor set is formed. /e experiment results show that our method has faster converging rate and wider quantified
range in multimodal medical images registration.

1. Introduction

Multimodal medical images are important for observing
tissue structures clearly in clinical practice, such as MRI/T1,
MRI/T2, and MRI/PD images. To integrate multimodal
information, multimodal registration is important in
practical application [1, 2].

It is hard to find relevant information on multimodal
medical images because of different weighting properties. To
solve this problem, many research works try to find the
potential relationship based on intensity value. Whereupon,
mutual information (MI) [3] has been extensively applied
for multimodal medical image registration. In 2004, Rus-
sakoff et al. used MI on medical images registration [4],
while it is sensitive on implementation decisions as well as
small convergence rate. In 2010, Loeckx et al. used condi-
tional mutual information as a new similarity measure in
nonrigid image registration [5]. However, it has an obvious
drawback in time consumption. /ere is an alternative
method to decrease the algorithmic complexity, which

simulates one modality with the other. /is needs a de-
scriptor set to inherit the structure or richness of original
modality with the other modality’s character expressed. For
example, in 2008, Wein et al. [6] registered ultrasound and
CT with the simulation of ultrasound images. And In 2013,
Xu et al. [7] registered CT image to ultrasound image with
simulating the ultrasound image, which has many objective
restrictions and the accuracy depends on manual landmark.
We are interested in a general structural representation, so
these specific approaches are not applicable. /e universal
adaptability and computational complexity seem incom-
patible. However, in 2012, Wachinger and Navab [8] pro-
posed the descriptor set based on middle-type artificial
modality. It has both general adaptability and low com-
plexity, which is the method we will improve in this article.
In the same year, Heinrich et al. computed third-type
modality by MIND descriptor set [9]. /e descriptor is
suitable for different modality-group registration. However,
it is affected by rotational variant and cannot recover strong
rotations. /e descriptor needs ability to express the
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anatomical feature presented in both modalities. In 2015,
Oktay et al. [10] presented a structural representation, which
is trained by structured decision forest, namely, Probabilistic
Edge Map (PEM)./is method lacks a certain generalization
ability, which requires manual intervention to adjust pa-
rameters and repeated training steps alone. In 2016,
Simonovsky et al. [11] applied a deep convolutional neural
network (CNN) algorithm to multimodal image registration
and optimized it with a continuous framework. /e trained
network can output the convolutional descriptor set which
can address the binary classification between aligned and
misaligned, although it causes a huge computing cost in
iteration. In 2017, Cao et al. [12] overcame the problem of
CT-MRI pelvic image registration by establishing a bidi-
rectional image synthesis. /e shortcoming of synthesis
methods is the feasibility in other image modalities, which
limits their clinical applications. In 2018, Luo et al. computed
the descriptor vector based on a novel variogram-based
outlier screening method [13]. However, it focuses on space
location relationship and loses sight of potential richness.
Most recently, in 2019, Bashiri et al. [14] expressed the
descriptor set in high dimensional space, studying potential
structures of an image through Laplacian eigenmap. Non-
linear dimensionality reduction from manifold space will
result in the loss of original potential information. Since the
registration of medical images from different modalities is
more affected by substantial intensity variations, we prefer
the method that is based on pixel intensity distribution.

1.1. Motivations and Main Contributions. In clinical appli-
cation, different modalities have different display emphases.
In this case, a universally adaptable approach has signifi-
cance in multimodal registration. An alternative method is
transferring both different modalities into third-type arti-
ficial modalities with carrying original potential informa-
tion. Wachinger and Navab computed third-type modality
by entropy [8]. A structure descriptor set was applied to
replace the original multimodal image. It has universality
and lower computation complexity. However, we found that
the above method (entropy function) is only used for
quantifying the uncertainty of patches with limited range.

We propose a logarithmic fuzzy entropy function with
wider quantified range, which increases the upper bound
value from log(r) to log(r) +∆(r). /e experimental results
show that our method has faster converging rate and wider
quantified range in multimodal medical image registration.

2. Structure Descriptor Set

Descriptor set is amedium to express substantial information of
original image such as edge, corner, texture, and gradient. In this
article, each descriptor is computed by the intensity distribution,
which is generated by a local patch. Furthermore, we find that
the descriptor contains the structure and richness information,
where richness information exists in the form of quantifying its
uncertainty, and then the structure descriptor set consists of
these descriptors. Such structure descriptor sets can assist many
image processing tasks. An accurate structure descriptor set can

express the structure and intensity distribution information,
reduce the redundant data, and improve the rate of convergence
to the extremum value of algorithm. In addition to the above
three advantages, we also transform the multimodal image into
a third-type modality simultaneously. Finally, under the same
modality, we obtain the similarity value by computing the L1
norm of two corresponding structure descriptor sets.

2.1. Entropy Image. Wachinger and Navab proposed a
structural representation based on the entropy image [8].
/e image is divided into many patches, and each patch has
its structural descriptor. Structural descriptors are applied to
form a completely new image, which are called structural
representation. In the new image, every pixel can be cal-
culated as follows:

D
I
x,l � H I | Nx,l􏼐 􏼑, (1)

where H is the entropy calculation, I is image, Nx,l is the
square neighborhood, which takes x position as centre l as
side length, and DI

x,l is structure descriptor value of Nx,l.
/is method quantifies the uncertainty value of the patch
with entropy. But the quantification range is only from 0 to
log(r), which needs to be optimized.

