
fnins-14-00167 March 7, 2020 Time: 15:53 # 1

ORIGINAL RESEARCH
published: 10 March 2020

doi: 10.3389/fnins.2020.00167

Edited by:
Yasuyo Minagawa,

Keio University, Japan

Reviewed by:
Paola Pinti,

University College London,
United Kingdom

Satoshi Morimoto,
Keio Advanced Research Centers

(KARC), Japan

*Correspondence:
George Alexandrakis

galex@uta.edu

Specialty section:
This article was submitted to

Brain Imaging Methods,
a section of the journal

Frontiers in Neuroscience

Received: 18 September 2019
Accepted: 14 February 2020

Published: 10 March 2020

Citation:
Urquhart EL, Wang X, Liu H,

Fadel PJ and Alexandrakis G (2020)
Differences in Net Information Flow
and Dynamic Connectivity Metrics

Between Physically Active
and Inactive Subjects Measured by

Functional Near-Infrared
Spectroscopy (fNIRS) During

a Fatiguing Handgrip Task.
Front. Neurosci. 14:167.

doi: 10.3389/fnins.2020.00167

Differences in Net Information Flow
and Dynamic Connectivity Metrics
Between Physically Active and
Inactive Subjects Measured by
Functional Near-Infrared
Spectroscopy (fNIRS) During a
Fatiguing Handgrip Task
Elizabeth L. Urquhart1, Xinlong Wang1, Hanli Liu1, Paul J. Fadel2 and
George Alexandrakis1*

1 Bioengineering Department, University of Texas at Arlington, Arlington, TX, United States, 2 Department of Kinesiology,
University of Texas at Arlington, Arlington, TX, United States

Twenty-three young adults (4 Females, 25.13 ± 3.72 years) performed an intermittent
maximal handgrip force task using their dominant hand for 20 min (3.5 s squeeze/6.5 s
release, 120 blocks) with concurrent cortical activity imaging by functional Near-Infrared
Spectroscopy (fNRIS; OMM-3000, Shimadzu Corp., 111 channels). Subjects were
grouped as physically active (n = 10) or inactive (n = 12) based on a questionnaire (active-
exercise at least four times a week, inactive- exercise less than two times a week). We
explored how motor task fatigue affected the vasomotion-induced oscillations in 1HbO
as measured by fNIRS at each hemodynamic frequency band: endothelial component
(0.003–0.02 Hz) associated to microvascular activity, neurogenic component (0.02–
0.04 Hz) related to intrinsic neuronal activity, and myogenic component (0.04–0.15 Hz)
linked to activity of smooth muscles of arterioles. To help understand how these three
neurovascular regulatory mechanisms relate to handgrip task performance we quantified
several dynamic fNIRS metrics, including directional phase transfer entropy (dPTE),
a computationally efficient and data-driven method used as a marker of information
flow between cortical regions, and directional connectivity (DC), a means to compute
directionality of information flow between two cortical regions. The relationship between
static functional connectivity (SFC) and functional connectivity variability (FCV) was
also explored to understand their mutual dependence for each frequency band in
the context of handgrip performance as fatigued increased. Our findings ultimately
showed differences between subject groups across all fNIRS metrics and hemodynamic
frequency bands. These findings imply that physical activity modulates neurovascular
control mechanisms at the endogenic, neurogenic, and myogenic frequency bands
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resulting in delayed fatigue onset and enhanced performance. The dynamic cortical
network metrics quantified in this work for young, healthy subjects provides baseline
measurements to guide future work on older individuals and persons with impaired
cardiovascular health.

Keywords: fatigue, sensory-motor cortex, directional phase transfer entropy, directional connectivity, functional
connectivity variability

INTRODUCTION

Cerebral autoregulation helps maintain a relatively constant
oxygen supply to the brain during changes in arterial blood
pressure, by maintaining cerebral blood flow (CBF) relatively
constant. This occurs via vasoconstriction in response to
increased blood pressure and vasodilation in response to
decreased blood pressure. Regional CBF (rCBF) is flow-
mediated vasodilation from distal to proximal vessels that
occurs in activated brain regions which protects downstream
microvascular pressure (Querido and Sheel, 2007; Peterson et al.,
2011; Perrey, 2013; Tzeng and Ainslie, 2014; Peri-Okonny et al.,
2015). There are overlapping regulatory mechanisms of rCBF
that have been classified into contiguous ranges of hemodynamic
frequencies as endogenic (0.003–0.02 Hz), neurogenic (0.02–
0.04 Hz), and myogenic (0.04–0.15 Hz) (Cipolla, 2009; Li
et al., 2012). These frequency oscillations reflect the influence of
endothelial-related metabolic activity, intrinsic neuronal activity,
and myogenic activity of the vascular smooth muscle, respectively
(Cipolla, 2009; Li et al., 2012; Huo et al., 2018). Exercise may also
modulate the regulatory mechanisms in each frequency band.
Exercise is known to improve cardiovascular health (Myers,
2003) and brain health (Peri-Okonny et al., 2015; Mueller et al.,
2017). Regular exercise produces beneficial alterations in the
brain that maintain or improve cognition (Bosch et al., 2017;
Mueller et al., 2017), and promote motor function (Perrey, 2013),
known as exercise-dependent neuroplasticity.

The hemodynamic oscillations at these frequency bands can
be measured using functional brain mapping using functional
magnetic resonance image (fMRI) (Zhang et al., 2015), or
functional near-infrared spectroscopy (fNIRS) (Li et al., 2012;
Bosch et al., 2017; Andersen et al., 2018; Cao et al., 2018b).
FNIRS measures non-invasively the change of oxyhemoglobin
(1HbO) and deoxyhemoglobin (1Hb) concentrations resulting
from neurovascular coupling secondary to neuronal activation
by utilizing light at near-infrared wavelengths (650–1000 nm). It
is advantageous because of its relatively lower cost, portability,
robustness to motion artifacts, and its higher temporal resolution
compared to fMRI (Huppert et al., 2009; Naseer and Hong, 2015).

In recently completed work, we demonstrated interesting
temporal evolution patterns for hemodynamic activation and
static functional connectivity (SFC) changes that depended on
the physical activity levels of subjects while they were trying
to maintain maximal handgrip task performance (Urquhart
et al., 2019). That work identified that physically active subjects
experienced delayed fatigue onset as evident by their greater
ability to maintain maximum voluntary contraction (MVC)
force accompanied by longer-lasting and more spatially extended

activation and SFC patterns in the primary motor (M1), premotor
and supplementary motor areas (PMC/SMA) and the prefrontal
cortex (PFC) (Urquhart et al., 2019). In contrast to the static
networks explored in our previous work, the purpose of this
work was to examine changes in dynamic cortical network
patterns and how they relate to handgrip task performance for
each hemodynamic frequency band, as a function of a subjects’
physical activity level.

