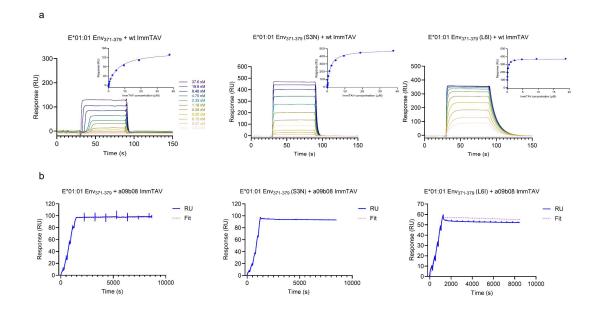
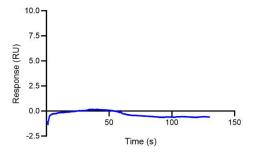

Viral sequence determines HLA-E-restricted T cell recognition of hepatitis B surface antigen

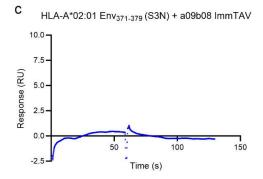
Gavuthami Murugesan¹, Rachel L. Paterson¹, Rakesh Kulkarni¹, Veronica Ilkow¹, Richard J. Suckling¹, Mary M. Connolly¹, Vijaykumar Karuppiah¹, Robert Pengelly¹, Archana Jadhav¹, Jose Donoso¹, Tiaan Heunis¹, Wilawan Bunjobpol¹, Gwilym Philips¹, Kafayat Ololade¹, Daniel Kay¹, Anshuk Sarkar¹, Claire Barber¹, Ritu Raj¹, Carole Perot¹, Tressan Grant¹, Agatha Treveil¹, Andrew Walker¹, Marcin Dembek¹, Dawn Gibbs-Howe¹, Miriam Hock¹, Ricardo J. Carreira¹, Kate E. Atkin¹, Lucy Dorrell¹, Andrew Knox¹, Sarah Leonard¹, Mariolina Salio¹, Luis F. Godinho¹.

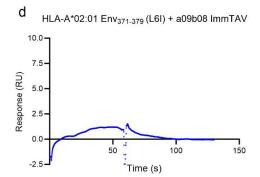

¹Immunocore Ltd, 92 Park Drive, Abingdon, Oxfordshire, OX14 4RY, UK.

[†]These authors contributed equally: Gavuthami Murugesan, Rachel L. Paterson.

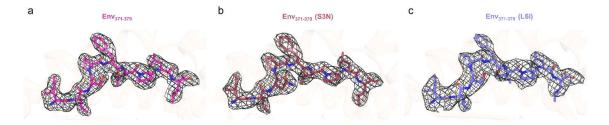
Correspondence should be addressed to L.F.G. (email: luis.godinho@immunocore.com)

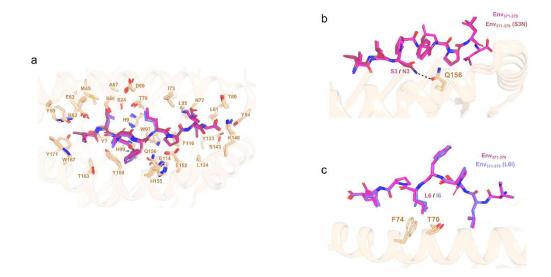

Supplementary Figure 1. Flow cytometry measurement of HLA-E surface expression in K562-E*01:01 and K562-E*01:03. HBV Env₃₇₁₋₃₇₉ variants, Mtb RLPA and signal peptides (A80, B7 and Cw3) binding to HLA-E (01:01, left panels; 01:03, right panels) was measured by scHLA-E upregulation at the cell surface by flow cytometry using 3D12 antibody (HLA-E antibody). Cells were pulsed with 100 μg/ml for 16 h before analysis. **a** Gating strategy used to analyse HLA-E expression on singlets and live K562-E*01:01 or K562-E*01:03 cells presented on Fig. 1b. **b** Mean fluorescence intensity (MFI) of HLA-E (3D12) plotted. Data are represented as mean ± SD of two independent experiments. Source data are provided as a Source Data file.