2.2. MIND Descriptor Set. Heinrich et al. proposed the
MIND method (morphological independent neighborhood
descriptor for multimodal registration) [9]. /e character-
istics of local self-similarity are used to describe structural
information. In this descriptor set, each pixel value is cal-
culated as follows:

MIND(I, x, r) �
1
n
exp

− Dp(I, x, x + r)

V(I, x)
􏼠 􏼡, r ∈ R, (2)

where r is the neighborhood block, D is the correlation
between the neighborhoods, and n is the normalization
constant. Each position x of image will be replaced by a
vector of size |R| when the MIND operation is performed.

3. The Method of Measurement Function

/e method proposed in this article is based on intensity
distribution. /e essence is to find a function to compute the
descriptors. Each descriptor contains the local information of
original image, such as intensity richness of local neighbor-
hood. Richness information exists in the form of quantifying
the uncertainty value of local neighborhood. Some mea-
surement functions can quantify the uncertainty of set. Buzug
et al. adopted strict convex function instead of Shannon en-
tropy [15]. Subsequently, Pluim et al. proposed F information
measure instead of the entropy value in mutual information
MI calculation [16]. Experiments showed that the registration
results of these F information measurements (strict concave
function) can imitate mutual information, and some of them
have higher precision. /ese researches prove that there are
some measurement functions that have good performance to
quantify the uncertainty set, such as entropy function in
chapter 3.1 and strict concave function in chapter 3.2.
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3.1. .e Entropy (M1). /e Shannon entropy of a random
variable “A” with a possible value “a” is defined as follows:

H(A) � − 􏽘
i∈a

P(A � i) × logP(A � i). (3)

When we calculate the variation of intensity, which
occurs in the same position, image gradient is always used
for image processing [17]. But, it depends on similarity value
and is not suitable for describing the structure detail. A more
general concept is to quantify the uncertainty content or,
analogously, the bound for a lossless compression, as stated
by Shannon’s theorem./e entropy function originates from
the field of thermodynamics at the earliest. It can measure
the uncertainty of variable information. When there are
intersections between two images, the correlation of the two
images can be calculated with I(A, B) � H(A) + H(B)−

H(A, B). /e above theory is derived from the mutual in-
formation MI algorithm [4].

Shannon pointed out that the measurement function of
uncertainty should satisfy the following three prior conditions:

(1) Continuity condition: f(p1, p2, . . . , pk) should be a
continuity function of (p1, p2, . . . , pk).

(2) Monotonicity: under the equal probability f(1/r,

1/r, . . . , 1/r)� g(r). g(r) should be the increasing
function of r.

(3) Additivity condition: when the value of a random
variable is obtained from multiple trials rather than
one trial, the uncertainty of the random variable in
each experiment should be additive.

Condition 1 and 2 mean that the function must have the
ability to quantify the uncertainty of the information.
Condition 3 is used for multiple information sources. For
example, we measure the occurrence probability of each
event in set X as follows: (p1, p2, . . . , pn). /e probability of
each event in set Y is as follows: (q1, q2, . . . , qm). We statistic
the entropy of the joint information source X, and Y is equal
to the sum of the entropy of the information sources X and
Y. H(XY) � H(X) + H(Y).

Hnm p1q1, p1q2, . . . , p1qm, p2q1, . . . , pnqm( 􏼁

� Hn p1, p2, . . . , pn( 􏼁 + Hm q1, q2, . . . , qm( 􏼁,

􏽘

n

i�1
pi � 1,

􏽘

m

j�1
qj � 1,

􏽘

n

i�1
􏽘

m

j�1
piqj � 1.

(4)

/e purpose of this article is simply to find a function
that can count the uncertainty of a patch (i.e., satisfy con-
ditions 1 and 2). So, it is not necessary to count the joint
uncertainty between any patches.

Entropy is not the only function that can describe the
uncertainty of information. Wierman studied the uncertainty
measure of information entropy under a rough set [18]. Düntsch

andGediga studied the problembased on knowledge granularity
measurement [19]. Yumin et al. proposed several uncertainty
measures of neighborhood granule, which had good perfor-
mance in neighborhood systems [20]. Huang and Wen found
that the strict concave function can also calculate the uncertainty
of the information and discussed the relationship between the
entropy and strict concave function [21].Wei et al. discussed the
uncertaintymetric based on fuzzy entropy systematically [22]. In
this article, we have introduced three other strict concave
functions for the coming experiment (see 3.2 for details).

3.2. Strict Concave Function. If function f(x) is defined in the
interval I, there are two points x1 and x2 in I. For any λ∈(0, 1)
it has

f λx1 +(1 − λ) x2( 􏼁 > λf x1( 􏼁 +(1 − λ)f x2( 􏼁. (5)

According to the definition and properties of strict
concave functions, we propose three functions:

(1) f1(x) � − [x log x +(1 − x)log(1 − x)], x ∈ (0, 1],

assign 0 × log 0 ≔ 0
(2) f2(x) � x∗ exp(1 − x) + (1 − x) ∗ exp(x) − 1,

x ∈ (0, 1]

(3) f3(x) � x/(1 + x) − x/2, x ∈ (0, 1]

f1(x) and f2(x) are fuzzy entropy in the strictly concave
function. f3(x) is just a strictly concave function rather than a
fuzzy entropy function. f1 function was presented by De
et al. and called logarithmic fuzzy entropy function [23]. f2
function was presented by Pal NR et al. and called expo-
nential fuzzy entropy function [24]. /e images of four
functions are shown in Figure 1.