In this work we first applied directional phase transfer
entropy (dPTE) analysis, a computationally efficient and data-
driven method previously used in electroencephalography (EEG)
research (Hillebrand et al., 2016), to estimate changes in the
direction of information flow during the fatiguing handgrip
task. It has been applied recently to fNIRS in one study (Cao
et al., 2018b), but dPTE analysis has not been employed,
to our knowledge, as yet to explore the effect of fatigue on
the brain’s networks. The net direction of information flow,
or directional connectivity (DC), was also quantified between
regions to better understand motor control regulation under
fatiguing conditions (Hillebrand et al., 2016). A simultaneous
multimodal neuroimaging study using fNIRS, fMRI, and EEG has
previously examined directionality via Wiener-Granger causality
on finger movement tasks, but their results were confined to
the contralateral (i.e., left) hemisphere only and not broader
cortical networks (Anwar et al., 2016). We also explored the
relationship between SFC and functional connectivity variability
(FCV), which represents spontaneous dynamic fluctuations of
connectivity over time (Fong et al., 2019). This was motivated
by the fact that SFC is known to increase with task performance
(Jiang et al., 2012; Perrey, 2013; Urquhart et al., 2019), while
FCV reflects resource availability during demanding tasks (Li
et al., 2015; Fong et al., 2019). The aim of this work was to
identify differences between subject groups across all of the
aforementioned fNIRS metrics and hemodynamic frequency
bands. In addition, we aimed to demonstrate the feasibility of
using time-dependent fNIRS metrics to help understand how
dynamic connectivity regulation of cortical networks relates to
performance during a fatiguing motor task.

MATERIALS AND METHODS

Participants
Twenty-three young adults (4 females) between the ages 18 and
30 (mean age 25.13± 3.72) participated in this study. All subjects
gave prior written informed consent for their participation in this
study, which was approved by the Institutional Review Board
of the University of Texas at Arlington (IRB# 2018-0686) and
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performed in accordance with the Declaration of Helsinki. All but
two subjects were right-handed, as determined by the Edinburgh
handedness scale (Oldfield, 1971). All subjects were free of any
neurological or psychiatric disorders (self-reported), and were
non-smokers. Subjects self-reported as being physically inactive
(n = 12, exercising less than twice a week for 30 min of moderately
vigorous exercise), or active (n = 11, exercising at least four times
a week for 30 min of moderately vigorous exercise).

Experimental Procedures
A continuous wave fNIRS imaging system (OMM-3000,
Shimadzu Corp., Kyoto, Japan) was used in this experiment,
which utilized near infrared light diode sources (780, 805, and
830 nm) and photomultiplier detectors at a sampling frequency
of 10.101 Hz. The setup geometry consisted of 32 sources and
34 detectors with a separation of 3 cm, resulting in 111 source-
detector channels (Figure 1A). This probe geometry covered
cortical areas of the following 11 regions of interest (ROIs)
(Figure 1B): left and right frontopolar prefrontal cortex (lFP;
rFP), left and right dorsolateral prefrontal cortex (lDLPFC;
rDLPFC), Broca’s area, left and right premotor cortex (lPMC;
rPMC), left and right primary motor and sensory cortical
(lM1/S1; rM1/S1) areas, and left and right sensory association
cortex (lSAC; rSAC). Anatomical cranial reference points
(nasion, inion, left and right preauricular points and vertex)
and optode locations were recorded for each subject using a
3D digitizer (FASTRAK, Polhemus VT, United States). Montreal
Neurological Institute (MNI) coordinates for each source and
detector locations were calculated using the statistical parametric
mapping NIRS_SPM software, which provided the Brodmann
area (BA) corresponding to each fNIRS channel as shown in
Supplementary Table S1 (Singh et al., 2005).

Subjects sat upright with their dominant arm at their side,
elbow flexed at 90◦ and resting on a table. Subjects faced two
screens that displayed protocol commands and visual feedback
of handgrip performance (Figure 1C). Prior to starting the
handgrip task, subjects performed three to five isometric MVCs
with their dominant hand. All MVCs were recorded at a 1 kHz
sampling rate using a handgrip dynamometer (BIOPAC, CA,
United States). The pre-task MVCs were averaged for each subject
and set as their maximum target of 100% MVC to reach during
the subsequent handgrip task. The fNIRS data acquisition began
with a 5 min resting period where subjects were asked to refrain
from any movement or specific thoughts, followed immediately
by a fatiguing handgrip task. The task required subjects to
perform intermittent handgrip contractions for 3.5 s alternating
with 6.5 s of rest for 120 blocks (Figure 1D) while attaining 100%
MVC as closely as possible, as a means to induce fatigue in the
forearm (Liu et al., 2007; Shibuya and Kuboyama, 2010; Jiang
et al., 2012; Rhee and Mehta, 2018). The recorded force time-
series data were low-pass filtered at 15 Hz and the maximum
force for each block was calculated (Mehta and Shortz, 2014;
Rhee and Mehta, 2018).

Data Preprocessing
This study used the open-source Homer2.0 to process
(Supplementary Table S2) the collected fNIRS data

(Huppert et al., 2009). Detrending was implemented using
the least-squares fit of a line that was subtracted from the data
(Xu et al., 2015). The data were then filtered for each respective
frequency band. Following previously published work, frequency
bands were defined as endogenic (0.003–0.02 Hz), neurogenic
(0.02–0.04 Hz), and myogenic (0.04–0.15 Hz) (Aalkjaer et al.,
2011; Cao et al., 2018b). Data in each of these three hemodynamic
frequency bands were low-pass filtered by a third order and
high-pass filtered by a fifth order Butterworth filter (Huppert
et al., 2009). Channels were removed if signal standard deviations
were greater than two times their mean signal amplitude (Cao
et al., 2018b). Principal component analysis (PCA) was utilized
to remove motion artifacts and global hemodynamic fluctuations
that may overlap with the task-related hemodynamic response
frequencies. The first two principal components were removed
from all fNIRS channel data in order to remove these global
artificats (Huppert et al., 2009; Naseer and Hong, 2015). To avoid
signal contamination especially by branches from the middle
cerebral artery or the superficial temporal artery and temporal
muscle, channels located near these structures were also removed
from analysis (Smielewski et al., 1997; Oldag et al., 2012). The
resulting optical density data were then converted into changes
in hemoglobin concentration relative to baseline (1HbO and
1Hb) using the Modified Beer-Lambert Law with an estimated
differential pathlength factor of 6.0 for each wavelength, an
estimate used in Homer 2.0 (Kohl et al., 1998). Only 1HbO
values were presented in the Result section below because 1Hb
values were found to have similar and opposite qualitative trends,
but with smaller amplitudes and lower signal-to-noise ratio as
previously reported in other neuroimaging studies observing
motor activation tasks (Anwar et al., 2013; Visani et al., 2015).
Nevertheless, corresponding 1Hb results were included in the
Supplementary Material section for completeness. Left-handed
subjects’ data was flipped to its mirror image on the brain for
group averaging purposes and the subsequent interpretation
for all data was right (r) for contralateral and left (l) for
ipsilateral brain hemispheres relative to the arm performing
the handgrip task.