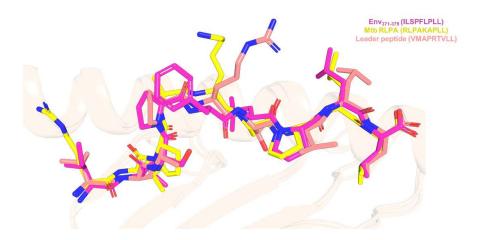


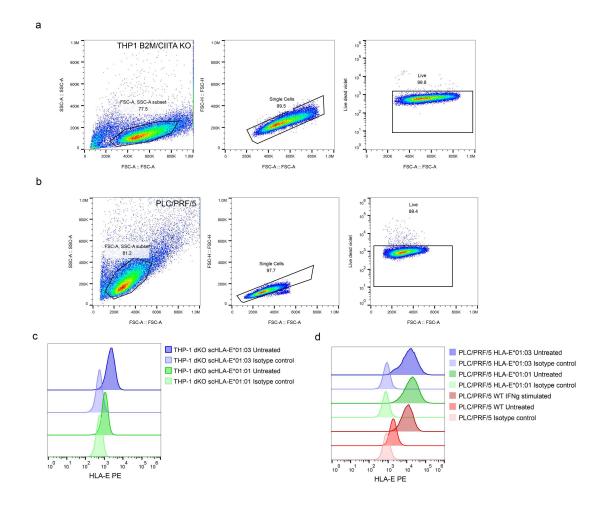

Supplementary Figure 2. Binding kinetics of wild type and a09b08 ImmTAVs to HBV pHLA-E*01:01 complexes. a Binding curves for WT ImmTAV and all three HBV pHLA-E*01:01 complexes. Binding was determined over a range of analyte concentrations from 37 nM to 37.6 μM. Insets: calculation of steady-state affinity, data are presented as mean values ± SD. **b** Binding kinetics for a09b08 ImmTAV and all three HBV pHLA-E*01:01 complexes. Graphs show the mean of the raw data (blue) and the 1:1 fit (dotted red line). For the binding kinetic graphs, ImmTAV was flown over the chip as the analyte at concentrations ranging from 0.313 to 5 nM. Kinetic constants were determined using a 1:1 Langmuir model. All experiments were performed at 25°C in triplicate. Data are presented as mean values ± SD of triplicates. Source data are provided as a Source Data file.

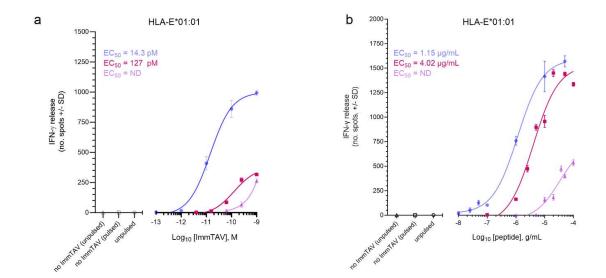
pHLA-A*02:01	pHLA loaded (RU)	Folded pHLA (%)	a09b08 binding (RU)	pHLA (t _{1/2} h)	pHLA (Tm °C)
Env ₃₇₁₋₃₇₉	95	30.7	0	17.2±7.7	63.9±0.1
Env ₃₇₁₋₃₇₉ (S3N)	110	26.5	0.5	16.8±7.5	63.6±0.1
Env ₃₇₁₋₃₇₉ (L6I)	98	29.8	1.1	19.0±7.4	65.1±0.1

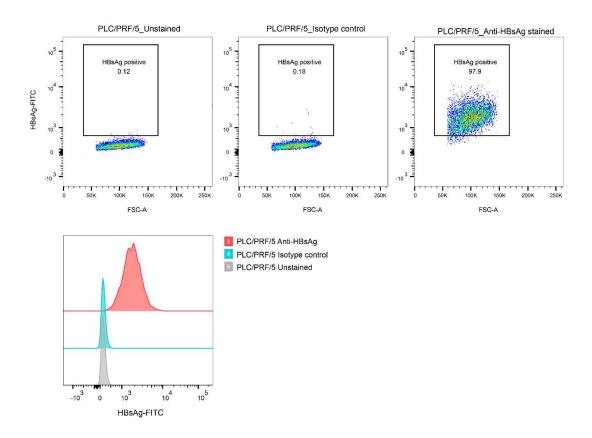


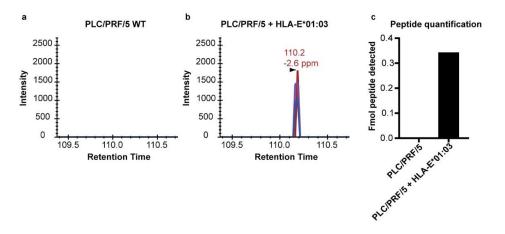


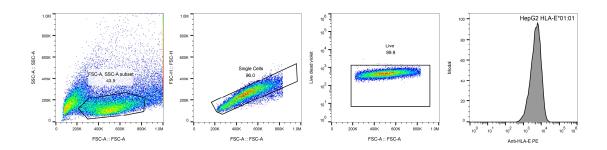

Supplementary Figure 3. The a09b08 ImmTAV does not bind to pHLA-A*02:01 complexes loaded with HBV Env₃₇₁₋₃₇₉ peptides. a Summary table of the SPR experimental conditions. b Sensorgram for a09b08 ImmTAV (10 nM) and HBV Env₃₇₁₋₃₇₉ pHLA-A*02:01 complexes. c Sensorgram for a09b08 ImmTAV (10 nM) and HBV Env₃₇₁₋₃₇₉ (S3N) pHLA-A*02:01 complexes. d Sensorgram for a09b08 ImmTAV (10 nM) and HBV Env₃₇₁₋₃₇₉ (L6I) pHLA-A*02:01 complexes. All experiments were performed at 25°C. Data are represented as mean \pm SD. Source data are provided as a Source Data file.