3.3. From Entropy Function to Strict Concave Function

Theorem 1 (see [25]). .e intensity value xi i ∈ 1, 2,{

3, . . . , r}. According to the definition of entropy function, its
range is 0≤H(A) ≤ log(r).For certain i � [1, r], if P(xi) � 1,
the minimum H(A) � 0. For all i � [1, r], if P(xi) � 1/r,
then maximum H(A) � log(r).

/eorem 1 illustrates that the entropy function can
distinguish the dispersion of the probability distribution. For
example, a monochrome image contains the least amount of
information. And its intensity probability is only distributed
at one point, which proves that the set (i.e., image) contains
the smallest uncertainty of information. So, the minimum of
entropy is 0. We make the hypothesis that there are 256 gray
levels (r� 256) in the image. Besides, the number of pixels in
any gray level is equal, and the gray probability distribution
of image satisfies the uniform distribution. At this time, the
set (i.e., the image) contains the largest information un-
certainty, and the maximum of entropy is log(256).

Theorem 2 (see [15]). If f(x) is a differentiable strict concave
function, then f(x) has the generalized subadditivity. When
∀x1, x2, θ ∈ R+ and 0< θ≤ x1 ≤x2, the following inequality is
established:
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f x1 − θ( 􏼁 + f x2 + θ( 􏼁<f x1( 􏼁 + f x2( 􏼁, (6)

the variable x in the function f(x) represents the probability in
medical image registration, so x ∈ [0, 1], 􏽐 xi

​ � 1, i ∈ 1, 2{ };

0≤x1 − θ< x1 ∩x2 < x2 + θ ≤ 1; formula (6) shows that
f(x1) + f(x2) has the maximum value at x1 � x2 � 1/2 and
minimum value at x1 � 0, x2 � 1. So, f(x1) + f(x2) can
express the measure of the probability distribution. .eorem 3
is obtained when the two sums of the above strictly concave
functions are generalized to the sum of the r terms.

Theorem 3. If the function f(x) has the strict generalized
subadditivity, xi(i � 1, 2 . . . , n) indicates the probability of gray
value (i) in the image, and 􏽐

n
i�1xi � 1. .en uncertainty

measurement M � 􏽐
n
i�1f(xi) can get the maximum value at

xi � 1/n, (x1 � x2 � xi � · · · � xn) and minimum value at
xi � 1, i ∈ 1, 2, 3 . . . , n{ }.

/eorem 2 and /eorem 3 illustrate that the strict concave
function can discriminate the probability distribution.When the
histogram of the probability distribution is closer to a uniform
distribution, the measured value of the strict concave function is
the largest; if the distribution is concentrated on an individual
point, the measure of the strict concave function is the smallest.

3.4. Advantage of Logarithmic Fuzzy Entropy Function.
/is new function improves the performance by extending
the quantification range of patch. /rough mathematical
derivation, Wachinger and Navab used entropy to quantify a
single patch, the upper bound is log(r) [8]. However, log-
arithmic fuzzy entropy function has better symmetry, and it
can increase the upper bound from log(r) to log(r) + Δ(r),
where r � min(l2, 2n) is the variety degree in patch; l is the
side length of patch; n is the bit depth of image; Δ(r) is
monotone increasing function of r. In most situation, the
magnitude of l2 and 2n is depending on the requirement of

performance. No matter in which situation, logarithmic
fuzzy entropy function has good performance in quantifying
the uncertainty of the patch. Experiments 5.2 and 5.3 show
that logarithmic fuzzy entropy function brings faster con-
vergence rate than entropy in multimodal registration, and
the convergence rate will increase as r increases.

Logarithmic fuzzy entropy function can bring a more
representative structure descriptor set. First of all, we need
assume that when probability p � 1 in logarithmic fuzzy
entropy function, namely, M2(1) � 0 × log 0. /is situation
means the patch we calculated is a monochrome patch, so we
assign 0 × log 0 ≔ 0. /e medical image is stored by two
bytes per pixel and the bit depth is n (n≤ 16), so the variety
degree of the patch r � min(l2, 2n). When probabilities of
intensity p1 � p2 � · · · � pr � 1/r, the uncertainty value of
patch can reach the upper bound. We make a comparison
among the entropy function (M1), logarithmic fuzzy en-
tropy function (M2), exponential fuzzy entropy function
(M3), and strict concave function (M4) in Table 1.

We compare the rate of two functions tending to infinity:

lim
r⟶+∞

log(r)

log(r) +(r − 1)log(r/r − 1)
� 0,

r � 2n
, n � 0, 1, 2, . . .( 􏼁,

(7)

lim
r⟶+∞
Δ(r) � lim

r⟶+∞
B2(r) − B1(r)

� lim
r⟶+∞

(r − 1)log
r

r − 1
􏼒 􏼓 � 1,

r � 2n
, n � 0, 1, 2, . . .( 􏼁.