Phase Transfer Entropy (PTE) and
Directed PTE (dPTE) Data Analysis
The information flow between ROIs was estimated using phase
transfer entropy (PTE) based on the same principle as Granger
Causality (Siebenhuehner et al., 2013; Hillebrand et al., 2016;
Cao et al., 2018b). It is calculated as the difference between the
uncertainty of the target signal Y conditioned by its past and the
uncertainty of the target signal conditioned on both its past and
the source signal X (Hillebrand et al., 2016; Cao et al., 2018b):

PTEXY = H
(
Yt+δ|Yt

)
−H

(
Yt+δ|Yt, X

)
(1)

where PTEXY is the PTE from source X to target signal Y.
Shannon Entropy (H) is defines as:

H (Yt+δ) = −

n∑
i=0

p
(
Yt+δi

)
logp

(
Yt+δi

)
(2)
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FIGURE 1 | Experimental set up and protocol timeline for the handgrip task. (A) FNIRS 111-channel layout with eleven regions of interest (ROIs) covered by the
probe geometry: left and right frontopolar (lFP; rFP) (red), left and right pre-frontal cortex (lDLPFC; rDLPFC) (yellow), Broca’s area (green), left and right pre-motor
cortex (lPMC; rPMC) (light blue), left and right primary motor and sensory cortical (lM1/S1; rM1/S1) areas (purple), and left and right sensory association cortex
(lSAC; rSAC) (pink). (B) Each circle shows the spatial average of the probe coordinates in each ROI, per brain hemisphere. These averaged probe locations served
as reference points for plotting dPTE and DC between ROIs in this work. (C) Schematic of the experimental set-up of the fNIRS (LABNIRS) system and the BIOPAC
handgrip force sensor system with one representative source-detector channel shown for simplicity. (D) The handgrip task protocol, starting with a 5-minute
baseline. Subjects performed intermittent handgrip contractions for 3.5 s followed by 6.5 s of rest for 120 blocks at 100% MVC.

where the summation is performed for discrete time steps t + δi
(i = 0, n), where n signifies the total number of time bins, defined
by the product of the time interval duration (rest, or task period)
in seconds and the data sampling frequency of 10.101 Hz. The
delay between signal Yt and Yt+δi is expressed as δi. For a more
complete description of how Shannon entropy is computed the
reader is referred to relevant prior literature (Shannon, 1948;
Schreiber, 2000; Hillebrand et al., 2016).

Due to PTEXY lacking a meaningful upper bound
and to reduce bias, a normalizing process is used
(Hillebrand et al., 2016):

dPTEXY =
PTEXY

PTEXY + PTEYX
. (3)

With a range between 0 and 1, if 0.5 < dPTEXY < 1
the information flow is preferentially from X to Y. But, if
0 < dPTEXY < 0.5, then the information flow is preferentially
from Y to X. In the event that dPTEXY = 0.5, there is no
preferential direction of information flow (Hillebrand et al., 2016;
Cao et al., 2018b).

Data Processing Steps for dPTE
Directed PTE analysis was applied to calculate information flow
for the endogenic, neurogenic, and myogenic frequency bands at
three periods: 5 min of resting state, 0–10 min, and 11–20 min
of the handgrip task. Directed PTE for resting state requires a

minimum of 5 min to attain stable computed values (Hillebrand
et al., 2016) and in this work 10 min periods were used to account
for the higher amount of hemodynamic variation during the
handgrip paradigm (Urquhart et al., 2019). Firstly, PTE analysis
was performed to quantify causality between every two channels
among all 111 channels. Then PTE values were normalized into
dPTE values, generating a 111× 111 matrix. The value at Xth row
and Yth column determined the scale of information flow from
Y to X. If dPTE was between 0 and <0.5 the net information
flow was from Y to X, whereas if dPTE > 0.5 the net flow
was from X to Y. If dPTE was equal to 0.5, within a rounding
error of two decimals, no net information flow was assumed.
Then the dPTE was averaged lengthwise by row, yielding a
1 × 111 matrix, which was the mean dPTE between each one
channel and all other channels (Cao et al., 2018b). The two
channels with the highest ROI percentage overlap relative to
neighboring ROIs, as determined by NIRS_SPM, were averaged
together and assigned to each ROI, yielding a 1× 11 matrix. The
high signal variability induced during the task, as demonstrated
in our previous work (Urquhart et al., 2019), did not allow
for identification of statistically significant changes in individual
channels. Therefore, the dPTE channels were averaged from up
to 11 channels to 2 per ROI in order to allow for comparisons
between dPTE at rest and during the task that could lead to
statistically significant differences. A one-sample t-test was then
performed across subjects for significant differences in dPTE
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across all possible pairs of ROIs (p < 0.05 and false discovery
rate (FDR) corrected) (Singh and Dan, 2006). This test was
used to determine significant net information flow into or out
of each ROI by testing against the null hypothesis of no net
flow, where positive t-values indicated outgoing net information
flow (“source”) and negative t-values indicated incoming net
information flow (“sink”). Significant net information flow values
for each ROI were visualized using BrainNet Viewer, an open-
source software package (Xia et al., 2013), for each frequency
band at each period per subject group. Dedicated software
(G∗Power v3.0.10, Franz Fual, Kiel University, Kiel, Germany)
was used to perform post hoc statistical power (1-β) analysis
(Faul et al., 2007).

Directional Connectivity (DC)
The dPTE values were first averaged to a single channel within
each of the ROIs, generating an 11 × 11 matrix. A one-
sample t-test was then performed across subjects for significant
differences in dPTE across all possible pairs of ROIs (p < 0.05
and FDR corrected) (Singh and Dan, 2006). This test was used to
determine directionality of significant information flow between
each pair of ROIs by testing against the null hypothesis of no
net flow (dPTEXY = 0.5), where positive t-values indicated net
information flow from ROI1 to ROI2 and conversely for negative
t-values. Topographic images for DC were generated using
BrainNet Viewer software (Xia et al., 2013) for each frequency
band at each period per subject group.

Static FC (SFC) and FC Variability (FCV)
Analysis
For each subject’s data set, a static functional connectivity (SFC)
matrix was generated by computing the Pearson’s correlation
coefficient (r) between the ROI-averaged channels per brain
hemisphere (Li et al., 2015; Fong et al., 2019). Subsequently,
dynamic functional connectivity (DFC) between pairs of ROIs
was calculated using a sliding-window correlation (SWC) (Allen
et al., 2014; Li et al., 2015; Fong et al., 2019). In this study, a
60 s time window was selected and shifted in 1 s increments
along the entire time course as described in prior fNIRS studies
(Hutchison et al., 2013; Li et al., 2015; Cao et al., 2018a). The
FC within each time window was also calculated for each pair of
ROIs via the Pearson’s correlation coefficient. Then the functional
connectivity variability (FCV) was calculated as the standard
deviation of the correlation coefficient along time (Fong et al.,
2019). For group analysis, the FCV of each correlation coefficient
for each ROI was averaged across subjects in each group.

