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Abstract
Less than 1% of all microorganisms of the available 
environmental microbiota can be cultured with the 
currently available techniques. Metagenomics is a 
new methodology of high-throughput DNA sequencing, 
able to provide taxonomic and functional profiles of 
microbial communities without the necessity to culture 
microbes in the laboratory. Metagenomics opens to a 
‘hypothesis-free’ approach, giving important details 
for future research and treatment of ocular diseases 
in ophthalmology, such as ocular infection and ocular 
surface diseases.

Current knowledge about the eye 
microbiome
The ocular surface (OS) microbiome is an 
understudied topic, compared with other 
host-associated environments. While the 
Human Microbiome Project initially studied five 
main body areas—the skin, the gastrointes-
tinal tract, the urogenital tract, the oral and 
the nasal mucosa1—an emerging area of 
research is focusing on the eye and the micro-
biota of the OS.2

Recent studies demonstrated that OS hosts 
a number of commensal microorganisms.3 
Earlier culture-based surveys suggested 
that the OS are colonised by microbial 
communities dominated by Gram-positive 
Firmicutes, in particular, species belonging 
to the Staphylococcus, Streptococcus, Corynebac-
terium and Propionibacterium.4 A screening 
including approximately 1000 16S rRNA 
reads revealed that the diversity of healthy 
conjunctiva was higher than previously 
thought.5 Other recent studies based on 
traditional microbiological techniques have 
examined the microbiota of the OS,6–11 
although a more comprehensive analysis of 
microbial diversity of OS has been hindered 
by the limitations of conventional cultiva-
tion techniques.12–14 More recent screening 
of OS-associated microbiome, using molec-
ular metagenomic techniques, extended 
further the knowledge about OS microbial 
diversity.2 5 15 16 Shestopalov and colleagues 

estimated using real-time PCR that in 1 ng 
of extracted DNA, the number of bacterial 
genomes (ie, bacterial richness) was on 
average 79.8 and 729 in the conjunctiva and 
cornea, respectively. Significant amounts 
(22 over 55) were detected in the eye for the 
first time.17 Dong et al detected 59 distinct 
bacterial genera using a 16S rDNA gene 
pyrosequencing approach on the OS of four 
healthy individuals15 (figure 1). Despite the 
low number of individuals examined, this is 
one of the first studies focusing on the bacte-
rial diversity of the OS microbiome. Healthy 
OS microbiome is dominated by Proteobac-
teria, Actinobacteria and Firmicutes. The most 
common taxa at the genus level were Pseu-
domonas, Propionibacterium, Bradyrhizobium, 
Corynebacterium, Acinetobacter, Brevundimonas, 
Staphylococci, Aquabacterium, Sphingomonas, 
Streptococcus, Streptophyta and Methylobacte-
rium (figure 1). This is in general agreement 
with the previous studies, although many 
false positives may derive from contamina-
tion.4

Microbial invasion into the OS compro-
mises corneal clarity and causes inflammation 
in blinding conditions like keratitis, endoph-
thalmitis and trachoma. Herpes simplex type 
1, hepatitis B and C viruses can be detected 
using PCR in the tears of asymptomatic volun-
teers,18 thus suggesting that simply focusing 
solely on the bacterial constituents of the OS 
may result in an incomplete understanding of 
the OS microbiome. In recent time, Zhou et 
al19 showed how the changes in the conjunc-
tival microbiome occur in trachomatous 
disease compared with normal controls. Wen 
et al20 showed how the microbiome of healthy 
OS is shaped by age and sex and how the 
ocular microbiome of house finches changed 
during experimentally induced mycoplasmal 
conjunctivitis.21

Study of microbiome in OS disease has 
significant potential to improve the diagnosis, 
treatment and management of potential 
blinding diseases.
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Figure 1  Pie charts displaying the relative proportions of taxa at the phylum level and at the genus level in healthy eye 
microbiome (according to Dong et al15 [15]).

