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Machine learning (ML)-workflows enable unprejudiced/robust evaluation of complex
datasets. Here, we analyzed over 490,000,000 data points to compare 10 different
ML-workflows in a large (N=11,652) training dataset of human pancreatic single-cell (sc-)
transcriptomes to identify genes associated with the presence or absence of insulin
transcript(s). Prediction accuracy/sensitivity of each ML-workflowwas tested in a separate
validation dataset (N=2,913). Ensemble ML-workflows, in particular Random Forest ML-
algorithm delivered high predictive power (AUC=0.83) and sensitivity (0.98), compared to
other algorithms. The transcripts identified through these analyses also demonstrated
significant correlation with insulin in bulk RNA-seq data from human islets. The top-10
features, (including IAPP, ADCYAP1, LDHA and SST) common to the three Ensemble ML-
workflows were significantly dysregulated in scRNA-seq datasets from Ire-1ab-/- mice that
demonstrate dedifferentiation of pancreatic b-cells in a model of type 1 diabetes (T1D) and
in pancreatic single cells from individuals with type 2 Diabetes (T2D). Our findings provide
direct comparison of ML-workflows in big data analyses, identify key elements associated
with insulin transcription and provide workflows for future analyses.

Keywords: machine-learning (ML) algorithms, insulin, diabetes, beta-cell, single-cell RNA-sequencing (scRNAseq),
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INTRODUCTION

Recent years have witnessed a surge in single-cell transcriptomic
technologies; many already generating newer data and insights to
address specific biological questions. Machine learning (ML)
algorithms offer an unbiased mathematical workflow that
facilitates the identification of complex relationships across
variables. ML workflows involve an orderly set of instructions
using automated, unbiased ‘learning’ processes usually targeted
towards developing (training) a model that can be validated in a
separate (test) dataset (1). One goal of ML algorithms is to
analyze big data to identify variables that cannot be recognized
through conventional biostatistical techniques, and enhance
development of predictive algorithms (2, 3).

Currently, several ML algorithms are available to researchers
handling big data in omics-based high content analyses. These
can be broadly divided into two categories: supervised and
unsupervised algorithms (4). Supervised methods (such as
decision tree) derive relationships between one dependent and
multiple independent variables using a training set and then
apply that knowledge in the testing set for predictive/efficacy
analysis. Unsupervised methods derive patterns/data clusters
amongst all available variables. ML algorithms have been used
to unravel patterns/clustering in high-density transcriptome
analyses (5) or to build associations (6) or for predictions in
several biological processes such as determining DNA
methylation states in single cells (7), identifying signatures of
lipid or metabolite species (8) or microRNAs (9) in predicting
transition from gestational diabetes to type 2 diabetes as well as
in genetic studies (10). There are multiple ML algorithms
available and it may present a challenge to select the most
appropriate method for a particular dataset to answer a specific
question. We, therefore, decided to compare different ML
methodologies to (i) rank different ML methods for their
performance on a large dataset (of 490,855,065 scRNA-
sequencing data points) and (ii) understand the most
important variables associated with insulin transcription.

Previous studies (11–14) from several laboratories have
identified master regulatory transcription factors that regulate
the embryonic development of insulin-producing islet b-cells.
Although transcription factor-mediated insulin transcription
regulation is a well-known mechanism during the development
of insulin-producing cells, it is also recognized that active genes
localized on different chromosomal regions can dynamically
regulate gene transcription in post-natal life (15). One
approach to identify genes associated with insulin gene
transcription is through single-cell (sc)RNA-seq-based big
data analysis.