RESULTS

Relative Changes in MVC Over Time
The loss of handgrip force, expressed as the relative reduction
in %MVC compared to the pre-task maximum value, was
quantified as a proxy measure of fatigue (Figure 2). Force
data was first averaged over 12 blocks for the 0–2 min period.
An independent t-test, satisfying normality and equal variance

assumptions, determined that there was no significant (p > 0.05)
difference between groups (not shown), indicating subjects did
not fatigue within this initial period. Force data were then
averaged over 60 blocks resulting in two periods (0–10 min
and 11–20 min) across the 120 contractions. As these data
periods did not meet assumptions for independent t-tests, data
was analyzed using the non-parametric Mann-Whitney U test
(Marques, 2007). The absolute force produced by active subjects
was significantly higher than inactive subjects at 0–10 min
(p < 0.01) and 11–20 min (p < 0.001). Lastly, %MVC force
decreased significantly between periods in both active (p < 0.001)
and inactive (p < 0.01) subjects.

Frequency Band Analysis With
Information Flow and Directional
Connectivity
The net information flow among the eleven ROIs (lPF, rFP,
lDLPFC, rDLPFC, Broca’s, lPMC, rPMC, lM1/S1, rM1/S1, lSAC,
and rSAC) during the three task periods (rest, 0–10 min, and
11–20 min) was computed by dPTE analysis for the endogenic,
neurogenic, and myogenic hemodynamic frequency bands and
plotted in color-coded maps. In these maps, blue ROIs indicate
net incoming information flow (the channels at those cortical
locations are a “sink”) and red ROIs indicate net outgoing
information flow (these channels are “sources”). Green ROIs
indicate no statistically significant net flow.

The directionality of information flow (DC) was averaged
within each of the eleven ROIs, so as to enable averaged,
region-specific dPTE values that were amenable to statistical
comparisons. The latter yielded differing spatial DC patterns
between inactive and active subjects that are presented here for
each hemodynamic frequency band. The unidirectional arrows
originate from a source ROI and end in a sink ROI. Black arrows
correspond to a significance of p < 0.05 and red arrows denote a
significance of p < 0.01.

All one-sample t-tests satisfied normality assumptions for
dPTE and DC analyses. While physiological interferences were
minimized using band-pass filters and PCA filter for each
frequency band, global mean removal was also applied, and
results were effectively indistinguishable between the methods.
A post hoc power analysis with α = 0.05 yielded a statistical power
of 80% for both groups.

Endogenic Frequency Band
Maps of net information flow in the endogenic frequency
band are shown in Figures 3A–C (Supplementary Figures
S1A–C for 1Hb) for inactive subjects and Figures 3D–F
(Supplementary Figures S1D–F for 1Hb) for active subjects.
Outgoing information (sources) differed between the groups at
all time periods. Inactive subjects had a statistically significant
sink at lM1/S1, whereas active subjects had a dPTE sink at
lFP at rest in the endogenic frequency band (Figures 3A,D).
For inactive subjects, rFP, lDLPFC, rDLPFC, and Broca’s area
were statistically significant sinks initially (Figure 3B) that later
became more strongly unilateral at rFP, rDLPFC, and rPMC as
the task progressed (Figure 3C). Additionally, inactive subjects
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FIGURE 2 | Force produced during intermittent handgrip contractions while
physically inactive and active subjects attempted to attain 100% MVC. Each
bar represents an average of 60 consecutive trials, expressed as the Mean
(bar height) ± Standard Error to the Mean (SEM; error bar). ∗∗p < 0.01,
∗∗∗p < 0.001.

had a statistically significant dPTE source at lPMC (Figure 3C).
In contrast, active subjects had a significant sink at lDLPFC and
rSAC initially (Figure 3E) that changed to lFP, rFP, and rDLPFC
as the task progressed (Figure 3F).

In the endogenic frequency band, inactive subjects had
notably more ROI pairs with significant DC than active subjects
at rest (inactive: 6, active: 0), in the 0–10 min (inactive: 1,
active: 0), and the 11–20 min intervals of the task (inactive: 8,
active: 4) (Figures 3G–L and Supplementary Figures S1G–L for
1Hb). During the task, inactive subjects initially had statistically
significant DC form rPMC to Broca’s area (Figure 3H). However,
as fatigue worsened in the second half of the task lM1/S1
became the primary functional area source connecting to bilateral
FP, bilateral PFC, Broca’s area, rPMC, and rSAC (Figure 3I).
Additionally, inactive subjects had two DC pairs in the 11–20 min
period (lM1/S1 to rFP and lM1/S1 to rSAC) that had higher
statistical significance (p < 0.01) (Figure 3I).

In contrast, active subjects had an absence of significant net
information flow between ROIs during rest and the 0–10 min
periods (Figures 3J,K) and only exhibited significant net
information flow between a few functional regions (from lPMC,
rM1/S1, and rSAC to rDLPFC and rM1/S1 to lFP) in the
11–20 min period (Figure 3L).

Neurogenic Frequency Band
Information flow in the neurogenic frequency band is shown
in Figures 4A–C (Supplementary Figures S2A–C for 1Hb) for
inactive subjects and Figures 4D–F (Supplementary Figures
S2D–F for 1Hb) for active subjects. At rest, inactive and
active subject had dPTE sinks at the same ROIs, lFP and rFP
(Figures 4A,D). These dPTE sinks persisted during the handgrip
task while the number of dPTE sources increased between the

0–10 min and 11–20 min periods in both groups. In particular,
inactive subjects had one dPTE source at rPMC in the first task
period and none in the second period (Figures 4B,C). For active
subjects, there were two sources at rPMC and lM1/S1 in the
first period with two additional sources, at rDLPFC and lPMC,
presenting in the second period (Figures 4E,F).

At the neurogenic frequency band, inactive subjects had
more regions with significant net information flow than active
subjects at resting state (inactive: 23, active: 10). However,
active subjects had more significant regions with net information
flow during the task at 0–10 min (inactive: 17, active: 25),
and 11–20 min (inactive: 20, active: 26) (Figures 4G–L
and Supplementary Figures S2G–L 1Hb). Additionally, both
groups had several directed connections with higher statistical
significance (p < 0.01) at the first half (inactive: 7, active: 3)
and the second half (inactive: 7, active: 5) of the task. All
but one of these connections were directed to the FP regions
bilaterally (Figures 4G–L). At rest, inactive subjects had most
ROIs connected to the FP regions bilateral (Figure 4G) whereas,
active subjects’ statistically significant ROIs primarily connected
to the lFP (Figure 4J). During the task, inactive subjects’
significant directional connections were more unilateral, favoring
the contralateral hemisphere and primarily directed to the FP
regions bilaterally (Figures 4H,I). In contrast, active subjects had
more bilateral connections which were largely directed to the rFP,
lFP, lDLPFC, and Broca’s area (Figures 4K,L).

