organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(Z)-1-Chloro-1-[2-(2-nitrophenyl)hydrazinylidene]propan-2-one

Rami Y. Morjan,^a Bassam A. Abu Thaher,^a Dieter Schollmeyer,^b Adel M. Awadallah^a and John M. Gardiner^c*

^aChemistry Department, Faculty of Science, Islamic University of Gaza, PO Box 108, Gaza, Palestine, ^bDepartment of Organic Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, D-55099 Mainz, Germany, and ^cManchester Institute of Biotechnology, School of Chemistry and EPS, The University of Manchester, Manchester M1 7DN, England

Correspondence e-mail: john.m.gardiner@manchester.ac.uk

Received 14 September 2012; accepted 5 December 2012

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.003 Å; disorder in main residue; R factor = 0.044; wR factor = 0.121; data-to-parameter ratio = 12.5.

The title molecule, $C_9H_8CIN_3O_3$, lies on a mirror plane. Intramolecular N-H···O and N-H···Cl hydrogen bonds occur. One of the nitro O atoms is disordered (site occupancy ratio = 0.40:0.10).

Related literature

For details of the synthesis and for the importance of hydrazonoyl halides in organic synthesis and their biological activity and metabolism, see: Awadallah *et al.* (2006, 2008); Budarina *et al.* (2007); Shawalia *et al.* (2009); Thaher *et al.* (2002).

14.1344 (10) Å

6.5420 (5) Å

11.3748 (8) Å

Experimental

Crystal data	
C ₉ H ₈ ClN ₃ O ₃	<i>a</i> =
$M_r = 241.63$	<i>b</i> =
Orthorhombic, Pnma	c =

 $V = 1051.80 (13) \text{ Å}^3$ Z = 4Mo *K*\alpha radiation

Data collection

Bruker APEXII diffractometer 6908 measured reflections 1365 independent reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.044$ 109 parameters $wR(F^2) = 0.121$ H-atom parameters constrainedS = 1.05 $\Delta \rho_{max} = 0.58 \text{ e } \text{\AA}^{-3}$ 1365 reflections $\Delta \rho_{min} = -0.28 \text{ e } \text{\AA}^{-3}$

 $\mu = 0.36 \text{ mm}^{-1}$

 $0.25 \times 0.13 \times 0.05 \text{ mm}$

1003 reflections with $I > 2\sigma(I)$

T = 173 K

 $R_{\rm int} = 0.045$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	<i>D</i> -H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots \mathbf{A}$
N10−H10· · ·Cl1	0.93	2.44	2.912 (2)	111
N10−H10· · ·O8	0.93	2.00	2.616 (3)	122

Data collection: *APEX2* (Bruker, 2006); cell refinement: *SAINT* (Bruker, 2006); data reduction: *SAINT*; program(s) used to solve structure: *SIR97* (Altomare *et al.*, 1999); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *PLATON* (Spek, 2009); software used to prepare material for publication: *PLATON*.

The authors would like to thank the Deanship of Scientific Research at the Islamic University of Gaza for their financial support to RYM, BAAT and AMA. Thanks are due to the graduate students Rasha Alsalahat and Huda Hammouda for their practical scientific contribution.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RN2108).

References

- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
- Awadallah, A. M., Seppelt, K. & Shorafa, H. (2006). Tetrahedron, 62, 7744– 7746.
- Awadallah, A. & Zahra, J. (2008). Molecules, 13, 170-176.
- Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Budarina, E. V., Dolgushina, T. S., Petrov, M. L., Labeish, N. N., Koltsov, A. A. & Belskii, K. (2007). *Russ. J. Org. Chem.* 43, 1516–1525.
- Shawalia, A. S. & Samy, N. A. (2009). *The Open Bioactive Compd J.* 2, 8–16. Sheldrick, G. M. (2008). *Acta Cryst.* A64, 112–122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Thaher, B. A., Zahra, J. A. & El-Abadelah, M. M. (2002). J. Heterocycl. Chem. **39**, 901–904.

supplementary materials

Acta Cryst. (2013). E69, o72 [doi:10.1107/S1600536812049938]

(Z)-1-Chloro-1-[2-(2-nitrophenyl)hydrazinylidene]propan-2-one

Rami Y. Morjan, Bassam A. Abu Thaher, Dieter Schollmeyer, Adel M. Awadallah and John M. Gardiner

Comment

Hydrozonyl halides are considered as an important precursor in organic synthesis. They have been used extensively as starting material for *in situ* generation of 1,3-dipoles which in turn can be reacted with a wide range of organic species to generate five and six membered heterocyclic ring compounds. The molecule has two intermolecular NH···O and NH···Cl hydrogen bonds (Table 1) and distance between the molecules is 3.2710(1) Å. The ring centers are ~2.87 Å apart. The packing is characterized by parallel molecules (perpendicular distance between the centre of gravity of the aromatic rings 3.2710(1) Å). The molecule is planar and in order to calculate the distance a plane is required to be defined through a set of atoms (phenyl rings) and the distance of any atom of the nearest symmetry related molecules to this plane is then calculated. The distance between the symmetrical related phenyl rings is 3.2710(1) Å but due to the slippage of centres of gravity of the rings (2.866 Å) there is no π - π interaction between the two rings.