Background and evolution of metagenomics
The non-culturability of microbes dates back to 1898 by 
Heinrich Winterberg, formalised as the ‘great plate count 
anomaly’ by Staley and Konopka in 1985.22 Several theo-
ries have been proposed to explain the non-culturability 
of microbes: (1) the cultural media used have been devel-
oped to grow microorganisms usually involved in human 
or animal diseases, missing a diversity of other microor-
ganisms; (2) some bacteria may require long incubation 
time to form visible colonies; (3) physiological features 
(ie, obligate symbiosis with other species or strong 
quorum sensing signalling processes) may hinder the 
cultivation of some species; and (4) some bacteria may 
require a specific combination of nutritional features and 
aerobic requirements. The pioneering work by Woese23 
in 1985 identified the 16S rRNA gene as an evolutionary 
chronometer for bacterial phylogeny. This gene has three 
unique features: (A) the ubiquity in the bacterial kingdom, 
(B) the structure of the gene itself, made of both vari-
able and conserved regions (this is due to the secondary 
structure of the transcribed RNA, made of stretches and 
loops), and (C) the low (if any) amount of horizontal 
gene transfer. Pace et al in 1985 had the idea that 16S 
rRNA gene isolated from the environmental samples can 
directly be cloned.24 In 1991, Schmidt et al25 successfully 
cloned 16S rRNA gene sequences from marine pico-
plankton with the use of bacteriophage lambda vector.26 
In 1998, the term metagenome was introduced.27 In 
the last two decades metagenomic analyses have been 
performed on majority of the natural environments, for 
example, soils,28 marine picoplankton,29 hot springs,30 
surface water from rivers,31 glacier ice,32 Antarctic desert 
soil33 and gut of ruminants.26 34 Earlier, major parts of 
the metagenomic studies were based on low-throughput 
approaches, like terminal restriction fragment-length 
polymorphism analysis,35 denaturing gradient gel elec-
trophoresis36 or Sanger sequencing.37 The comparison 
with the sequences included in curated databases like the 
ones of Ribosomal Database Project II,38 Greengenes39 

and SILVA40 has allowed the taxonomic classification and 
community profiling of environmental 16S rRNA gene 
sequences.

Clinical metagenomics and its potential as 
diagnostic tool
Classical microbiological methods are able to identify 
only the presumed cause of ocular infection in about 
40% cases. In contrast, a metagenomic approach prom-
ises to provide important detail regarding all microbiota, 
allowing the identification of a greater portion of previ-
ously unidentified and the so-called ‘uncultured majority’ 
of microorganisms,41 whether being prokaryotes, eukary-
otes or viruses. Efficient next-generation sequencing 
(NGS) technologies have developed greatly in the last 
decade, along with a reduced cost, gaining interest in 
the scientific community in several fields (such as medi-
cine, biotechnology, agriculture or genetics).42 The deep 
impact on metagenomics given by the NGS technolo-
gies allowed the study of microbes with a much higher 
throughput. This enabled a ‘hypothesis-free’ approach 
providing all the components of the microbiome. The 
data produced by NGS have also proved to be particu-
larly suitable for taxonomic and functional profiling. 
Thus, metagenomics opened the way to explore the 
remarkable genetic potential of bacteria; in some cases 
it was used to get hints on the metabolic requirements of 
yet-to-be cultured bacteria.43 More often, the application 
of NGS to metagenomics studies aimed to profile and 
compare taxonomy and function of microbial commu-
nities from different sources.23 For example, comparing 
human samples from a disease state to samples from 
healthy controls allows clinicians to get a more holistic 
view of the quantitative shifts of specific taxa during the 
course of the disease.1 44 The extraction of DNA from a 
human-derived sample is usually the first step of the work-
flow, then two possible downstream analyses can be done: 
(1) amplify a marker gene (usually a portion of the rRNA 
genes) and sequence the PCR amplification product; or 
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(2) sequencing the extracted, fragmented DNA directly 
(this approach is known as ‘shotgun’ metagenomics 
sequencing).

There is a wealth of studies on the human microbiome, 
spanning several physiological conditions related to age, 
disease, race and many more variables. Starting from 
the first ‘inocula’, that is, transmission from mothers to 
children.45 A significant role has been attributed to the 
birth delivery method, with marked differences in micro-
biota between children born through vaginal delivery 
versus caesarean section.46 Different studies have debated 
determining the ‘core’ bacterial taxa of gut and skin.1 47 
The latest analysis suggests that instead of the core taxa, 
homeostatic communities are defined by the presence 
of a core microbial gene set that encodes essential meta-
bolic pathways.12 48

In addition, several studies have highlighted the vari-
ability of the microbiome according to body sites, race 
and ethnicity as outlined by Gupta et al.49 The genetic 
asset of the host itself influences the microbiome; this is 
well studied in metabolic dysfunctions such as obesity, 
diabetes and inflammatory bowel disease.50 Two simul-
taneous projects: the European project, MetaHIT 
(Metagenomics of the Human Intestinal Tract—www.​
metahit.​eu), and the American Human Microbiome 
Project,51 use metagenomics to facilitate the study of 
human intestinal microbiome. The use of drugs has also 
an influence on the microbiome. Bioinformatic tools are 
being developed and updated almost monthly for the 
analysis of the data52 53 and in developing integrated data-
bases, for example, https://​portal.​hmpdacc.​org/. They 
are, however, over-represented by strong biases towards 
samples from stool, and oral and vaginal microbiomes.