(8)
/e curve diagram is showed in Figure 2. /ere are no

much differences between the two function curves when r is
less than 256. But in medical image, r is more than 256. /e
Δ(r) becomes more bigger as variety degree r (i.e., r � 2n)
increases; however, that difference value Δ(r) will converge at
1 as shown in formula (8). /e larger upper bound brings the
wider quantification range, for example, in 256 gray-scale
images, the M2 can increase 18% quantification range than
M1. /us, we can compute more representative structure
descriptor set under logarithmic fuzzy entropy function (M2).

/eoretically, logarithmic fuzzy entropy function M2 can
compute more representative structure descriptor set because
of the larger quantification upper bound. But, the upper bound
function B3 and B4 converge at 2.705 and 0.496 early. /at
means before the convergence, M3 and M4 can quantify the
uncertainty of the image, but when r approaches the value of
convergence, the upper bound cannot increase as r increases.

4. Experiment Process

Figure 3 shows the process of the experiment, where we use
L1 norm to calculate S. /e similarity equation can be ab-
stracted as follows:

S � MAD(A, T(B)). (9)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

Figure 1: Yellow curve: y� x/(1 + x) − x/2; blue curve: y� − xlog(x);
purple curve: y� − [xlog(x) + (1 − x)log(1 − x)]; orange curve:
y� x∗ exp(1 − x) + (1 − x)exp(x) − 1.

4 Computational and Mathematical Methods in Medicine



/e most similarity status of images A and B is found by
using the spatial transformation Tand the “MAD” similarity
is measured by using the L1 norm. Our target is to find the
structure descriptor set DA, DB to replace A and B. /e
similarity equation is converted to

S � MAD D
A

, D
T(B)

􏼐 􏼑. (10)

4.1. Calculate Descriptor Set. A patch Nx,l is formed by
taking pixel x as a centre and l as the side length. Taking
Figure 4 as an example, patch Y has 81 pixels and the side
length l equals 9. We statistic the intensity histogram and
substitute the probability of intensity value into four strict
concave functions.

Table 1: Upper bound table for 4 strict concave functions.

Function Upper bound B(r⟶∞)

M1(pi) � 􏽐rpilogpi B1(r) � log(r) +∞
M2(pi) � 􏽐r − [pilogpi + (1 − pi)log(1 − pi)] B2(r) � log(r) + (r − 1)logr/r − 1 +∞
M3(pi) � 􏽐r[pi exp(1 − pi) + (1 − pi)exp(pi) − 1] B3(r) � exp(r − 1/r) + (r − 1)exp(1/r) − r 2.705
M4(pi) � 􏽐r[pi/1 + pi − pi/2] B4(r) � r/r + 1 − 1/2 0.496
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Figure 2: Upper bound function curve. Blue: B1(r); orange: B2(r); green: B3(r); cyan: B4(r), r is variety degree.

L1 norm similarity

Original Descriptor

Figure 3: /is figure shows the process from the original image to registration. We use L1 norm as similarity measure.
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M1(x) � 􏽘
i

− x log(x), x ∈ (0, 1],

M2(x) � 􏽘
i

− [x log(x) +(1 − x)log(1 − x)], x ∈ (0, 1],

M3(x) � 􏽘
i

xe
1− x

+(1 − x)e
x

− 1􏽨 􏽩, x ∈ (0, 1],

M4(x) � 􏽘
i

x

1 + x
−

x

2
􏼔 􏼕, x ∈ (0, 1].

(11)

M1 is entropy function,M2 is based on logarithmic fuzzy
entropy function, M3 is based on exponential fuzzy entropy
function, and M4 is based on normal strictly concave
function. We replace (1) with the above four functions and
get (12).

D
A
x,l � Mk A | Nx,l􏼐 􏼑, k � 1, 2, 3, 4. (12)

It is available to calculate the uncertainty value of patch Y
by formula (12)./e process from original to descriptor set is
shown in Figure 5.

According to the thought of Wachinger and Navab [8],
an image is decomposed into several patches, and the
respective descriptor values of each patch are calculated by
entropy function. In this article, we want to improve the
quantification range of descriptor values by the logarithmic
fuzzy entropy function and verify the relationship between
the quantification range and the speed of convergence.
Logarithmic fuzzy entropy function and other strict con-
cave functions have already been discussed in chapters
3.2–3.4.

4.2. .eWeighting and Patch. If two patches have the same
intensity value histogram but the structure is different, it will
result in the same descriptor value such as in Figure 6. To
distinguish that situation, we quote Gaussian weights and
modified weighting (Figure 7) from the original author’s
article [8]. /ere is a spatial weighting function
ω : Nx,l⟶ R. Assigning a weight to each patch location,
the histogram update changes to

∀y ∈ Nx,l: hx[I(y)]⟵ hx[I(y)] + ω(y). (13)

Gaussian weighting formula is ω(y) � Gσ(y − c). /e
modified Gaussian weighting does not have symmetry

compared with the former. In the experiment, these two
weights improve the performance of computing de-
scriptor values. It can reflect the local specificity of
each point and, at the same time, keep the structure in-
formation in the original image. /e result is shown in
Figure 8.