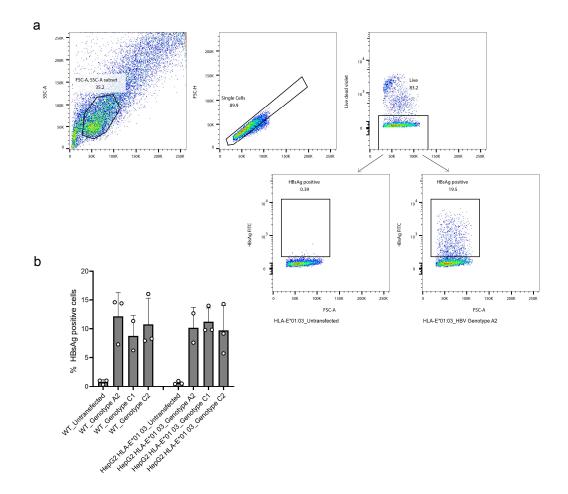

Supplementary Figure 4. Illustration of the electron density maps for the HBV peptides within the TCR-pHLA-E complexes. Fo-Fc omit Fourier electron density maps of $Env_{371-379}$ in magenta (a) $Env_{371-379}$ (S3N) in red (b) and $Env_{371-379}$ (L6I) in blue (c) peptides in the TCR-pHLA-E complexes. The electron density (black mesh) was contoured at 3σ .


Supplementary Figure 5. Conformation of the three peptide variants in the HLA-E*01:03 binding **groove. a** Overlay of the three TCR-pHLA-E complexes aligned on HLA-E. The Env₃₇₁₋₃₇₉ peptide is coloured in magenta, Env₃₇₁₋₃₇₉ (S3N) in red and Env₃₇₁₋₃₇₉ (L6I) in blue. HLA-E residues within 4 Å of the peptides are displayed as sticks. TCR chains are omitted for clarity. **b** Overlay as in **a** showing distance between N3 in the Env₃₇₁₋₃₇₉ (S3N) peptide and Q156 in HLA-E is shorter than with S3 in the Env₃₇₁₋₃₇₉ peptide. The dotted line indicates polar contact. **c** Overlay as in **a** showing conformational difference between the Env₃₇₁₋₃₇₉ and Env₃₇₁₋₃₇₉ (L6I) variants at peptide position 3 and surrounding residues in HLA-E.

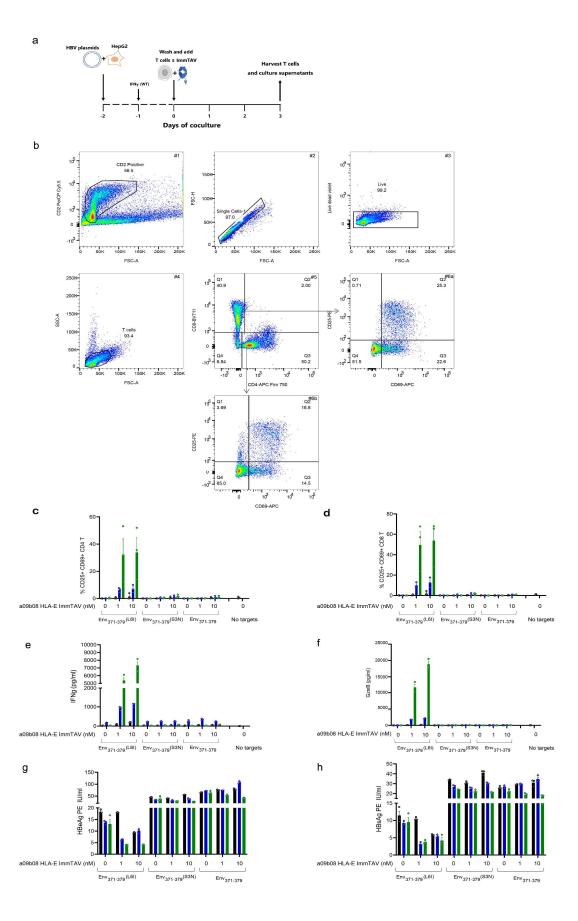

Supplementary Figure 6. Profile view of superimposition via the HLA peptide-binding grooves for three peptides in HLA-E*01:03. Comparison of Env₃₇₁₋₁₇₉ (ILSPFLPLL, in purple), Mtb RLPA (in yellow, PDB 6GH1) and HLA-B7 signal sequence (in salmon, PDB 1MHE) peptides alignment on HLA-E*01:03. The MHC α1 helix is shown in wheat.