Here, we examined the performance of 10 different ML
algorithms in a curated human pancreatic single-cell
sequencing dataset of 490,855,065 data points (N=14,565 single
cells and 33,701 expressed gene features). The aims of this study
were (i) to provide a comparative account of the predictive
potential of 10 different commonly used ML workflows
(Supplementary Table 1), and (ii) to use existing scRNA-seq
datasets in identifying genes (variables) associated with or
important for determining insulin transcript-containing cells.
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MATERIALS AND METHODS

Pancreatic Single-Cell (sc)RNA
Sequencing Datasets and Analyses
Human Pancreatic Single-Cell Sequencing Datasets
The pancreatic single-cell sequencing dataset (N=14,890) was
extracted using the Panc8 data (16) containing multiple publicly
available scRNA-seq transcriptomes (GSE84133, GSE85241, E-
MTAB-5061,GSE81076, GSE86469). The original publications
citing the listed GEO datasets (GSE84133, GSE85241, E-MTAB-
5061, GSE81076, GSE86469) add up to a total of 31 pancreas
samples across all the studies. Clinical and/or donor details are
available for 26 of these samples; seven of which were indicated
to be from donors with type 2 diabetes. The number of cell types
in the combined single cell dataset (Panc8) can be found in the
metadata of the SeuratData (version 0.2.1), using the command
“panc8@meta.data” (in R studio version 1.2.5033). This panc8
dataset contains scRNA-seq data from acinar (n=1864), activated
stellate (n=474), alpha-(n=4615), beta-(n=3679), delta-(n=1013),
ductal (n=1954), endothelial (n=296), epsilon (n=30), gamma
(n=625), macrophage (n=79), mast (n=56), quiescent stellate
(n=180) and schwann (n=25) cell transcriptomes. Analysis was
carried out by using R studio version 1.2.5033 as detailed
in SOM.

Ire1ab-/- Mouse Pancreatic Single-Cell Dataset
Single-cell RNA-seq dataset from pancreatic islets of Ire1afl/fl

(N=1,163 single-cell transcriptomes from one mouse) and
Ire1ab–/– (N=1,683 single-cell transcriptomes from two mice)
were obtained through GSE144471 (17). The b-cells (Ire1afl/fl:
830 cells; Ire1ab–/–: 816 cells) were separated from the dataset
and the expression values of selected genes were evaluated in the
b-cell population.

T2D Pancreatic Single-Cell (sc)RNA
Sequencing Dataset
Pancreatic single cell normalized read dataset of adult ND (with
no diabetes; N=4) and T2D (N=10) donors were obtained from
GSE154126 (18). The adult ND (N=296) and T2D (N=505)
insulin transcribing cells were compared and used for validation.
In this dataset, insulin-transcribing cells were identified
and defined as any single cell that contained (non-zero)
INS transcript.

Human Pancreatic Single-Cell Sequencing
Classification and Analyses
Deidentified datasets were shared with data scientists. A random
number generator function was used to allocate 80% of samples
to a training set. Analyses were carried using Python (Ver:3.4),
wherein the data was imported, transposed, edited to delete INS
and INS-IGF2 columns from the data frame and labeled (label=0
where INS=0 and label=1 where INS>0). Classifiers were
initialized and model trained using the discovery (80%) data
set. Predictive analyses were then carried out on the validation
(20%) set and the resulting accuracy metrics were saved to
compare the feature importance. Selected classifiers (Random
March 2022 | Volume 13 | Article 853863
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Forest, Gradient Boosting, Decision Tree Classifier, Logistic
Regression, Multinomial Naive Bayes Classifier, ADA Boost
Classifier, Linear Discriminant Analysis, Ridge Classifier,
KNeighbors Classifier and Linear Support Vector Classifier)
were used on the same set.

Pancreatic Islet RNA Sequencing Dataset
and Analysis
Human Pancreatic Islet Bulk RNA
Sequencing Dataset
Human pancreatic islet RNA-seq dataset was obtained from
GSE152111 (6). RNA-seq dataset contains n=66 human islet
samples, across 65 different donors with no diabetes. Two of the
66 RNA-seq samples were duplicates from the same donor and
their RNA-seq profile highly correlative (Pearson r=0.99) to each
other. The average of the duplicates of this donor was calculated
prior to analysis. Data was analyzed in DEseq values. DEseq
values are the normalized RNA-seq. DEseq compares the
different read depths between samples by estimating the
effective library size (using the estimate size factors function).
The size factor for each sample is the median raw count of a
gene’s geometric mean across all samples. DEseq normalization
involves dividing the raw count of a gene in a sample by the size
factor. The implementation of DEseq have been described
previously (19).