5. Results and Discussion

5.1. Experimental Result of Structure Descriptor Set. We use
all the descriptor values DI

x,l to replace the x position.
Structural descriptor sets are shown in Figure 9:

In Figure 9, three different modalities are turned into a
third-type artificial modality, and under this modality, we
find that they retain the structural information of the
original image. /e structure descriptor set is computed by
four kinds of measurement function. /e first row is the
result under MRI/T1 modality; second row is the result
under MRI/T2 modality; and third row is the result under
MRI/PD modality. Each column is the set of structure de-
scriptors calculated under the corresponding measure
function. /ese structure descriptor sets are computed by
patch Nx,l, where l is 7.

In Figure 10, we alter the side length l of the patch,
where l equals 3, 7, 11, 15, and 19, to calculate the variation
of the structure descriptor set. It is found that the image
becomes blurred as the l increases, which has a similar
effect to Gaussian blur. Structurally, the smaller the l is, the
more sufficient the detail will be. However, statistically, the
smaller the l is, the duplicate values DA

x,l will get more
because the probability distribution of repetition will get
more./e bigger the l is, the more accurate the value will be
because the phenomenon of repeating the probability
distribution will be greatly reduced. We inspect pixel value
in Figure 10 T1-M1(l � 3), there are many duplicate values
in it. On the other hand, considering the influence of the
local noise, a large patch has a strong ability to suppress that
influence.

5.2. Anti-Rotation Experiment of Changing the Size of Patch
(l2 < 2n, r � l2). In Figure 11, we verify the relationship
between the patch size and convergence rate.We selected the
size of patch from 3∗ 3 to 19∗19, and the upper bound will
change as patch size changes. In this experiment, we use
entropy function (M1) and logarithmic fuzzy entropy
function (M2) simultaneously. /e dashed and solid curves
show that the rate of converging to extremum increases as
patch size increases. For each color pair (i.e., in the same
patch size), the solid curve is faster than the dashed curve. In
this experiment, we keep one image fixed, and the other one
rotates along the centre from -25 to 25 degrees. At each
angle, the similarity of the two images is measured by M1
and M2. We obtain these data sets from DICOM Library
(https://www.dicomlibrary.com). In this data set, there are
two differentMRImodalities./e image size is 512∗ 512 and
stored by 13 effective bit depths. /ere are 47 layers in each
modality, so each curve is an average result of 47 layers in
two different modalities.

Figure 4: 9× 9 patch Y.
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When l2 < 2n, according to Table 1, the upper bound of
M1 andM2 are B1(l2)<B2(l2), where each upper bound has
a monotonically increasing relationship with patch size./is
experiment proves that the M2 function has faster con-
vergence rate than M1 in the small patch. It can satisfy the
requirement of decreasing code running time with the small
patch.

5.3. Anti-Rotation Experiment of Compressing the Effective Bit
Depth (l2 > 2n, r � 2n ). In Figure 12, we verify the per-
formance of M2 function when the intensity bit depth n
decrease from 13 to 7. /is time, we select the patch size as
65 ∗ 65, because it can contain richer variety. In such a
large patch size, the upper bound will change as the bit

depth changes. According to Figure 2, the difference of the
upper bound of two functions will increase as the variety
degree increases. /at means, the M2 function’s result is
better than the M1 function’s result in a lager bit depth.
/ere are two different MRI modalities. Each modality has
47 layer images, and each layer is stored in 512 ∗ 512, two
bytes, 13 effective bits (i.e., bit depth n is 13). So, we make
an experiment about decreasing the bit depth n from 13
down to 7. /ey are equal when compressing the inten-
sities down to 1/64, 1/32, 1/16, 1/8, 1/4, and 1/2 of the
original image.

We consider one pair color as one group experiment,
which contains one dashed curve (M1 function) and one
solid curve(M2 function). /e different color means dif-
ferent bit depths. For example, the red pair is the original

M

M

Original Patch PDF Descriptor set

Figure 5: Illustration of the process of computing structure descriptor set. /e original image is divided into many patches, and the centre
and neighborhood are selected in each patch./e PDF is generated by the statistical histogram of the patch. All the grayscale probabilities of
single patch are substituted into the measure functionM to obtain uncertainty values, namely, descriptor value. Finally, the descriptor value
is stored in the corresponding location to create descriptor set [8].

(a) (b)

Figure 6: Two patches with symmetrical structure will generate duplicate values because they have the same histogram.

(a) (b)

Figure 7: (a) Gaussian weight map; (b) modified weight map.
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image, the blue pair is using 12 effective bits; the green pair is
using 11 effective bits; the cyan pair is using 10 effective bits;
the magenta pair is using 9 effective bits; the yellow pair is

using 8 effective bits, and the black pair is using 7 effective
bits to express the image. Each curve is the average result of
47 couple, and each couple images contain two different

T1 T1-M1 T1-M2 T1-M3 T1-M4

(a)

T2 T2-M1 T2-M2 T2-M3 T2-M4

(b)

PD PD-M1 PD-M2 PD-M3 PD-M4

(c)

Figure 9: Descriptor set calculated by M1, M2, M3, and M4 under multimodal (T1, T2, and PD).
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Figure 8: Accuracy error histogram obtained using three weighting methods, blue: T1-T2 data set; green: T1-PD data set; yellow: T2-PD
data set, y label is accuracy. (a) M1. (b) M2.
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modalities. We compute the similarity when rotating one
modality image along the centre of the other modality image
from − 30 degree to 30 degree.