Selecting the test
The two methods (shotgun and marker-based metag-
enomics) can be used in different instances: the 
marker-based approach is used to get the taxonomic 
profiles of the community under study, whereas shotgun 
approach gives wider information on function and an 
extended phylogenetic breadth.54 For both methods, 
there are pros and cons: marker-based studies are well 
suited for analysis of large number of samples, that is, 
multiple patients, longitudinal studies, and so on, and 
are cheaper; however, there are well-known amplification 
biases and the amount of information is limited to the 
taxonomy.55 On the other hand, shotgun metagenomics 
is usually more expensive. It may miss low-abundant 
species and when host-associated metagenomes are 
studied, most of the reads derive from the host genome, 
especially when studying sites with low bacterial biomass. 
It offers, however, increased resolution, enabling the 
possibility to discover new microbial genes and genomes 
as well as a more specific taxonomic and functional clas-
sification of sequences (in some cases). Importantly, 
shotgun metagenomics allows the simultaneous study 
of viruses, bacteriophages, archaea and eukaryotes.56 
Sample collection and storage methods are critical for 

most metagenomic studies: they are often arbitrary and 
rely on the common practices developed in single labora-
tories or even by single researchers.57 However, in some 
cases, such as the study of the human faecal microbiome, 
there are well-established standard procedures.58

A standardised protocol for sample collection, handling 
and storage for metagenomic studies in ophthalmology is 
still under development (data not shown). In addition, 
as all low biomass samples, corneal surfaces are particu-
larly vulnerable to external contaminations, which could 
also derive from the reagent kits,59 therefore, a proper 
experimental design should include a number of blank 
controls and the use of ultrapure reagents to minimise 
this risk. Several significant efforts to unravel bacterial 
identity with a resolution as high as the level of strain have 
already been published.60 The integration of the metao-
mics (collective name that stands for metagenomics, 
metatranscriptomics, metaproteomics, and so on) with 
information such as clinical history, dietary information 
and genetic background of the patient may be useful in 
the implementation of mechanistic models explaining 
the microbiome structure and function.61 Biomarker 
discovery needs a high number of replicates; one pipe-
line developed for this task is LEfSe62 which relies on 
the linear discriminant analysis of effect size. It detects 
consistent abundance patterns among features (that 
can be either taxa or coding genes) in a multidimen-
sional data set such as a species-per-sample metagenomic 
matrix. It is highly scalable and it has proved to achieve a 
discrete performance in reducing the false-positive detec-
tion, although as explicitly admitted by the developer, 
the false-negative rate is slightly higher. Other pipelines 
are also available for biomarker discoveries,63 however, 
a benchmark among them is beyond the scope of this 
review. Last, but not least, the complex tasks described 
above require high computational power and specific 
expertise in the field of biostatistics and informatics.64

From bench to bedside: clinical applications
Clinical applications in OS
Doan and Pinsky in 2016 showed how the healthy OS has 
a unique microbiome with viral and bacterial commu-
nities. In their study, quantitative 16S PCR resulted in 
0.1 bacterial 16S rDNA/human actin copy on the OS 
compared with 10 16S rDNA/human actin copies of 
facial skin and higher bacterial diversity on the OS.65 
Many ocular infections are acquired on the OS and the 
diagnosis of causative pathogen can be challenging.66 67 
In postoperative endophthalmitis, the pathogen iden-
tification is between 50% and 70%68 69 and cultures 
failed in approximately 33% of cases.70 In a recent study 
on patients with uveitis, Doan et al found that herpes 
simplex virus type 1 (HSV-1), Cryptococcus neoformans 
and Toxoplasma gondii were associated with the disease.71 
Other than Rubeola RNA virus, even Ebola RNA virus was 
detected in the ocular fluid after resolution of viraemia.72 
A recent attempt provided a proof of concept for the 
use of metagenomics as diagnostic tool, and developed 

www.metahit.eu
www.metahit.eu
https://portal.hmpdacc.org/.
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Figure 2  The process towards genetic-guided treatment 
in the field of ophthalmology. The figure indicates different 
procedures of sample collection, nucleic acid extraction, 
sample preparation, sequencing, bioinformatics, analysis 
and report writing, indication to the eye surgeon for specific 
drug usage for specific microorganism and metagenomic-
guided eye treatment on the patient. Being highly specific 
and cost-effective, metagenomics could be potentially used 
in ophthalmology in the near future.

specific bioinformatic pipelines to differentiate patho-
genic agents and antibiotic resistance genes with a higher 
resolution.73

Contact lens
Shin et al showed that wearing contact lenses makes 
ocular conjunctiva more similar to the skin microbiota.16 
Lee et al74 studied blepharitis using different sampling 
from eyelashes and tears showing increased Staphylo-
coccus, Streptophyta, Corynebacterium and Enhydrobacter. 
Studies suggested how contact lenses could function as a 
medium for skin bacteria to come to OS.75 76 Zhang et al 
found how slight microbe variability was found between 
orthokeratology lens wearers with soft contact lenses 
wearers and in non-wearers.77