Myogenic Frequency Band
Information flow in the myogenic frequency band is shown in
Figures 5A–C (Supplementary Figures S3A–C for 1Hb) for
inactive subjects and Figures 5D–F (Supplementary Figures
S3D–F for 1Hb) for active subjects for each task period. Notably,
the myogenic frequency had no significant sources for both
groups (Figures 5A–F). At rest, both groups had significant
sinks at lFP, rFP, and lM1/S1 (Figures 5A,D). During the task,
the number of ROIs with sinks increased from 9 to 10 in
inactive subjects (Figures 5B,C) and from 8 to 10 in active
subjects (Figures 5E,F).

At the myogenic frequency band, inactive subjects had more
regions with significant net information flow than active subjects
during the resting state (inactive: 21, active: 11), the 0–10 min
(inactive: 5, active: 1), and the 11–20 min (inactive: 7, active: 1)
task intervals (Figures 5G–L and Supplementary Figures S3G–L
for 1Hb). During resting state, inactive subjects had five very
significant (p < 0.01) directed connections originating from
the rDLPFC, Broca’s area, and rSAC, all ending at the FP
regions bilaterally (Figure 5G). In contrast, active subjects had
only one very significant directed connection from rM1/S1 to
lM1/S1 (Figure 5J). During the task, inactive subjects initially
had net information outflow from M1/S1 bilaterally (Figure 5H),
however, as the task progressed surrounding ROIs such as
rDLPFC, and lSAC became information outflow sources directed
at the lPMC and lM1/S1 (Figure 5I). In contrast, active subjects
demonstrated lM1/S1 as a net information outflow to lPMC
during the first half of the task (Figure 5K) but later transitioned
as a net informational inflow from lSAC at the second half of the
task (Figure 5L).
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FIGURE 3 | Significant dPTE and DC in the endogenic frequency band for inactive and active subjects during the handgrip task for 1HbO. Directed PTE t-values for
each ROI as a color-coded map for inactive subjects (A–C) and active subjects (D–F). Hot (yellow-reds) and cold (light blue-dark blue) colors indicate information
outflow and inflow, respectively. Arrows indicate statistically significant information flow between functional regions for inactive (G–I) and active subjects (J–L). Black
arrows (p < 0.05); Red arrows (p < 0.01). Eleven regions of interest (ROIs) were mapped: left and right frontopolar (lFP; rFP) (red), left and right pre-frontal cortex
(lDLPFC; rDLPFC) (yellow), Broca’s area (green), left and right pre-motor cortex (lPMC; rPMC) (light blue), left and right primary motor and sensory cortical (lM1/S1;
rM1/S1) areas (purple), and left and right sensory association cortex (lSAC; rSAC) (pink).

Correlations Between SFC and FCV
Correlation patterns between SFC and FCV were also explored
for each frequency band and subject group, before and during the
handgrip task (Figure 6). A representative pattern comparison
between group-level SFC and FCV matrices and the resulting
linear correlation plot are shown in Figure 6A as an example of
how the subsequent correlation plots were generated. Correlation
plots for endogenic (top), neurogenic (middle), and myogenic

(bottom) frequency bands are shown for inactive subjects in
Figure 6B and active subjects in Figure 6C.

In the endogenic frequency band, quantitative correlation
analysis revealed a strongly significant (p < 0.001) negative
correlation between SFC and FCV at resting state and for the
11–20 min task interval for inactive subjects (Figure 6B, top row).
Similarly, strong negative correlations were found for all task
periods for active subjects (Figure 6C, top row). The correlation
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FIGURE 4 | Significant dPTE and DC in the neurogenic frequency band for inactive and active subjects during the handgrip task for 1HbO. Directed PTE t-values for
each ROI as a color-coded map for inactive subjects (A–C) and active subjects (D–F). Hot (yellow-reds) and cold (light blue-dark blue) colors indicate information
outflow and inflow, respectively. Arrows indicate statistically significant information flow between functional regions for inactive (G–I) and active subjects (J–L). Black
arrows (p < 0.05); Red arrows (p < 0.01). Eleven regions of interest (ROIs) were mapped: left and right frontopolar (lFP; rFP) (red), left and right pre-frontal cortex
(lDLPFC; rDLPFC) (yellow), Broca’s area (green), left and right pre-motor cortex (lPMC; rPMC) (light blue), left and right primary motor and sensory cortical (lM1/S1;
rM1/S1) areas (purple), and left and right sensory association cortex (lSAC; rSAC) (pink).

between SFC and FCV at 0–10 min for inactive subjects was not
significant but was marginally close to the significance criterion
of p = 0.05 (p = 0.07).

Correlation analysis was significant (p < 0.001) in the
neurogenic frequency band both for inactive (Figure 6B,
middle row) and active subjects at 0–10 min period
only (Figure 6C, middle row). Pearson’s coefficient (r)
values mostly indicated positive correlations, except
for active subjects at resting state. Generally, the

correlation trends were positive in contrast to the
endogenic frequency band.

Quantitative correlation analysis at the myogenic frequency
revealed significant (p < 0.01) negative correlation between
SFC and FCV at 1–10 min and 11–20 min for inactive
subjects (Figure 6B, bottom row) and at the 1–10 min period
for active subjects (Figure 6C, bottom row). The correlation
at the rest period for inactive subjects missed significance
marginally (p = 0.06). The negative correlation trend in
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FIGURE 5 | Significant dPTE and DC in the myogenic frequency band for inactive and active subjects during the handgrip task for 1HbO. Directed PTE t-values for
each ROI as a color-coded map for inactive subjects (A–C) and active subjects (D–F). Hot (yellow-reds) and cold (light blue-dark blue) colors indicate information
outflow and inflow, respectively. Arrows indicate statistically significant information flow between functional regions for inactive (G–I) and active subjects (J–L). Black
arrows (p < 0.05); Red arrows (p < 0.01). Eleven regions of interest (ROIs) were mapped: left and right frontopolar (lFP; rFP) (red), left and right pre-frontal cortex
(lDLPFC; rDLPFC) (yellow), Broca’s area (green), left and right pre-motor cortex (lPMC; rPMC) (light blue), left and right primary motor and sensory cortical (lM1/S1;
rM1/S1) areas (purple), and left and right sensory association cortex (lSAC; rSAC) (pink).

the myogenic frequency band was similar to that in the
endogenic frequency band.