Figure 12 shows, as the bit depth decreases (from 13 to
7), the rate of converging to extremum is going to decrease.

No matter what bit depth is, the M2 function can bring a
faster converging rate than the M1 function when quanti-
fying the uncertainty of the patch./ere are some differences
in minimum part when comparing Figure 12 with Figure 11.
/e minimum increases as the bit depth decreases, which
causes the standard deviation of M2 curve to be larger than
M1 curve, especially when the bit depth is large. /e red pair
and black pair curves prove that M2 function can quantify
the value of uncertainty in a wider range, which can bring a

T1-M1 (l = 3) T1-M1 (l = 7) T1-M1 (l = 11) T1-M1 (l = 15) T1-M1 (l = 19)

(a)

T1-M2 (l = 3) T1-M2 (l = 7) T1-M2 (l = 11) T1-M2 (l = 15) T1-M2 (l = 19)

(b)

Figure 10: /e first row computes T1 modality with M1 function, and the second row computes T1 modality with M2 function. Each
column has different patch side length, from left to right l� 3, 7, 11, 15, and 19, respectively.

M1-PatchSize = 3 ∗ 3
M2-PatchSize = 3 ∗ 3
M1-PatchSize = 7 ∗ 7
M2-PatchSize = 7 ∗ 7
M1-PatchSize = 11 ∗ 11

M2-PatchSize = 11 ∗ 11
M1-PatchSize = 15 ∗ 15
M2-PatchSize = 15 ∗ 15
M1-PatchSize = 19 ∗ 19
M2-PatchSize = 19 ∗ 19
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Figure 11: /e similarity curves under different patch sizes, red
curve l� 3, blue curve l� 7, green curve l� 11, cyan curve l� 15, and
magenta curve l� 19. l is the side length of the patch. /e dashed
curve is M1 function and solid curve is M2 function. x label is
rotation degree; y label is similarity value.

M1-13 bits depth
M2-13 bits depth
M1-12 bits depth
M2-12 bits depth
M1-11 bits depth
M2-11 bits depth
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Figure 12:/e similarity curves under the condition of different bit
depths. /e dashed curve is M1 function and solid curve is M2
function; x label is rotation degree; y label is similarity value.
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more representative structure descriptor set. /is structure
descriptor set is a key point in fast convergence.

5.4. Modality-Group Similarity Experiment on Rigid
Deformation. /e purpose of this experiment is to verify
the sensitivity of the algorithm. As slice spacing de-
creases, it is hard to distinguish adjacent slices, which
results in the deviation of many multimodal similarity
algorithms. To verify our method’s validation, we per-
formed modality-group similarity experiment with 4
different methods: (1) the proposed method in [8] using
entropy (M1 function) images, (2) the method using
Laplacian method in manifold learning [14], (3) multi-
modal registration with mutual information (MI) [4],
and (4) traditional method with mean absolute differ-
ences (MAD). /e above result of the experiment is il-
lustrated on Tables 2–4.

Finally, we evaluate the performance relationship
between these four functions under the condition of side
length l � 15, Parzen-window estimation, and modified
weighting. /is data set is from http://www.bic.mni.
mcgill.ca/brainweb/. It includes three modalities: T1,
T2, and PD./e brain MR image we selected on BrainWeb
contains 3% noise and 20% intensity nonuniformity.
/ere are 177 images in each of the three modalities, and
we search an image in one of the modalities and then
traverse all the images in the remaining modality. We
make a comparison by group experiments to reflect the
superiority of M1, M2, M3, and M4. All data sets provide
standard alignment. Each data set makes 177 times reg-
istrations under each function. /e experiment process is
shown in Figure 13.

/e blue point moves from left to right, and each
action we calculate 177x values (i.e. similarity values).
Finding the minimum value to judge that if the extreme
value position (Psearch

xext
) is corresponding to the given

original image position (Preference
xext

) or not. /e ground
truth of each data set is available on downloading the data
set. It can be our reference standard state to compare with
our experiment results. And we divide the results of
comparison into 3 levels within the permissible margin of
the error. If the position distance fulfils
Psearch

xext
− Preference

xext
� +1, it is called the right deflection; if

Psearch
xext

− Preference
xext

� − 1, it is called the left deflection; if
Psearch

xext
− Preference

xext
� 0 , it is called the zero deflection (best

match) in Figure 14. /at means, the extreme value lo-
cation should be the same or close as another modal
location. Take the PD modality no. 3 layer as an example,
we find the most similar image with PD modal from the T1
modal. If the result belongs to any one of no. 2, 3, and 4
layers, we consider these results are in the reasonable error
range. And if 2 − 3 � − 1, it deflects one layer toward the
superior; 3 − 3 � 0, it does not deflect to any layers; the last
3 − 2 �1, it deflects one layer toward the inferior. If
|Psearch

xext
− Preference

xext
|> 1, it means the registration is failed.