Connection between gut and eye microbiome
It is well acknowledged that gut microbiome influences 
the communication between the enteric nervous system 
and the central nervous system (known as gut-brain 
axis).78 Likewise, OS microbiome shows connection to 
the gut microbiome. Considering that the eye is the site of 
inflammatory diseases like uveitis, scleritis and Mooren’s 
corneal ulcer, it is possible that these autoimmune reac-
tions are associated with dysbiosis in the gut.79 de Paiva et 
al found that ‘the severity of Sjögren Syndrome (SS) ocular and 
systemic disease was inversely correlated with microbial diver-
sity.’80 SS is marked by a dysbiotic intestinal microbiome 
driven by low relative abundance of commensal bacteria 
and high relative abundance of potential pathogenic 
genera. This is associated with worse ocular mucosal 
disease in a mouse model of SS and in patients with SS. 

The lowest diversity of stool microbiota was found in 
subjects with the most severe keratoconjunctivitis sicca 
and combined systemic and ocular disease. Such result 
is in agreement with other findings in which a disease 
state correlates with the low diversity of the microbiome 
in a specific compartment, such as inflammatory bowel 
disease (where Clostridium difficile dominates the micro-
biome) or the pulmonary microbiome during cystic 
fibrosis.81 Animal models of experimental autoimmune 
uveitis have shown significant attenuation of this disease 
following administration of oral antibiotics that altered 
the intestinal microbiota.82 Further evidence strongly 
suggests that the homeostatic microbiome plays a 
protective role in preventing colonisation of pathogenic 
species. It was demonstrated that oral administration of 
antibiotics reduced the severity of uveitis in mice with 
experimentally induced autoimmune uveitis.83 84 The 
recent cases of persistent infection with Ebola virus,72 
and possibly Zika virus,85 explain the urgency to develop 
better diagnostics for uveitis. These cases, with important 
public health consequences, highlight the eye’s role as 
a potential reservoir for infectious agents. In addition, 
epigenetic mechanisms may cooperate with microbiota 
to initiate ocular inflammation.86

Discussions and conclusion
Detection of intraocular infections relies heavily on 
molecular diagnostics. In ophthalmology, the most widely 
available molecular diagnostic panel to detect infections 
includes separate pathogen-directed PCRs: HSV, vari-
cella zoster virus, cytomegalovirus and T. gondii. Not 
surprisingly, more than 50% of all presumed corneal infections 
fail to have a pathogen isolated.87 88 NGS has offered clear 
advantages to make a definite diagnosis compared with 
conventional diagnostic methods and advances in metag-
enomics have made the use of NGS more useful for clinical 
disgnostics.71 Metagenomic deep sequencing (MDS) has 
the potential to improve diagnostic yield; it can theoret-
ically detect all pathogens in a clinical sample89 using 
an unbiased and hypothesis-free approach. Wilson et al 
showed that NGS protocols could be completed in less 
than 48 hours90 with a significant advantage compared 
with many of the culture-dependent assays. Improving 
our understanding of the composition and function of 
a normal ocular microbiome would be a good starting 
point for a targeted therapy and the development of 
probiotic products. Host-microbe and microbe-microbe 
interactions on the OS indicate the beneficial function of 
the microbiota and the understanding of these principles 
by the clinicians could possibly guide appropriate use of 
topical and systemic antibiotics.91

MDS could be used in patients with difficult-to-di-
agnose infections, as a front-line diagnostic tool. In 
difficult-to-culture samples, metagenomic shotgun is a 
promising test for the identification of microbial kera-
titis and undiagnosed encephalitis.92 93 Together with 
uveitis-related disorders, the microbiome study can 
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potentially and dramatically change the management 
and treatment of these diseases.

MDS may supplement or replace numerous and expen-
sive diagnostic assays and procedures currently employed 
and improve patient outcomes. This approach will allow 
a far more comprehensive characterisation of the aeti-
ology of infections and also complement the current 
diagnostic paradigm in ophthalmology. In the near 
future, a full genetic approach to eye infections is not 
far away (figure 2) where the samples will be collected, 
sequenced for specific targets and a specific antimicrobial 
used to treat the disease. With a certain clinical impact, 
the ophthalmologists will have precise quantification, 
multilocus sequence typing of single species and genetic 
sequence of the microbiota of ocular samples without 
the problems associated with tests based on conventional 
cultures. Hence, we foresee that metagenomics could 
further advance the field of ophthalmology especially in 
diagnosis and target-specific treatments.
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