Experimental

2-Nitroaniline (0.1 mol) was dissolved in cold aqueous hydrochloric acid (80 ml, 5 N). To this solution was added dropwise a solution of sodium nitrite (7.6 g, 0.1 mol) in water (25 ml) with efficient stirring at 273–278 K. Stirring was continued for 20–30 min. The resulting freshly prepared solution of 2-nitrobenzendiazonium chloride was poured into a vigorously stirred cold solution (268 K) of 3-chloroacetylacetone (13.5 g, 0.1 mol) in pyridine/ water (160 ml 1:1 v/v). Stirring was continued until a solid precipitate was formed (10–20 min.). The reaction mixture was then diluted with cold water (200 ml), the solid product formed was collected, washed several times with cold water, dried and washed with ethanol. A small amount of the product was dissolved in DMF and left at room temperature for 2 days. Yellow needle crystals were isolated, m.p. 393 K.

Refinement

Hydrogen atoms attached to carbons were placed at calculated positions with C—H = 0.95 Å (aromatic) or 0.98–0.99 Å (*sp*³ C-atom). Hydrogen atoms attached to nitrogen were located in diff. Fourier maps. All H atoms were refined in the riding-model approximation with isotropic displacement parameters (set at 1.2–1.5 times of the U_{eq} of the parent atom). The NO₂ group is disorderd where one oxygen atom just off the mirror plane has two positions with relative site occupancies set to 0.4, (O9) and 0.1 (O9B) which generate a further two positions (their mirror images) with the same occupancies.

Computing details

Data collection: *APEX2* (Bruker, 2006); cell refinement: *SAINT* (Bruker, 2006); data reduction: *SAINT* (Bruker, 2006); program(s) used to solve structure: *SIR97* (Altomare *et al.*, 1999); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *PLATON* (Spek, 2009); software used to prepare material for publication:

PLATON (Spek, 2009).

Figure 1

View of the title compound. Displacement ellipsoids are drawn at the 50% probability level. H atoms are depicted as circles of arbitrary size. Hydrogen bonds and bonds to disordered oxygen atom O9 are shown with dashed lines.

(Z)-1-Chloro-1-[2-(2-nitrophenyl)hydrazinylidene]propan-2-one

Crystal data C₉H₈ClN₃O₃ $M_r = 241.63$ Orthorhombic, *Pnma* Hall symbol: -P 2ac 2n a = 14.1344 (10) Å b = 6.5420 (5) Å c = 11.3748 (8) Å V = 1051.80 (13) Å³ Z = 4

Data collection

Bruker APEXII diffractometer Radiation source: sealed Tube Graphite monochromator CCD scan 6908 measured reflections 1365 independent reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.044$ $wR(F^2) = 0.121$ S = 1.05 F(000) = 496 $D_x = 1.526 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 1147 reflections $\theta = 2.3-25.8^{\circ}$ $\mu = 0.36 \text{ mm}^{-1}$ T = 173 KNeedle, yellow $0.25 \times 0.13 \times 0.05 \text{ mm}$

1003 reflections with $I > 2\sigma(I)$ $R_{int} = 0.045$ $\theta_{max} = 27.9^\circ, \ \theta_{min} = 2.3^\circ$ $h = -18 \rightarrow 18$ $k = -8 \rightarrow 8$ $l = -14 \rightarrow 14$