So, the results are shown in Tables 2–4. (R-right; L-left;

D-deflection; N-number; P-probability; Z-zero. For ex-
ample, LDN is an abbreviation for “left deflection num-
ber” SUM �RDN+ LDN+ZDN). We make 177 times
experiments by each method.

According to the result in Tables 2–4, ZDP has more
strict restriction than SUM probability. For M2, it can
reach 92.66% in ZDP part, whereas M1 can only reach
84.16%. For MI, it has a slight trend in deflection, which
makes LDN and RDN reaching 15 and 12, respectively.
For manifold learning, it has a similar result with MI in
LDN and RDN. For MAD, it is the worst method in
modality-group experiments. /e ZNP and SUM prob-
ability in MAD only reach 2.26% and 24.86%,
respectively.

In contrast to the M2 method, it can be seen that the
method has less number in RDN and LDN, which means has
stronger ability to distinguish the adjacent slices. /e result
proves that the MAD method is unsuitable to compute the
L2 norm of original multimodal image pairs, especially in
M1-M2 group.

5.5. Modality-Group Similarity Experiment on Nonrigid
Deformation. On the Brainweb databases, we deform one
image in each pair with a deformation d_g regarded as the
ground truth. /en, we estimate deformation d_c by reg-
istering the deformed image and another remained image
with different modality one. We calculate the average Eu-
clidean difference of the deformation fields τ � 1/
|Ω|􏽐x∈Ω‖dc(x) − dg(x)‖ for computing the residual error of
the registration.

In Table 5, the configuration for M2 method for de-
formable registration is: 25∗ 25 patches, 16 bins, modified
Gaussion weighting, local normalization, Parzen-window
estimation and logarithmic fuzzy entropy core function. It
can be seen that M2 has the lowest errors in 3 group reg-
istration. /e results for the M1 (entropy) images are
comparable, while the MAD does not perform well.

To test the effect of our method in nonrigid defor-
mation, we used abdominal image of MRI-T1 and MRI-T2.
/e size of image pair is 384∗ 384 and a pixel is stored as
12 bits./e result is shown in Figure 15. In eachmethod, we
use a common slice (T1 modality) as fixed image, and the
other corresponding slice is deformed by 200 manually
warping operations such as TPS or affine. In these many
fixed deformations, we use 5 methods (M1, M2, MI,
manifold ling, andMAD) to find the most similar deformed
image of their own. /eir most similar result is shown in
the Registered (T2) row of Figure 15. We can see that the
M2 method has better performance on the image fusion
from checkboard.

5.6. Translation Experiment. For the next translation ex-
periment, we compared the performance of M2 (logarithmic
fuzzy entropy function) with M1 (entropy function), MI
(mutual information), and MAD (L1 norm). /e results of
the translational experiments under four methods can be
seen in Figure 16.
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As two images are translated along the x and y axes in
[− 40, 40] degrees, the similarity values are calculated by four
methods for each degree. For M1M2 andMAD, as the result
is closer to 0, we obtained a stronger correlation between the
two images. For MI, as the result is closer to 1, we obtained
a stronger correlation between the two images. It can be
seen from the smoothness of a curve that M1 M2 and MI
are superior to MAD at stability. MI shows a very sharp
peak when the translation difference is in the interval [− 20,

20], and the system is relatively sensitive. But in [− 40, − 20]
∪ [20, 40], the method MI is not in our expectations be-
cause the similarity between the two images cannot dis-
tinguish clearly.

5.7. Running Time. Finally, we test the average time of 100
experiments during the normal registration. We select
Parzen-windows estimation, modified weighting, and

Table 2: In the T1-T2 data set, the accuracy is within 5 methods.

Method RDN LDN ZDN SUM ZDP (%) SUM probability (%)
M1 7 15 149 171 84.18 96.61
M2 2 8 164 174 92.66 98.31
MI 15 12 121 148 68.36 83.26
Manifold learning 10 11 139 160 79.66 90.40
MAD 22 18 4 44 2.26 24.86

Table 3: In the T1-PD data set, the accuracy is within 5 methods.

Method RDN LDN ZDN SUM ZDP (%) SUM probability (%)
M1 9 21 140 170 79.10 96.05
M2 3 6 166 175 93.79 98.87
MI 29 24 110 163 62.15 92.09
Manifold learning 21 18 125 164 70.62 92.66
MAD 40 72 18 130 10.17 73.45

Table 4: In the T2-PD data set, the accuracy is within 5 methods.

Method RDN LDN ZDN SUM ZDP (%) SUM probability (%)
M1 13 20 136 169 76.84 95.48
M2 3 3 169 175 95.48 98.87
MI 35 29 99 163 55.93 92.09
Manifold learning 29 29 108 166 61.02 93.78
MAD 42 71 15 128 8.47 72.32

No.1 layer No.2 layer No.3 layer No.95 layer No.97 layerNo.96 layer

No.1 layer No.95 layer No.97 layerNo.96 layer

X97X1

No.2 layer No.3 layer

Figure 13: Experiment on accuracy verification.
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11× 11 patch size at the experiment. Running time table is
shown in Table 6:

We use MatlabR2016(b) to run code in a normal con-
figuration environment (the process is from the descriptor set
to the L1 norm registration). FromTable 6, we can see the time
of M1-M4 are shorter than MAD, which proves that using
structure descriptor sets to calculate the L1 norm similarity is
more efficient than using the original image directly. Besides,
the M2 function has the shortest running time.