Overall, these plots illustrate a negative correlation trend in
the endogenic and myogenic frequency bands and a positive
correlation in the neurogenic frequency band, regardless of the
physical activity levels of subjects. However, absolute z-values
for inactive subjects were greater than active subjects for
each frequency band, for both the positive and the negative

trends, except for the 0–10 min and 11–20 min period in the
endogenic frequency band.

DISCUSSION

Cerebral autoregulation is a multifactorial process of maintaining
cerebral perfusion and brain tissue oxygenation against changes
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FIGURE 6 | Pattern comparison between static functional connectivity (SFC) and functional connectivity variability (FCV) at endogenic, neurogenic, and myogenic
frequencies for inactive and active subjects during the handgrip task. (A) A representative example of the group-averaged SFC matrix (left), the FCV matrix (middle),
and the linear relationship between them (right). (B) Correlation plots between SFC and FCV for inactive subjects and (C) active subjects at endogenic (top),
neurogenic (middle), and myogenic (bottom) frequencies during resting state (left), 0–10 min (middle), and 11–20 min (right) of the handgrip task.
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in arterial blood pressure that is challenged during exercise
(Tzeng and Ainslie, 2014). The brain maintains relatively
constant regional CBF (rCBF) through coordinated effort of
endogenic, neurogenic and myogenic mechanisms that are
known to be active in different hemodynamic frequency bands
(Cipolla, 2009; Peterson et al., 2011; Tzeng and Ainslie,
2014; Peri-Okonny et al., 2015). The correspondence of each
of these physiological mechanisms to distinct hemodynamic
frequency bands enabled us to examine in this work how
different fNIRS metrics could provide information about the
interplay of these neurovascular coupling mechanisms during a
fatiguing handgrip task.

Firstly, patterns of net information flow quantified by total
dPTE-per-ROI (Hillebrand et al., 2016), calculated as the sum
of all pair-wise contributions to each ROI, revealed which ROIs
contributed to regulation (information sources) versus which
were being regulated (information sinks) during the handgrip
task (Huo et al., 2018). As the directionality of dominant
contributions to net information flow is not evident in the total
dPTE-per-ROI metric, the DC between ROIs was quantified also.
The unidirectional connections indicate that one of the two ROIs
serves as a functional source of coupling with a regulatory role
over the connected sink region (Huo et al., 2018). While results
for 1HbO only were discussed above in detail, the corresponding
1Hb results were examined as well (Supplementary Material).
In all, 1Hb signals yielded smaller dPTE values and fewer
significant DC channel pairs due to smaller amplitudes and lower
signal-to-noise ratio compared to 1HbO signals, although the
general trends were similar.

Furthermore, frequency band-based analyses were applied
here to study the relationship between SFC, which measures
coupling strength between ROIs and is known to increase with
task performance (Jiang et al., 2012), and FCV, which reflects
changes in spontaneous dynamic neural activity patterns between
ROIs and relates to resource availability during demanding tasks
(Li et al., 2015; Fong et al., 2019). The relationship between SFC
and FCV was studied here for each hemodynamic frequency
band to help understand their interdependence in the context
of maintaining handgrip performance in the presence of fatigue.
The latter was evident in the decline in %MVC (Figure 2)
during a handgrip task. Our results showed differences between
subject groups across all fNIRS metrics and hemodynamic
frequency bands, suggesting that active subjects used different
cortical activity strategies compared to inactive ones to maintain
handgrip performance with increasing fatigue.

Endogenic Frequency Band
Subjects with different physical activity levels displayed different
dPTE and DC patterns in the endogenic (0.003–0.02 Hz)
frequency band (Figure 3). Physical exercise increases CBF, as
a result of elevated shear stress in the arterial walls which
subsequently facilitates endogenic involvement in the regulation
of rCBF (Nosarev et al., 2015). The cerebrovascular endothelium
releases vasoactive mediators, including nitric oxide (NO)
and endothelium-derived hyperpolarizing factor, diffusing into
vascular smooth muscle, which contribute to CBF regulation
through vasodilation (Cipolla, 2009; Peterson et al., 2011).

At rest, the dPTE and DC patterns together resemble the
default mode network (DMN) for inactive subjects with either
incoming (sinks) and outgoing (source) information flow at
PMC, lM1/S1, Broca’s area, and rSAC. The DMN is highly
engaged during rest and is involved in the emergence of
spontaneous thought (van den Heuvel and Hulshoff Pol, 2010;
Doucet et al., 2011, 2012; Raichlen et al., 2016). The DMN
has previously been observed in the endogenic frequency for
dPTE analysis (Cao et al., 2018b). and endogenic frequency
specific FC maps (Bandettini and Bullmore, 2008). In this
work active subjects did not exhibit any resting state dPTE
network (indicating no net directional information flows) in the
endogenic frequency band.

The handgrip task evoked significant dPTE and DC in the PFC
and motor cortex in the endogenic frequency band, in particular
for the inactive subjects. There was notable silencing of the ROIs
associated with the DMN in dPTE and DC patterns once the
task began, analogous to the DMN deactivation seen during tasks
(Raichlen et al., 2016). For inactive subjects, the initial connection
was from lPMC to Broca’s area. However, as fatigue increased
the source became more unilateral in the left hemisphere at
the motor cortex (lPMC and lM1/S1) and connected more to
sinks in the PFC (FP and DLPFC). These observations suggest
that motor regions (PMC and lM1/S1), which are involved
in motor preparation and execution respectively (Frackowiak,
2004) regulated the DLPFC, which is associated with cognitive
activity, planning, motivation during goal-driven tasks, and
inhibiting/excitatory control during exercise (Semendeferi et al.,
2001; Frackowiak, 2004; Marek and Dosenbach, 2018). Inactive
subjects had notably more significant dPTE and DC than active
subjects in the endogenic frequency band particularly during
the first period. We speculate that active subjects had limited
dPTE (lDLPFC and rSAC) and no significant DC until the
second half of the task because regular exercise training enhances
performance and the physically active subjects would presumably
be more efficient earlier in the exercise task.

Strength of SFC is known to correlate with performance
and increases with difficulty or effort in prior neuroimaging
studies (Jiang et al., 2012; Rhee and Mehta, 2018). On the
other hand, FCV signifies a cortical region that dynamically
changes its connectivity strength with other regions so as to tap
into more neuronal network resources while already established
connections may fade in strength as fatigue sets in Fong et al.
(2019). In the endogenic frequency, there is a negative correlation
between SFC and FCV both for inactive (Figure 6B, top row) and
active subjects (Figure 6C, top row). Several prior FCV studies
have also found similarly negative correlations between these two
metrics (Allen et al., 2014; Li et al., 2015; Fong et al., 2019). It has
been suggested that task performance may depend on more stable
(less variable) connectivity strength between regions involved in
the regulation of the task (Fong et al., 2019). The more significant
r-value (which indicate less variable connectivity) and lower
%MCV reduction seen in active subjects (higher performance)
compared to inactive ones is consistent with this interpretation.