Supplementary Figure 7. Flow cytometry measurement of cell surface HLA-E expression. THP1 cells knock-out for *CIITA* and *B2M* (dKO, lacking endogenous HLA class I and II) (**a**, **c**) and PLC/PRF/5 (**b**, **d**) were transduced to overexpress single chain HLA-E*01:01 or 01:03 or treated overnight with 1 ng/mL of INF-γ. Cell surface HLA-E was detected by flow cytometry after staining with the anti-HLA-E (3D12) antibody. Gating strategy used to analyse singlets and live THP1 dKO (**a**) and PLC/PRF/5 (**b**) cells. Histograms (**c**, **d**) show HLA-E expression and are representative of three independent experiments.

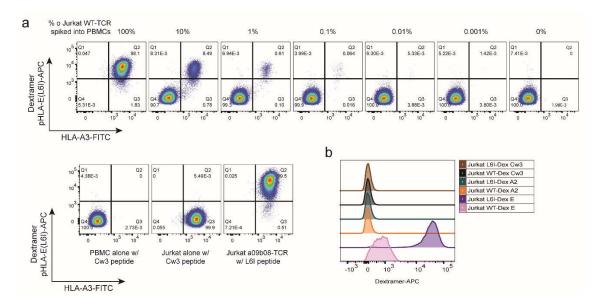

Supplementary Figure 8. The a09b08 ImmTAV molecule elicits T cell responses against cells displaying HBV pHLA-E complexes. a ELISPOT assay measuring dose-dependent IFN- γ release induced by a09b08 ImmTAV in co-cultures of PBMC from 3 HBV-naïve donors and THP-1-E*01:01 cells pulsed with Env₃₇₁₋₃₇₉, Env₃₇₁₋₃₇₉ (S3N) and Env₃₇₁₋₃₇₉ (L6I) peptides (10 µg/mL). b IFN- γ ELISPOT assays showing titratable activation of PBMC from 3 HBV-naïve donors by a09b08 ImmTAV (1 nM) in the presence of THP-1-E*01:01 cells pulsed with the indicated amounts of peptide. Controls (a-b, clear symbols) include PBMC + target cells (no ImmTAV; unpulsed or pulsed with 10 µg/mL peptide), and PBMC + ImmTAV + target cells (unpulsed). Average EC₅₀ are indicated in the inset at the top left corner of the figures. Data plotted as mean \pm SD of triplicates. All donor EC₅₀ values and averages are displayed in Supplementary Table 5. Source data are provided as a Source Data file.


Supplementary Figure 9. HBsAg expression in PLC/PRF/5 cells. PLC/PRF/5 cells were fixed, permeabilised and stained with FITC conjugated anti-HBsAg antibody. Bivariate density plot and histogram indicate the expression of intracellular HBsAg in PLC/PRF/5 HCC cell line and is representative of two independent experiments.

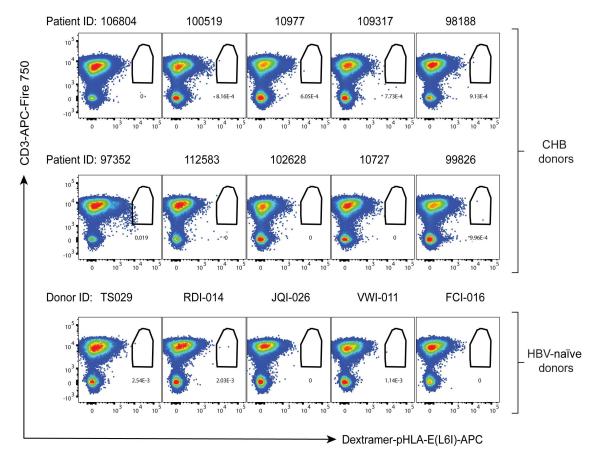
Supplementary Figure 10. HBV Env₃₇₁₋₃₇₉ **(L6I) peptide identification by mass spectrometry.** Fragment ion intensities obtained when analysing wild type PLC/PRF/5 cells (a) or PLC/PRF/5 cells overexpressing HLA-E*01:03 (b) by parallel reaction monitoring mass spectrometry. **c** Absolute amount of peptide detected in samples when using a ratio metric approach comparing endogenous peptide levels to the stable heavy isotope labelled internal peptide standard. Source data are provided as a Source Data file.