6. Discussion

Our proposed logarithmic fuzzy entropy function has a
certain contribution on “transform multimodal into third
modality.” In this process, the ability of quantified patch is
especially important. In Figure 2, we can see that the upper
bound of our function is greater than the original function,
especially in the large intensity level such as medical

images, which can bring us a wide range for quantification.
During the rigid and nonrigid registration experiments,
the proposed method has good performance in measuring
the similarity with an outstanding sensitivity. Regarding
3D, it is inevitable that the computational cost will increase
as the dimension increases from 2D to 3D; however, it is
not what our method worried about because it is not a
complicate job for estimating the PDF (probability density
function) of 3D patches. However, in this article, our
method is to express the richness of the 2D patch with
quantifying the uncertainty by a 1D number. From that
view, our method will lose the location information, so we
make it up by modified Gaussion weighting in chapter 4.2.
If we apply this method on 3D situation, the quantifying
process will plunge from 3D to 1D. Besides, there is no
suitable 3D weighing that can offset the location infor-
mation. So, this method does not have robustness in 3D
multimodal image registration.

T2 (reference) T1 (searched) Best match (zero deflection)

PD (reference) T1 (searched) Best match (zero deflection)

PD (reference) T2 (searched) Best match (zero deflection)

Figure 14: Optimal registration status under each data set.

Table 5: Registration errors τ in mm for various configurations for M2 method.

Sim T1-T2 T1-PD T2-PD
M1 0.52 0.61 0.58
M2 0.39 0.43 0.38
MI 0.68 0.76 0.70
Manifold learning 0.71 0.75 0.69
MAD 0.99 2.01 1.25
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Figure 15: /e experiment about one pairwise multimodal (T1-T2) image registration based on abdominal images.
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7. Conclusion

/is article focuses on using the structure descriptor sets
(third-type artificial modality) to perform the L1 norm in
multimodal registration. We propose logarithmic fuzzy
entropy function in the computing structure descriptor set.
/rough the mathematical derivation and experimental
result, this function is more suitable than entropy in

20 40200 0
–20–20 –40

0.02

0.04

0.06

0.08

(a)

0.04

20

0.06

40

0.08

200 0

0.1

–20–20
–40

(b)

0.02

0.04

20 40

0.06

200 0

0.08

–20–20
–40

(c)

0
20 40

0.05

200 0

0.1

–20–20 –40

(d)

0
20 40

0.05

200 0

0.1

–20–20
–40

(e)

0
20 40

0.05

200 0

0.1

–20–20
–40

(f )

0
20 40

0.5

200 0

1

–20–20 –40

(g)

0
20 40

0.5

200 0

1

–20–20 –40

(h)

0
20 40

0.5

200 0

1

–20–20 –40

(i)

0
20 40

20

200 0

40

–20–20
–40

(j)

100

110

20 40

120

200

130

0–20–20
–40

(k)

20

20 40

40

200 0

60

–20–20
–40

(l)

Figure 16: Plot of similarity measures for translation in the x and y directions. (a) M1, T1-T2. (b)M1, T1-PD. (c) M1, T2-PD. (d)M2, T1-T2.
(e) M2, T1-PD. (f ) M2, T2-PD. (g) MI, T1-T2. (h) MI, T1-PD. (i) MI, T2-PD. (j) MAD, T1-T2 (k) MAD, T1-PD. (l) MAD, T2-PD.

Table 6: Running time table.

Method Use normal registration framework’s time(s)
M1 0.0048
M2 0.0039
MI 0.0070
Manifold learning 0.0096
MAD 0.0672
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multimodal registration. We also tried out other two strict
concave functions such as M3 and M4, but they performed
worse because of their upper bound curve.

When we quantify the value of a patch by its intensity
distribution, the advantages of logarithmic fuzzy entropy
function are as follows:

(1) Mathematically, it can bring a larger quantification
range.

(2) Experimentally, it can bring a faster convergence rate
in similarity curve.

According to the experiments in chapter 5.4 to 5.6, our
proposed method is an effective evaluating approach in
similarity of multimodal medical images. It has the following
advantages:

(1) Inferior computational complexity, which is the
process from core function to L2 norm.

(2) Universal adaptability, which can work on any
modality pair.

(3) Higher accuracy, which has strong ability to dis-
tinguish similar slices.

/is algorithm has an obvious effect when the medical
images are stored by high effective bit depth. Because the
upper bound of quantification range is monotone, the
function of variety degree r increases. To avoid duplicated
values of different patches which have the same intensity
distribution, the patch size will be as large as possible.
However, the patch size influences not only the converging
rate of similarity value but also the running time; a large
patch can increase the running time. Ideally, we want l2 and
2n to be equal. But in practice, patch size depends on many
factors such as, original image size, effective bit depth, noise,
and requirement of running time. Whatever size it is, the
logarithmic fuzzy entropy function is a good choice in the
“transfer of multimodal into third-type modality” medical
image registration.
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