Pathway Analysis
To analyze enrichment for b-cell pathways, lists of pancreatic
single-cell features generated/predicted by ML algorithms
(Random forest, Gradient boosting, Decision tree classifier and
ADA Boost classifier) were compared with b cell-expressed genes
(E-GEOD-20966) using Gene Ontology (GO) over-
representation analysis on Pantherdb.org (20). Preanalytical
workflows included cleaning up entries not mapping to
protein-coding gene symbols in E-GEOD-20966. Gene lists for
each ML algorithm consisted of up to the top 100 genes as
predictors of insulin expression, which were compared against
the data set of b-cell expressed genes (N=13,165 from E-GEOD-
20966). Overrepresentation analysis using GO categories for
biological processes (GO: BP) was performed using binomial
testing using false-detection-rate to correct for multiple testing.
Lists of significantly enriched pathways associated with each ML
algorithm were compared using Venn diagrams (21).

Statistical Analysis
The R software (ver. 3.6.1; R Foundation for Statistical
Computing, Vienna, Austria) was used to create the categorical
bubble plot using the packages ggplot2 (3.3.3), ggpubr (0.4.0) and
proto (1.0.0). Spearman correlation matrix analysis was
generated through using R packages corrplot (0.90), Hmisc
(4.6.0), dplyr (1.0.7) and readxl (1.3.1) in R and Rstudio
software. Statistical software, Microsoft Excel (ver. 2016;
Microsoft, Redmond, WA, USA), the R software and/or
GraphPad Prism (ver. 8.4.1; GraphPad Software, San Diego,
CA, USA) were used for univariate test comparisons and
Benjamini-Hochberg method for multiple testing.
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RESULTS

Machine Learning (ML) Algorithms Yield
Varying Performance Outputs
The scRNA-seq data were obtained from public databanks
(GSE84133, GSE85241, E-MTAB-5061, GSE81076, GSE86469)
of human pancreatic single-cell transcriptomes. We first
randomized this available pancreatic scRNA-seq transcriptomic
data and allocated 80% of samples to a discovery/training set
(Training; N=11,652 samples) and remaining into a validation/
testing set (Test; N=2,913 samples). With the availability of several
ML algorithms (Supplementary Table 1), we probed the
discovery dataset using 10 different ML workflows (Figure 1A)
to identify features highly associated with the presence of insulin
transcripts in a single cell. Genes (features) identified as the most
important/predictive variables for each of these ML workflows
were used to identify insulin transcript-containing cells from the
validation set (remainder 20% of the samples). Validation results
of the identified gene features from each of the 10 ML workflows
are presented in the form of receiver operator characteristic (ROC)
curves (Figure 1B). The top three ML algorithms; Gradient
boosting, Random Forest and ADA boost (all Ensemble
workflows), demonstrated similar performance returning an
Area Under Curve (AUC) of between 0.83 – 0.86. A confusion
matrix is presented below each ROC curve dataset (Figure 1B) to
demonstrate the false-positive and false-negative predictions
within every workflow. These analyses show that although
Ensemble machine learning workflows are the best in predicting
insulin-transcribing cells, other workflows, such as logistic
regression, also perform closely to the Ensemble methods.