1365 reflections109 parameters0 restraintsPrimary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map	$w = 1/[\sigma^2(F_o^2) + (0.0651P)^2 + 0.198P]$ where $P = (F_o^2 + 2F_c^2)/3$
Hydrogen site location: inferred from	$(\Delta/\sigma)_{\rm max} = 0.001$
neighbouring sites	$\Delta \rho_{\rm max} = 0.58 \ {\rm e} \ {\rm \AA}^{-3}$
H-atom parameters constrained	$\Delta \rho_{\rm min} = -0.28 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Cl1	0.17306 (5)	0.2500	0.30944 (6)	0.0416 (3)	
C1	-0.00994 (17)	0.2500	0.0079 (2)	0.0227 (5)	
C2	0.02943 (17)	0.2500	-0.1054 (2)	0.0240 (5)	
C3	-0.02668 (19)	0.2500	-0.2057 (2)	0.0276 (6)	
Н3	0.0012	0.2500	-0.2798	0.033*	
C4	-0.12361 (18)	0.2500	-0.1949 (2)	0.0294 (6)	
H4	-0.1617	0.2500	-0.2616	0.035*	
C5	-0.16419 (17)	0.2500	-0.0832 (2)	0.0302 (6)	
Н5	-0.2297	0.2500	-0.0759	0.036*	
C6	-0.10892 (18)	0.2500	0.0161 (2)	0.0268 (6)	
H6	-0.1375	0.2500	0.0898	0.032*	
N7	0.13162 (16)	0.2500	-0.1243 (2)	0.0357 (6)	
08	0.18551 (13)	0.2500	-0.04010 (17)	0.0413 (5)	
O9	0.1605 (11)	0.2922 (10)	-0.2234 (15)	0.031 (9)	0.40
O9B	0.156 (5)	0.135 (13)	-0.225 (6)	0.033 (15)	0.10
N10	0.04475 (14)	0.2500	0.10920 (17)	0.0270 (5)	
H10	0.1106	0.2500	0.1091	0.040*	
N11	0.00142 (15)	0.2500	0.21389 (18)	0.0259 (5)	
C12	0.05021 (18)	0.2500	0.3081 (2)	0.0277 (6)	
C13	0.0018 (2)	0.2500	0.4244 (2)	0.0362 (7)	
O14	0.04865 (17)	0.2500	0.51438 (17)	0.0502 (6)	
C15	-0.1042 (2)	0.2500	0.4226 (3)	0.0517 (9)	
H15A	-0.1274	0.2500	0.5019	0.078*	
H15B	-0.1265	0.1302	0.3826	0.078*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0303 (4)	0.0640 (5)	0.0305 (4)	0.000	-0.0087 (3)	0.000
C1	0.0224 (12)	0.0260 (13)	0.0198 (11)	0.000	-0.0032 (9)	0.000
C2	0.0186 (11)	0.0320 (14)	0.0215 (12)	0.000	0.0008 (9)	0.000
C3	0.0321 (13)	0.0315 (14)	0.0192 (12)	0.000	0.0016 (10)	0.000

supplementary materials

C4	0.0270 (13)	0.0376 (15)	0.0236 (13)	0.000	-0.0081 (11)	0.000
C5	0.0196 (11)	0.0413 (16)	0.0297 (14)	0.000	-0.0047 (10)	0.000
C6	0.0234 (12)	0.0373 (15)	0.0197 (12)	0.000	0.0029 (10)	0.000
N7	0.0293 (12)	0.0544 (16)	0.0235 (12)	0.000	0.0018 (10)	0.000
08	0.0236 (10)	0.0659 (15)	0.0344 (11)	0.000	-0.0027 (9)	0.000
09	0.031 (2)	0.03 (3)	0.028 (2)	0.002 (5)	0.0129 (16)	0.006 (6)
O9B	0.040 (10)	0.03 (4)	0.027 (8)	-0.010 (18)	0.001 (7)	-0.016 (19)
N10	0.0214 (10)	0.0401 (13)	0.0194 (10)	0.000	-0.0004 (8)	0.000
N11	0.0265 (11)	0.0307 (12)	0.0206 (10)	0.000	0.0007 (9)	0.000
C12	0.0277 (13)	0.0352 (15)	0.0203 (13)	0.000	-0.0011 (10)	0.000
C13	0.0430 (16)	0.0457 (18)	0.0199 (12)	0.000	0.0012 (12)	0.000
014	0.0572 (14)	0.0749 (17)	0.0186 (10)	0.000	-0.0033 (10)	0.000
C15	0.0446 (18)	0.079 (3)	0.0315 (17)	0.000	0.0111 (15)	0.000

Geometric parameters (Å, °)