Overall, the endogenic frequency band may be related to
fatigue levels, meaning that higher fatigue would result in more
endogenic regulation. We speculate that active subjects likely did
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not experience as much fatigue as inactive ones, as suggested by
Figure 2, and supported by the difference in the amount of dPTE
and DC between ROIs seen in Figures 3F,L.

Neurogenic Frequency Band
Subjects with different physical activity levels displayed different
dPTE and DC patterns in the neurogenic (0.02–0.04 Hz)
frequency band. The neurogenic mechanism integrates the high
metabolic demands of neuronal tissue during a task with the
neurovascular unit (endothelial cells, perivascular nerves, and
astrocytes abducted to cortical microvessels) to release vasoactive
neurotransmitters as a means of regulating rCBF based on
neuronal demands (Cipolla, 2009; Peterson et al., 2011).

At rest, the dPTE and DC patterns together resemble the
DMN and fronto-parietal network (FPN) for inactive and active
subjects with either incoming (sinks) and outgoing (source)
information flow at PMC and SAC, which integrates sensory
information and forms connections between sensory and motor
areas, for the DMN and FP and SAC for the FPN. The FPN is
highly integrated with other brain networks, like the DMN and
motor network (MN), and is involved in coordinating behavior in
a rapid, accurate, and flexible goal-driven manner (Doucet et al.,
2011, 2012; Marek and Dosenbach, 2018), including planning
of motor control (Raichlen et al., 2016). Our FPN similarity
findings are supported by a neuroimaging study indicating that
endurance athletes had more significant FC in the FPN than
non-athletes, although this fMRI study focused on a frequency
range that mostly included the neurogenic frequency band
(Raichlen et al., 2016).

The handgrip task evoked significant dPTE and DC globally
in the neurogenic frequency band for both active and inactive
subjects. During the handgrip task, the FPN was still engaged
as evident by dPTE and DC patterns. In FC studies, the FPN
is known to activate during motor tasks, such as the fatiguing
handgrip in this study (Urquhart et al., 2019), to provide a
functional back-bone for rapid and flexible modulation of other
brain networks, such as the MN (Marek and Dosenbach, 2018).
Inactive and active subjects also had similar, persistent dPTE
and DC patterns during the handgrip task although, active
subjects had more significant dPTE ROIs and DC connections.
The neurogenic frequency band reflects the cortical resources
available during the task, thus suggesting that active subjects have
more cortical resources and exercise-altered neuroplasticity than
inactive subjects (Mueller et al., 2017). Lastly, in the neurogenic
frequency band, there were greater numbers of significant DC
connections during the task than at rest, for all subjects, similar
to prior neuroimaging studies (Liu et al., 2003, 2007; Benwell
et al., 2005; White et al., 2009; Mehta and Shortz, 2014; Zhiguo
et al., 2016; Rhee and Mehta, 2018). During the handgrip task
itself, the FP was a common functional sink in all subjects,
but active subjects also involved Broca’s area. The FP region is
associated with planning, cognitive branching, and monitoring
importance of competing goal-driven tasks (Semendeferi et al.,
2001; Frackowiak, 2004; Mansouri et al., 2017; Marek and
Dosenbach, 2018). and Broca’s area is involved with producing
language and inner speech (Perrone-Bertolotti et al., 2014).
The latter is likely related to the silent expression of conscious

thought to oneself during handgrip task performance in our
study. In our prior work, we demonstrated that active subjects
reported utilizing self-talk to motivate themselves during the task
(Urquhart et al., 2019).

The neurogenic frequency band was the only frequency
band to have a positive correlation between SFC and FCV for
both inactive (Figure 6B, middle row) and active (Figure 6C,
middle row) subjects. Prior neuroimaging studies also noted
a positive correlation between exercise duration and increased
hemodynamic signal variance (Benwell et al., 2005), and task
performance and increasing neurogenic signal (Bosch et al.,
2017). The non-significant r-value (which indicate more variable
connectivity) and the %MCV reduction over time suggest that
subjects were likely trying to tap into more cortical networks as
they gradually fatigued. The significant r-values seen initially (0–
10 min) in both groups support the notion that task performance
may depend on more stable connectivity strength. As fatigue
increased (11–20 min) both subject groups had more variable
connectivity (i.e., non-significant r-value), possibly indicating an
effort to recruit previously untapped cortical network resources.

Overall the neurogenic frequency band reflects the cortical
resources available during the handgrip task (Boyle et al., 2008).
Similar to FC, as physical effort for the task increased, the number
of dPTE ROIs and DC connections increased as well before
reducing again as fatigue increased. We hypothesize that active
subjects had more dPTE ROIs and DC connections than inactive
ones because they could recruit more cortical network resources,
as enabled by exercise-related neuroplasticity.

Myogenic Frequency Band
Subjects with different physical activity levels displayed different
dPTE and DC patterns in the myogenic (0.04–0.15 Hz) frequency
band. The myogenic regulatory mechanism plays an important
role in stabilizing rCBF under differing physiological conditions,
such as exercise (Cipolla, 2009). Exercise causes increased
blood pressure resulting in depolarization of smooth muscle
cell membrane and calcium influx and initiating the myogenic
response, resulting in smooth muscles constricting during
increased pressure (Cipolla, 2009; Peterson et al., 2011).

The resting state networks appeared to differ between inactive
and active subjects in the myogenic frequency band based on
dPTE and DC patterns. Inactive subjects’ functional sinks at
FP and most significant DC pair-wise connections (red arrows)
resemble the FPN. As previously mentioned, the FPN is often
interconnected with other resting state networks, such as the
MN to facilitate motor task control (Marek and Dosenbach,
2018). In contrast, the active subjects’ resting network was more
reflective of the MN, with dPTE at M1/S1 and the most significant
(red arrows) DC occurring between the M1/S1 areas as well
as between the PMC areas bilaterally. The MN is a part of an
extrinsic system of resting state networks that is typically driven
by external sensory stimulation (Doucet et al., 2011). Active
subjects appeared to have more active MN connectivity at rest
than inactive subjects.

Inactive and active subjects also had different dPTE and DC
patterns during the handgrip task in the myogenic frequency
band. For inactive subjects, the lDLPFC was regulated by the
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M1/S1 during the first half (0–10 min). The M1/S1 sources
are involved in motor execution, in particular during hand
movement (Anwar et al., 2016; Jiang et al., 2012, Rhee and
Mehta, 2018; Mehta and Shortz, 2014; Bajaj et al., 2014, Michely
et al., 2018) which we hypothesize is why the DC connections
were directed toward these motor planning sink regions. The
DC to lDLPFC is interesting due to its association with an
approach reaction toward a goal (Ernst et al., 2013), such as
maintaining task performance. As fatigued worsened for inactive
subjects, the DC to lDLPFC was regulated by the rDLPFC
instead that, especially during prolonged exercise, in known to
purposely inhibit bodily afferences that arise with physical fatigue
to preserve mental effort during exercise maintenance (Rupp
et al., 2013; Radel et al., 2017).