Ensemble ML Workflows to Identify Genes
Associated With Insulin Transcription
The scRNA-seq datasets obtained from public databanks of human
pancreatic single-cell transcriptomes were classified as insulin-
transcribing (1) or those with no insulin (0) (Figure 2A). As
described earlier, all the three Ensemble ML workflows presented
with an AUC that was better than any of the other ML workflows
tested in our ROC curve analysis. Ensemble workflows also
presented with high accuracy (≥87%), precision (≥0.89), and
sensitivity (≥0.95), which was comparable to other popular
workflows such as logistic regression (Figure 2B). As Ensemble
ML workflows such as Random Forest use a collection of decision
trees (forest), we decided to compare the performance of the top
three (Ensemble) workflows to a single (Decision tree) algorithm.
The relative contribution of the top 10 features (genes) from each
of these ML workflows are presented as radar plots (Figure 2C),
whilst the longer list of genes ranked by their importance is
presented in Supplementary Table 2. IAPP, ADCYAP1, LDHA
and SST were common to all three Ensemble workflows. We then
examined the pathways targeted by these features (genes) identified
through each of the Ensemble and Decision Tree classifier by
comparing them to a separate islet b-cell dataset (Figure 2D).
Number of GO terms enriched across all four ML workflows
(Figure 2D) suggests several common pathways (including insulin
secretion) targeted by the features identified through these analysis
March 2022 | Volume 13 | Article 853863
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A

B

FIGURE 1 | Study design and performance of different ML workflows. A flowchart of our analytical plan is presented in (A). Previously published datasets of single-
cell RNA-sequencing analyses from pancreatic islet cell preparations were randomly divided into a training (N = 11,652) and a validation (N = 2,913) set. The learning
phase (Training) involved identifying features (genes) and their associated weights/coefficients in each of the 10 machine learning (ML) methods (listed 1-10).
Weighted features were used in the prediction of insulin transcription (across 10 ML algorithms) to test the performance of these models in an independent validation
set of samples (N = 2,913). ROC curve plots for each ML algorithm using validation set data are presented in (B). The area under the curve (AUC) for the tested
workflows are presented along with a confusion matrix below the plot. Percent values are rounded off to the nearest integer (and hence may not sum up to an
absolute 100%) and represent true negative (red), true positive (green), false positive (yellow) and false negative (blue) samples identified in the validation set.
Frontiers in Endocrinology | www.frontiersin.org March 2022 | Volume 13 | Article 8538634
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(Figure 2D and Supplementary Table 3). These genes were also
validated in a bulk RNA-seq dataset (GSE152111, n=66) of human
islet samples (Supplementary Figure 1). In this analysis
(Supplementary Figure 1), most of these gene transcripts had
significant positive correlation with insulin transcript. While some
of the gene transcripts such as LDHA, CRP, RPS15 and RPL35
negatively correlated with insulin transcript in human islets.

Insulin-Associated Genes Are
Dysregulated During b-Cell
Dedifferentiation
Dedifferentiation of b-cells, characterized by the loss of
expression of key b-cell maturation marker genes with an
Frontiers in Endocrinology | www.frontiersin.org 5
accompanying reduction in insulin secretion, has been
observed in mouse models of type 1 (T1D) and type 2 (T2D)
diabetes, as well as in individuals with diabetes (22–25). We
questioned if the expression of gene variables identified and
validated (in silico) as being associated with insulin gene
transcription (Figure 2C) are dysregulated in a mouse model
of T1D with evidence of islet dedifferentiation. Transient
dedifferentiation of islet b-cells was recently reported in an
established T1D preclinical mouse model upon b-cell-specific
deletion of a key stress response gene, Ire1a, (Ire1ab-/-) (17).
These mice also demonstrated reduced b-cell number as well as
diminished expression of insulin transcripts in b-cells compared
to control (Ire-1afl/fl) mice. Therefore, we evaluated the
A B