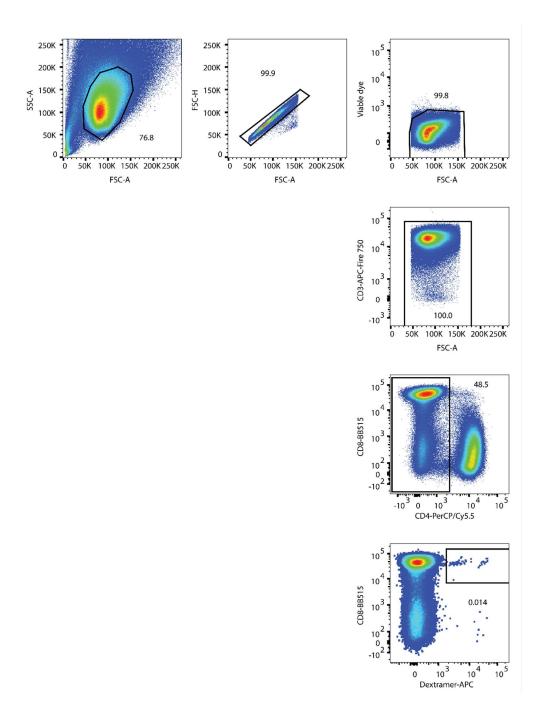


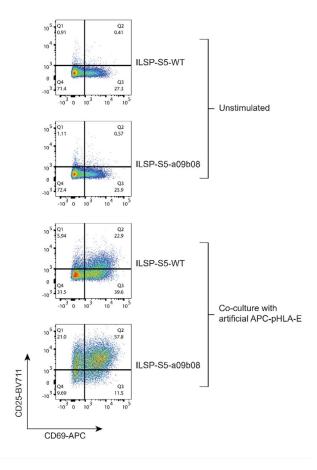
Supplementary Figure 11. Gating strategy of HepG2 cells transduced with HLA-E*01:01 or HLA-E*01:03 analysed and presented on Fig. 6a.



Supplementary Figure 12. Flow cytometry quantification of HBV infection of HepG2 cells.


Wildtype and HLA-E*01:03 overexpressing HepG2 cells were transfected with HBV plasmids encoding Genotype A2 (Env₃₇₁₋₃₇₉ (L6I)), C1 (Env₃₇₁₋₃₇₉ (S3N)) and C2 (Env₃₇₁₋₃₇₉). 24 h post-transfection cells were fixed, permeabilised and stained with FITC conjugated anti-HBsAg. **a** Gating strategy used to analyse singlets and live HBsAg positive cells. **b** Graph represents percentage of cells expressing intracellular HBsAg. Data are represented as mean \pm SD from three independent experiments. Source data are provided as a Source Data file.


Supplementary Figure 13. The a09b08 ImmTAV activates T cells to eliminate HBV-transfected HepG2 cells. a HepG2 wildtype and HLA-E*01:03 overexpressing cells were transfected with replication competent HBV plasmids encoding genotype A2 (Env₃₇₁₋₃₇₉ (L6I)), C1 (Env₃₇₁₋₃₇₉ (S3N)) and C2 (Env₃₇₁₋₃₇₉)). 24 h post-transfection, some wells of HepG2 wildtype cells were stimulated with IFN-γ (1 ng/mL) for 16 h. Cells were washed and co-cultured with pan T cells (1:1 ratio) with or without a09b08 ImmTAV at concentrations 1 nM and 10 nM. Pan T cells and culture supernatants were harvested 72 h (end of co-culture) according to the schematics shown (modified from Fergusson et al., 2020¹). Pan T cells were stained for the activation markers (CD25 and CD69) and analysed by flow cytometry. Panel a is released under a Creative Commons Attribution-Non Commercial 4.0 International license (https://creativecommons.org/licenses/by-nc/4.0/deed.en). b Gating strategy used to analyse CD2+ pan T cells, singlets, viable CD4 and CD8 T cells and their activation status. The percentage of CD4⁺ (c) and CD8⁺ (d) T cells expressing CD69 and CD25 at 72 hours were plotted as mean \pm SEM of 3 donors. Levels of granzyme B (e) and IFN- γ (f) in the culture supernatants at 72 hours were quantified using MSD. Data represents the mean ± SEM of triplicates (n=3). HBeAg (g) and HBsAg (h) levels in the culture supernatant at day 3 were quantified using ELISA. Dots represent values from three independent experiments and error bars represent mean ± SEM (n=7). Source data are provided as a Source Data file.