Cl1—C12	1.736 (3)	N7—O9	1.230 (16)	
C1—N10	1.388 (3)	N7—O9 ⁱ	1.230 (16)	
C1—C6	1.402 (3)	N7—O9B	1.42 (6)	
C1—C2	1.403 (3)	N7—O9B ⁱ	1.42 (6)	
C2—C3	1.390 (3)	O9—O9 ⁱ	0.553 (13)	
C2—N7	1.460 (3)	O9B—O9B ⁱ	1.50 (17)	
C3—C4	1.376 (4)	N10—N11	1.339 (3)	
С3—Н3	0.9300	N10—H10	0.9315	
C4—C5	1.394 (4)	N11—C12	1.275 (3)	
C4—H4	0.9300	C12—C13	1.489 (4)	
C5—C6	1.374 (3)	C13—O14	1.220 (3)	
С5—Н5	0.9300	C13—C15	1.497 (4)	
С6—Н6	0.9300	C15—H15A	0.9600	
N7—O8	1.224 (3)	C15—H15B	0.9600	
N10-C1-C6	120.0 (2)	$O8$ — $N7$ — $O9B^{i}$	119 (3)	
N10-C1-C2	122.8 (2)	O9—N7—O9B ⁱ	19 (3)	
C6—C1—C2	117.2 (2)	$O9^{i}$ —N7— $O9B^{i}$	45 (4)	
C3—C2—C1	121.8 (2)	$O9B$ — $N7$ — $O9B^i$	64 (7)	
C3—C2—N7	116.3 (2)	O8—N7—C2	120.0 (2)	
C1-C2-N7	121.8 (2)	O9—N7—C2	117.6 (8)	
C4—C3—C2	119.7 (2)	O9 ⁱ —N7—C2	117.6 (8)	
С4—С3—Н3	120.2	O9B—N7—C2	111 (2)	
С2—С3—Н3	120.2	O9B ⁱ —N7—C2	111 (2)	
C3—C4—C5	119.4 (2)	O9 ⁱ —O9—N7	77.0 (3)	
C3—C4—H4	120.3	$N7 - O9B - O9B^i$	58 (4)	
C5—C4—H4	120.3	N11—N10—C1	118.9 (2)	
C6—C5—C4	121.1 (2)	N11—N10—H10	117.3	
С6—С5—Н5	119.5	C1—N10—H10	123.8	
С4—С5—Н5	119.5	C12—N11—N10	120.0 (2)	
C5—C6—C1	120.8 (2)	N11—C12—C13	119.9 (2)	
С5—С6—Н6	119.6	N11—C12—C11	123.26 (19)	
C1C6H6	119.6	C13—C12—C11	116.89 (18)	
O8—N7—O9	120.7 (8)	O14—C13—C12	119.7 (3)	

$O8-N7-O9^{1}$	120.7 (8)	O14—C13—C15	123.7 (3)
O9—N7—O9 ⁱ	26.0 (6)	C12—C13—C15	116.6 (2)
O8—N7—O9B	119 (3)	C13—C15—H15A	109.2
O9—N7—O9B	45 (4)	C13—C15—H15B	109.6
O9 ⁱ —N7—O9B	19 (3)	H15A—C15—H15B	109.5
N10-C1-C2-C3	180.0	$C3 - C2 - N7 - O9B^{i}$	35 (4)
C_{1} C_{1} C_{2} C_{3}	-0.0	$C1$ $C2$ $N7$ $O9B^{i}$	-145(4)
10 - 1 - 2 - 10	-0.0	$O_{1}^{2} O_{2}^{2} O_{1}^{2} O_{2}^{2} O_{2$	1+3(+)
N10 - C1 - C2 - N7	-0.0	$\begin{array}{c} 000 \\$	97.9(5)
$C_0 - C_1 - C_2 - N/$	180.0	09B-N/0909	-4 (5)
C1 - C2 - C3 - C4	0.0	09B ¹ —N7—09—09 ¹	-172 (11)
N7—C2—C3—C4	180.0	$C2-N7-O9-O9^{i}$	-96.9 (3)
C2—C3—C4—C5	-0.0	08—N7—O9B—O9B ⁱ	-110 (2)
C3—C4—C5—C6	0.0	O9—N7—O9B—O9B ⁱ	-4 (6)
C4—C5—C6—C1	-0.0	O9 ⁱ —N7—O9B—O9B ⁱ	-9 (13)
N10-C1-C6-C5	180.0	C2-N7-O9B-O9B ⁱ	104 (3)
C2-C1-C6-C5	0.0	C6-C1-N10-N11	-0.0
C3—C2—N7—O8	180.0	C2-C1-N10-N11	180.0
C1-C2-N7-O8	0.0	C1—N10—N11—C12	180.0
C3—C2—N7—O9	14.7 (4)	N10-N11-C12-C13	180.0
C1-C2-N7-O9	-165.3 (4)	N10-N11-C12-Cl1	-0.0
C3-C2-N7-O9 ⁱ	-14.7 (4)	N11-C12-C13-O14	180.0
C1-C2-N7-O9 ⁱ	165.3 (4)	Cl1—C12—C13—O14	0.0
C3—C2—N7—O9B	-35 (4)	N11—C12—C13—C15	-0.0
C1—C2—N7—O9B	145 (4)	Cl1—C12—C13—C15	180.0

Symmetry code: (i) x, -y+1/2, z.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D··· A	D—H··· A
N10—H10…Cl1	0.93	2.44	2.912 (2)	111
N10—H10…O8	0.93	2.00	2.616 (3)	122