D E

C

FIGURE 2 | Performance and application of learned features in understanding insulin gene transcription. (A) A 2D clustering of pancreatic single cells assessed in
this study using UMAP (Uniform Manifold Approximation and Projection plot). Cellular subtypes based on the UMAP clustering algorithm are labeled and graded
(scale, inset) as per the level of insulin gene transcripts. (B) The performance of learning models on accurately identifying insulin-positive (1) and insulin-negative (0)
single cells from the validation dataset are presented. (C) Relative weighted rank contributions of the top 10 genes in each of the four listed ML algorithms are
presented as spider plots plotted in the order of importance (starting clockwise at 12-O’clock position). Percent representation of each of the genes indicates their
relative contribution in the set on the spider plot with a logarithmic scale (center=1% and outer circle=100%). A comparison of the gene features identified by the top
three ensemble workflows is presented along with those identified by the Decision Tree classifier. (D) Pathways targeted by up to the top 100 features
(Supplementary Table 2) from each of the four selected ML methods (RF, Random Forest; GB, Gradient Boosting; ADAB, ADA Boost; DT, Decision Tree) identified
using gene ontology (GO) function analysis are presented in the Venn diagram. Number of GO terms enriched and common for top features (genes) in each ML
method are plotted. (E) All significantly dysregulated genes identified from and common to the four ML algorithms (C) presented herein were assessed in the scRNA-
seq dataset from Ire1ab-/- mice. Bubble plot presenting fold-change and statistical significance (q-value) for each of the genes in Ire1afl/fl and Ire1ab–/– mice are
shown. Blue color represents downregulation while red color indicates increased abundance of transcripts in Ire1ab-/- mice compared to control.
March 2022 | Volume 13 | Article 853863
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expression of the total 25 gene transcripts that made up the top
10 features across the four different ML workflows (Figure 2C)
in the single cell datasets generated from these (Ire1ab-/- and
Ire1afl/fl) islets. Twelve of these features were not significantly
different between Ire1ab-/- and Ire1afl/fl islets. However, the
remaining thirteen features were significantly dysregulated in
b-cells of Ire-1ab-/- mice that were undergoing dedifferentiation
(Figure 2E). Dedifferentiating b-cells showed significant
downregulation of five key genes; Iapp, MafA, Pcsk1n, Atp5e
and Ldha, whilst all other insulin-associated gene transcripts
showed significantly higher levels (Figure 2E).

In type 2 diabetes (T2D), it is known that INS transcript
expression is reduced. Therefore we validated the top, common
gene features (IAPP, SST, MAFA, ADCYAP1 and LDHA) from
the three ML workflows using a separate publicly available
single-cell RNA-seq dataset from non-diabetic (ND) vs T2D
adult human pancreas (GSE154126 (18)). Four of the five genes
(IAPP, SST,MAFA, ADCYAP1), were significantly lower in T2D
insulin-transcribing cells compared to ND insulin-transcribing
cells (Supplementary Table 4).
DISCUSSION

In this study, we compared the performance characteristics of 10
different ML algorithms, (Supplementary Table 1) that are
currently used in big data analyses. We analyzed a scRNA-seq
dataset that was randomly split to a larger (80%; 392,684,052
data points) training set involving model learning, and then a
smaller (20%; 98,171,013 data points) validation set. All
algorithms identified a set of genes (features) that associate
with insulin-production (1) defined as the presence of one or
more transcripts of insulin in a sample, or no insulin production
(0) from the 11,652 single cells analyzed in the training test. We
validated the predictive features identified through each ML
workflow in the validation/test set of 2,913 single cell
transcriptomes. ML workflows that returned high performance
(based on AUC, sensitivity/specificity) were selected and the top
10 genes (ranked by their importance) in each of those ML
methods were re-validated in discrete mouse and human datasets
that model beta cell dedifferentiation (summarized in Figure 3).