For active subjects, the lPMC was regulated by the lM1/S1 in
the first half of the task. Like the inactive subjects, the lM1/S1
source is directed toward the motor planning associated PMC
sink region. As fatigue worsened, the lM1/S1 became a net
receiver of information by the lSAC source instead. Similarly,
a prior EEG study demonstrated substantial location shifts of
focal regions during a fatiguing handgrip task from anterior
to posterior regions as a means to maintain task performance
(Liu et al., 2007).

Lastly, inactive subjects had nearly significant negative
correlations between FCV and SFC at rest and significant
negative correlations during the task (Figure 6B, bottom row).
Many FCV studies have found similarly negative correlations
between these two metrics (Allen et al., 2014; Li et al., 2015;
Fong et al., 2019). As previously mentioned, the significant
r-values suggest that improved task performance requires less
variable connectivity in the regulation of the task (Fong et al.,
2019). While active subjects also exhibited negative correlations
between FCV and SFC, these were not significant except during
0–10 min. Active subjects likely experienced lower fatigue levels
at 11–20 min, which could contribute to the non-significant
r-value (Figure 6C, bottom row). Mayer waves could also
possibly confound myogenic frequency band results due to their
overlapping frequency at about 0.1 Hz (Yücel et al., 2016).

Overall the myogenic frequency band reflects the blood supply
to the ROIs that is regulated by the arterioles (Cipolla, 2009). We
hypothesize that active subjects were able to dilate arterioles more
efficiently (Green et al., 2012), and as a result they had improved
blood supply to motor areas compared to inactive subjects. The
increased availability of resources locally to the ROIs of active
subjects controlling the motor task is a possible explanation for
the lower number of DC pairs seen for this group relative to
inactive subjects, whose ROIs had to recruit more resources from
other locations while trying to maintain task performance.

LIMITATIONS

There are several limitations to this study that should
be addressed. This study did not incorporate multimodal
monitoring of systemic hemodynamics, such as heart rate, blood
pressure, and respiration, which could be used as regressors to
improve fNIRS signals as well as provide information of the

systemic physiology itself (Tachtsidis and Scholkmann, 2016).
An alternative method would be to employ short-distance
channels (<1 cm), which were not available in the commercial
optode holder cap used, to remove by regression hemodynamic
fluctuations that co-occur in the cortex as well as superficial
scalp layers (Gagnon et al., 2012; Tachtsidis and Scholkmann,
2016). Although we used bandpass filters and PCA to remove
physiological inferences and global hemodynamic fluctuations,
there exists several other different computational methods
including (i) independent component analysis, (ii) singular
value decomposition (SVD) and Gaussian kernel smoothing,
(iii) statistical correction methods, (iv) wavelet-based methods,
or (v) a combination of these methods can be used for
removal (Huppert et al., 2009; Jang et al., 2009; Tachtsidis
and Scholkmann, 2016; Cao et al., 2018b; Duan et al., 2018;
Klein and Kranczioch, 2019). Thus, a quantitative comparison
using different global component removal methods is warranted
in future studies.

CONCLUSION

This study presents a direct comparison of differences in
dynamic fNIRS metrics (dPTE, DC, SFC, FCV) between
physically active and inactive subjects as they tried to maintain
performance despite fatigue during a maximal effort task. The
results of our study demonstrate how physical activity improves
the neurovascular regulation mechanisms at the endogenic,
neurogenic, and myogenic frequency bands. This modulation
allowed for active subjects to maintain higher %MVC longer and
delay fatigue onset. In future work we propose to expand these
analyses to study subject populations of older age and impaired
cardiovascular health.
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FIGURE S1 | Significant dPTE and DC in the endogenic frequency band for
inactive and active subjects during the handgrip task for 1Hb. Directed PTE
t-values for each ROI as a color-coded map for inactive subjects (A–C) and active
subjects (D–F). Hot (yellow-reds) and cold (light blue-dark blue) colors indicate
information outflow and inflow, respectively. Arrows indicate statistically significant
information flow between functional regions for inactive (G–I) and active subjects
(J–L). Black arrows (p < 0.05); Red arrows (p < 0.01). Eleven regions of interest
(ROIs) were mapped: left and right frontopolar (lFP; rFP) (red), left and right
pre-frontal cortex (lDLPFC; rDLPFC) (yellow), Broca’s area (green), left and right
pre-motor cortex (lPMC; rPMC) (light blue), left and right primary motor and
sensory cortical (lM1/S1; rM1/S1) areas (purple), and left and right sensory
association cortex (lSAC; rSAC) (pink).

FIGURE S2 | Significant dPTE and DC in the neurogenic frequency band for
inactive and active subjects during the handgrip task for 1Hb. Directed PTE
t-values for each ROI as a color-coded map for inactive subjects (A–C) and active
subjects (D–F). Hot (yellow-reds) and cold (light blue-dark blue) colors indicate
information outflow and inflow, respectively. Arrows indicate statistically significant
information flow between functional regions for inactive (G–I) and active subjects
(J–L). Black arrows (p < 0.05); Red arrows (p < 0.01). Eleven regions of interest
(ROIs) were mapped: left and right frontopolar (lFP; rFP) (red), left and right
pre-frontal cortex (lDLPFC; rDLPFC) (yellow), Broca’s area (green), left and right
pre-motor cortex (lPMC; rPMC) (light blue), left and right primary motor and
sensory cortical (lM1/S1; rM1/S1) areas (purple), and left and right sensory
association cortex (lSAC; rSAC) (pink).

FIGURE S3 | Significant dPTE and DC in the myogenic frequency band for
inactive and active subjects during the handgrip task for 1Hb. Directed PTE
t-values for each ROI as a color-coded map for inactive subjects (A–C) and active
subjects (D–F). Hot (yellow-reds) and cold (light blue-dark blue) colors indicate
information outflow and inflow, respectively. Arrows indicate statistically significant
information flow between functional regions for inactive (G–I) and active subjects
(J–L). Black arrows (p < 0.05); Red arrows (p < 0.01). Eleven regions of interest
(ROIs) were mapped: left and right frontopolar (lFP; rFP) (red), left and right
pre-frontal cortex (lDLPFC; rDLPFC) (yellow), Broca’s area (green), left and right
pre-motor cortex (lPMC; rPMC) (light blue), left and right primary motor and
sensory cortical (lM1/S1; rM1/S1) areas (purple), and left and right sensory
association cortex (lSAC; rSAC) (pink).

TABLE S1 | Spatial registration of fNIRS channel positions on a standard brain
fMRI atlas. MNI coordinates displayed as mean (SD); r-right contralateral brain
hemisphere; l- left ipsilateral brain hemispheres.

TABLE S2 | Preprocessing input parameters used in Homer2.
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