Supplementary Figure 14. Sensitivity of the dextramer-E reagent to recognize HLA-E restricted HBV-specific CD8⁺ **T cells and TCR Jurkat clones. a** Jurkat clones transduced with wild type TCR were spiked into HBV-naïve PBMC at different concentrations ranging from 100-0.001% and were stained with dextramer-HLA-E Env₃₇₁₋₃₇₉ (L6I) to assess the sensitivity of the reagent. Jurkat cells transfected with high affinity a09b08 TCR were used as positive control. Jurkat cells are HLA-A3 positive. b Jurkat clones transduced with wild type (WT) and high affinity a09b08 TCR (L6I) were stained with dextramer-HLA-E Env₃₇₁₋₃₇₉ (L6I) (pink and purple histograms), HLA-A*02:01 Env₃₇₁₋₃₇₉ (L6I) (yellow and dark green histograms), or the HLA-E*01:03 Cw3 signal peptide (black and brown histograms) to test the dextramer specificity.

Supplementary Figure 15. Detection of HBV antigen-specific T cells by pHLA-E multimers from fresh PBMC. PBMC from CHB donors (n=10) and HBV-naïve donors (n=5) were incubated with dextramer-HLA-E Env₃₇₁₋₃₇₉ (L6I) to detect % of CD3⁺ dextramer-E⁺ cells (dextramer positive cells were gated as live CD3⁺ singlet cells).

Supplementary Figure 16. Flow cytometry measurement of HLA-E restricted HBV CD8⁺ **T cell frequency.** Gating strategy used to analyse the singlet, viable cell population, CD3⁺ population, CD8⁺ population and dextramer-E positive CD8⁺ T cell population in HBV-naïve and CHB donor samples.

Supplementary Figure 17. Artificial antigen presenting cell (aAPC) activate Jurkat cells expressing wt and a09b08 TCRs after co-culture. aAPCs conjugated to L6I-pHLA-E and anti-CD28 antibody were co-cultured overnight with Jurkat cells transduced with either wt TCR or a09b08 TCR; cells were analysed by flow cytometry for the upregulation of activation markers CD25 and CD69.

	Genotype prevalence						
HBV peptide	Α	В	C	D	E		
	(n=586)	(n=3313)	(n=1127)	(n=748)	(n=235)		
Env ₃₇₁₋₃₇₉	0.00	0.00	0.65	0.84	0.00		
Env ₃₇₁₋₃₇₉ (S3N)	0.00	0.00	0.21	0.00	0.00		
Env ₃₇₁₋₃₇₉ (L6I)	0.45	0.16	0.09	0.03	0.91		

Supplementary Table 1. Genotype prevalence (A-E) of Env₃₇₁₋₃₇₉, Env₃₇₁₋₃₇₉ (S3N) and Env₃₇₁₋₃₇₉ (L6I) variants worldwide. Prevalence calculated on the number of full-length sequences analysed per genotype (n).

		a09b08 binding (RU)				
pHLA-E*01:03	pHLA loaded (RU)	Run 1	Run 2	Run 3		
Leaders A2/Cw3/G	2090	-3.3	-3.2	-3		
Leaders A34/A80/B7/Cw7	2097	-4.8	-4.7	-4.5		
Env ₃₇₁₋₃₇₉ (L6I)	687	103.4	138.9	162.8		

Supplementary Table 2. The a09b08 ImmTAV does not bind pHLA-E*01:03 complexes loaded with signal peptides. Summary table of the SPR experimental conditions.

Molecule	Env ₃₇₁₋₃₇₉ -HLA-E	Env ₃₇₁₋₃₇₉ (S3N)-HLA-E	Env ₃₇₁₋₃₇₉ (L6I)-HLA-E
PDB code	8RLT	8RLU	8RLV
Space group	P2 ₁	P2 ₁	P2 ₁
Unit cell dimensions	a, b, c = 79.70 Å, 155.06 Å, 93.41 Å	a, b, c = 81.42 Å, 147.84 Å, 91.91 Å	a, b, c = 80.18 Å, 153.81 Å, 93.40 Å
onit cell dimensions	α, β, γ = 90.00°, 97.04°, 90.00°	α, β, γ = 90.00°, 99.03°, 90.00°	α, β, γ = 90.00°, 96.63°, 90.00°
X-ray source	DLS i04	DLS i04	DLS i04
Wavelength (Å)	0.97950	0.97950	0.97950
Resolution range (Å)	79.57-2.25 (2.29-2.25)	65.51-2.35 (2.39-2.35)	79.65-2.61 (2.65-2.61)
Completeness (%)	98.6 (95.8)	99.4 (88.9)	99.2 (97.3)
Multiplicity	7.2 (7.4)	6.9 (5.2)	7.1 (6.8)
Ι/σ Ι	10.5 (0.5)	9.3 (0.6)	10.7 (0.4)
R_{merge}	0.150 (2.958)	0.159 (1.606)	0.142 (3.246)
R _{pim}	0.060 (1.164)	0.065 (0.758)	0.057 (1.345)
CC _{1/2}	0.998 (0.493)	0.992 (0.521)	0.998 (0.313)
Unique reflections	104999 (5115)	88665 (3947)	67783 (3323)
Refinement			
Rwork / Rfree (%)	20.94/25.21	20.83/26.09	19.76/25.06
RMS (bonds)	0.008	0.008	0.008
RMS (angles)	1.574	1.567	1.625
Mean B-factor (Ų)	66.90	58.72	94.35

Supplementary Table 3. Data processing and refinement statistics for TCR-pMHC complexes. Values in parentheses refer to the outer resolution shell.