Our analysis provides two major outcomes that are of interest
to a broad range of data analysts and biologists. First, a
comparison of the ML algorithms identified Ensemble-based
ML methods as the best performing algorithms in our analyses.
Logistic regression performed closest to Ensemble methods, in
line with previous reports in clinical datasets (26). We then
compared Ensemble methodologies to the Decision tree
algorithm. Decision tree offers the often-desired simplistic
model generation method as compared to Ensemble methods
such as Random Forest. The latter builds multiple decision trees
independently and offers an overall learning model that is closest
to the best possible prediction. Indeed, Decision tree was
determined to be a weaker predictor than the Random Forest
as the latter reduces variance using different sample sets
(bootstrap) in training, randomizing feature subsets, and
Frontiers in Endocrinology | www.frontiersin.org 6
combining the predictive learning by building multiple
decision trees. Random Forest prediction outcomes were
similar to gradient boosting, which also builds a set of decision
trees, but one tree at a time. The bagging and boosting approach
used in ADA/Gradient boosting methods seems to have offered
better accuracy and performance in insulin prediction analysis
than those observed using Random Forest, whereas the Random
Forest algorithm offered the highest sensitivity (Figure 2B)
amongst all methodologies tested.

The other outcome from this analysis is the identification of
genes that are associated with and predictive of insulin gene
transcription in single cells. Since bulk RNA-sequencing studies
do not offer the desired single-cell resolution to identify
transcriptional regulation at a cellular level, our analyses
provide a firsthand view of insulin gene transcriptional
determinants identified through an unbiased, big data machine
learning approach. The top three methodologies (based on high
AUC values) belonged to Ensemble machine learning workflow.
Weighted relative importance of the top-10 most important
features are compared (Figure 2C). Interestingly, five genes
were common to the top 10 features from all the algorithms
compared – IAPP, ADCYAP1, MAFA, SST and LDHA. The top-
ranked gene associated with insulin gene transcription across all
the Ensemble workflows was IAPP. Islet amyloid polypeptide
(IAPP) and insulin are known to be expressed in pancreatic islet
b-cells and co-secreted in response to changes in glucose
concentration (27, 28). Their mRNA levels are also regulated
by glucose. The promoters of both these genes share similar cis-
acting sequence elements, and both bind the master regulatory
transcription factor PDX1 (27). FoxA2 (HNF-3b) negatively
regulates IAPP promoter activity (29) and has also been shown
to suppress insulin gene expression (30). Although insulin gene
expression is known to be regulated by several islet-enriched
transcription factors, MafA is the most well recognized b-cell-
specific activator of insulin gene expression (31). The selection of
MAFA as a key feature by three of the compared ML approaches
tested through this analysis is therefore not surprising. The
inclusion of SST in the top three gene features is intriguing.
Somatostatin expression is known to be important in control of
insulin release and ablation of somatostatin-expressing delta cells
impairs pancreatic islet function and cause neonatal death in
rodents (32). SST analogs were shown to inhibit the release of
insulin via the activation of both ATP sensitive K+ channels and
G protein-coupled inward rectifier K+ channels (33). Another
candidate that was identified through these analyses is
MTRNR2L8, a neuroprotective and antiapoptotic peptide
derived from a portion of the mitochondrial MT-RNR2 gene
and reported in fetal as well as adult beta cells (34). ADCYAP1
stimulates insulin secretion in a glucose-dependent manner (35)
and genetic screening in T2D Caucasians indicated the presence
of two SNPs in exons 3 and 5 of this gene to be associated with
T2D (36). Finally, LDHA, which was also selected through these
unbiased analyses across the top-three ML workflows is a
pancreatic b-cell disallowed gene (37–39) and human LDHA
levels are predictive of insulin transcription (40). Consistent with
these previous reports, our validation analysis in human islets
March 2022 | Volume 13 | Article 853863
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RNA-seq data, demonstrated negative correlation of LDHA and
positive correlation of ADCYAP1, MAFA and SST transcripts
with insulin (Supplementary Figure 1). Together, these
algorithms help in identifying a set of genes expressed in or
disallowed from insulin-producing pancreatic b-cells.

Mouse models often provide the validation to understand
mechanisms that cannot be tested in human studies. The
Ire1ab-/- mouse offers a unique model, wherein pancreatic b-
cells transiently dedifferentiate during early post-natal life,
allowing these knockout mice to escape immune-mediated b-
cell destruction and T1D in later life (17). Analysis of islet single
cell sequencing data from this model identified genes that were
significantly dysregulated in b-cells of Ire1ab-/- mice when
compared to control (Ire1afl/fl) mice. Eight of thirteen features
(from the top 10 features in each of the four ML workflows,
Figure 2C), which showed significant dysregulation between
Ire1ab-/- and Ire1abfl/fl mice are upregulated in b-cells of
Ire1ab-/- mice (Figure 2E). Analysis of T2D islet single cell
data also revealed down-regulation of four common gene
features (IAPP, SST, MAFA and ADCYAP1 identified across
our three top ML workflows) in T2D compared to ND insulin
transcribing cells (Supplementary Table 4). Interestingly, Delta
Like Non-Canonical Notch Ligand 1 (DLK1) was also
significantly downregulated in T2D compared to ND insulin
transcribing cells (Mann-Whitney test P-value=0.0017). The
imprinted region of chromosome 14q32.2, contains microRNA
Frontiers in Endocrinology | www.frontiersin.org 7
cluster of DLK1-MEG3 which are highly expressed and more
specific in human b-cells compared to a-cells. Previous study
had also shown that in T2D human islets, theMEG3-microRNA
locus expression levels are significantly lower (41). The 14q32
locus of microRNAs (such as co-expression of miR-376a and
miR-432) also have been shown to target and suppress the
expression of IAPP (41), that was one of the top features in
our analyses.

Strength and Limitation
This is a first demonstration comparing multiple ML algorithms
to identify key genes associated with insulin transcription using a
big dataset of over 490 million data points. As anticipated,
Ensemble methods perform better than most other workflows
and identified a set of genes that corroborate with previous
reports of transcriptional regulation of insulin in mouse and
human b-cells. These findings indicate that unbiased ML
workflows for big data analyses can generate biologically
meaningful results, when applied to large training datasets.
Our study provides the codes/scripts for other researchers to
use in existing as well as emerging datasets for identification of
gene candidates associated with other genetic pathways (e.g.,
related to GCG or GCK) in future or to genes recognized to be
associated with T2D GWAS datasets. We recognize that there are
several limitations: we are unsure as to why some other well
known candidates (such as PDX1, and NEUROD) were not
FIGURE 3 | A summary of study design and results. Workflow and findings of our study are presented in this schematic, which illustrates the steps in discovery and
validation of the important gene features associated with insulin transcript in pancreatic single cell transcriptomes. We further confirm these features to be
dysregulated during b-cell dedifferentiation in a T1D mouse model and in individuals with T2D.
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selected by our top predictive models. An explanation is that we
used a whole pancreatic single cell dataset and that the predictive
models generated through filtering out b-cells may be more
enriched for known pro-endocrine gene regulators such as
PDX1. The other explanation is that although PDX1 is a key
regulator, the transcript levels in these datasets using multiple
scRNA-seq technologies may not be sufficient considering the
sequencing depth offered by some of these scRNA-seq
workflows. It would be of interest to explore b-cell factors
associated with insulin transcript levels through subset analyses
in b-cell types. This is becoming increasingly important to the
islet community as differences in insulin transcripts across islet
b-cells [i.e., b-cell heterogeneity (42)] may drive optimal b-cell
function (43) as well as diabetes progression.

We recognize that exhaustive [e.g., LOOCV (44)] as well as
non-exhaustive cross-validation approaches [such as K-fold cross-
validation (45)] were not performed here. Such cross-validation
approaches, although useful in assessing how results will
generalize to an independent dataset, are mostly used in the
validation of much smaller datasets. In big data analyses, the use
of such cross-validation methodologies would limit the analyses to
only those with an access to high-end cluster computing. The 10
differentML scripts used in these analyses are designed to work on
a high-end personal computing device (i7 processor with 4 cores
and 32GB RAM or better). We believe that the application of such
ML algorithms to the expanding scRNA-seq datasets would lead
to the confirmation/validation of current as well as identification
of determinants of gene transcription, thereby accelerating
innovation in discovery of gene targets in biology and medicine.
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