HLA-E	a09b08 TCR (HBV	a09b08 TCR (HBV	a09b08 TCR (HBV
	Env ₃₇₁₋₃₇₉)	Env ₃₇₁₋₃₇₉ (S3N))	Env ₃₇₁₋₃₇₉ (L6I))
R62	Η94α, Ν95α	Η94α, Ν95α	Η94α, Ν95α
R65	Η94α, Ν95α, Τ96α,	Η94α, Ν95α, Τ96α,	Η94α, Ν95α, Τ96α,
	G97α, R97β	G97α, R97β	G97α, R97β
S66	Η94α	Η94α	Η94α
D69	Υ31β, R97β	Υ31β, R97β	Υ31β, V50β, R97β
Q72	Ε30β, Υ31β V50β,	Ε30β, S51β	Ε30β, V50β, S51β
	S51β		
173		Ε30β	Ε30β
R75	S51β	Ε30β	Ε30β, S51β
V76	Ε30β	Ε30β	Ε30β
A150	R95β	R95β	R95β
E152			R95β
E154	Υ51α, Κ56α	Υ51α, Κ56α	Υ51α, L52α, Κ56α
H155	Υ51α, Τ99β, Ε100β	Υ51α, Τ99β	Υ51α, Τ99β, Ε100β
R157	L52α	L52α	L52α
A158	Υ51α, L52α	Υ51α, L52α	Υ51α, L52α
E161	L52α	L52α	L52α
D162	Ν53α, Κ67α	Κ67α	Ν53α, Κ67α
Peptide			
I1	Η94α	Η94α	Η94α
P4	Η94α	Η94α	Η94α
F5	V31α, Y51α, N96β	V31α, Y51α, N96β	V31α, Y51α, N96β
L6 (I6)	Ν96β	N96β	N96β
L8	R95β	R95β	R95β

Supplementary Table 4. List of TCR-pHLA-E interactions for the three complexes determined using a distance cut-off of 4 $\hbox{Å}$.

Experir	Experimental conditions tested (Figure 4a)			EC ₅₀ (pM ImmTAV)			
ImmTAV	Target cell	Target peptide	Donor 1	Donor 2	Donor 3	Average	
	THP-1-E*01:03	10 μg/mL L6l	3.97	5.32	1.79	3.69±1.5	
	THP-1-E*01:01		14.3	8.13	20.3	14.2±5.0	
Titration	THP-1-E*01:03	10 μg/mL S3N	5.34	4.79	11.8	7.31±3.2	
	THP-1-E*01:01		127	104	224	152±52	
	THP-1-E*01:03	10 μg/mL index	60.9	73.7	224	120±74	
	THP-1-E*01:01	10 μβ/ πε παεχ	ND	ND	ND	ND	
Experir	nental conditions tes	ted (Figure 4b)	EC ₅₀ (μg/mL peptide)				
ImmTAV	Target cell	Target peptide	Donor 1	Donor 2	Donor 3	Average	
	THP-1-E*01:03	Titration of L6I	1.43E-03	4.45E-04	1.25E-03	1.04E-03±4.3E-04	
	THP-1-E*01:01		1.15	0.485	0.447	0.695±0.3	
1 nM	THP-1-E*01:03	Titration of S3N	0.35	0.171	0.137	0.219±0.1	
_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	THP-1-E*01:01		4.02	4.31	6.36	4.9±1.0	
	THP-1-E*01:03	Titration of index	9.89	4.90	11.4	8.74±2.8	
	THP-1-E*01:01		ND	ND	ND	ND	
Experir	Experimental conditions tested (Figure 4c)			ECso (pM ImmTAV)			
ImmTAV	Target cell	Target peptide	Donor 1	Donor 2	Donor 3	Average	
		L6I minigene	4.44	2.38	4.15	3.66±0.9	
Titration	HepG2 minigene	S3N minigene	342	107	ND	224±117.5	
		Index minigene	ND	ND	ND	ND	

Supplementary Table 5. EC_{50} (pM or $\mu g/mL$) values, averages, and standard deviations for all PBMC donors discussed in Fig. 4. For each individual donor the average of triplicate measurements is shown.

Cell line	HLA A	HLA B	HLA C	HLA-E	Equivalent HLA leader peptides*
3 0	alleles	alleles	alleles	alleles	_qa.ra.c reade. peptides
HEDCO	A*02:01	B*35:14	C*04:01	E*01:01	A2 B1E Cw2 Cw16
HEPG2	A*24:02	B*51:08	C*16:02	E*01:01	A2, B15, Cw3, Cw16
DI CDDEE	A*03:01	B*42:02	C*04:01	E*01:03	A1 D7 D15 Cw2 Cw7
PLCPRF5	A*33:01	B*53:01	C*17:01	E*01:03	A1, B7, B15, Cw3, Cw7
TUD 1	A*02:01	B*15:11	C*03:03	E*01:03	A2 D1E Cw2
THP-1	A*02:01	B*15:11	C*03:03	E*01:03	A2, B15, Cw3

Supplementary Table 6. MHC Class I alleles and leader peptides of cell lines. HLA-E genotyping was performed in house as described in materials and methods. *Leader peptide sequences as described in Supplementary Table 7.

Peptide name	Abbreviated peptide name	Description	Peptide Sequence	HLA-E*01:01 INF-γ release (SFU ± SD)	HLA-E*01:03 INF-γ release (SFU ± SD)
HBV Env ₃₇₁₋₃₇₉	Index	Env ₃₇₁₋₃₇₉ peptide	ILSPFLPLL	ND	ND
HBV Env ₃₇₁₋₃₇₉ (L6I)	L6I	Env ₃₇₁₋₃₇₉ (L6I) variant	ILSPFIPLL	1406±77.5	1386±45.9
HBV Env ₃₇₁₋₃₇₉ (S3N)	S3N	Env ₃₇₁₋₃₇₉ (S3N) variant	ILNPFLPLL	ND	ND
Leader A1	LA1		VMAPRTLLL	67.8±14.9	65.6±28.4
Leader A2	LA2		VMAPRTLVL	50.5±6.8	64.5±9.8
Leader A34	LA34		IMAPRTLVL	55.5±6.8	54.5±18.9
Leader A80	LA80		VMPPRTLLL	44.8±8.6	61.1±14.3
Leader B7	LB7	HLA leader sequence	VMAPRTVLL	43.3±7.8	48.7±7.3
Leader B13	LB13	peptides ²	VTAPRTLLL	53±13.4	56±17.9
Leader B15	LB15	peptides	VTAPRTVLL	42.8±13.4	40±17.4
Leader Cw3	LCw3	1	VMAPRTLIL	51.6±26.3	53.8±30.0
Leader Cw7	LCw7	1	VMAPRALLL	30.3±12.9	44.1±22.1
Leader Cw16	LCw16		VMAPQALLL	33.3±16.4	49.1±19.2
Leader G	LG		VMAPRTLFL	44.8±19.8	48.1±19.7
Mimetic peptide 1	Mimetic peptide 1	Potential mimetic peptides from the human	ALSWRLPLL	61.6±21.8	54.1±15.6
Mimetic peptide 2	Mimetic peptide 2	proteome*	ILQRFLPLI	60.5±20.8	48.6±29.1
Hsp60 signal peptide	Hspd1 ₁₀₋₁₈	Self HLA-E binding peptide ³	QMRPVSRVL	43.8±6.36	41.8±9.9
Mtb RLPA	Mtb RLPA	Mtb HLA-E binding	RLPAKAPLL	67.1±12.6	72.1±12.8
MTB MmmpL8 ₇₅₋₈₃	MTB mmpL8 ₇₅₋₈₃	peptides ^{4,5}	ILPSDAPVL	52.6±17.39	54.8±17.4
HCV Core ₃₆₋₄₄	HCV Core ₃₆₋₄₄	Hepatitis C virus HLA-E binding peptide ^{5,6}	LLPRRGPRL	61.1±21.8	60±30.1
ImmTAV + PBMCs	•	•	•	16.2±13.4	8.3±6.1
ImmTAV+PBMC+Targe	48.2±8.2	77.8±36.5			

Supplementary Table 7. Details of peptides used for ELISpot and/or peptide pulsing assays.

Average IFN- γ responses from 2 HBV-naïve donor PBMC in the presence of 1 nM ImmTAV and THP-1-E cells pulsed with 10 μ g/mL of either Env₃₇₁₋₃₇₉ (L6I) peptide or other indicated HLA-E known binding peptides. *Human 9-mer peptides identified from the human proteome with similar properties to the target peptide. SFU = average number of spot forming units. Error bars mean \pm S.D (standard deviation) of two PBMC donors each tested in triplicate. Source data are provided as a Source Data file.

Patient ID	Age	Gender	HBV viral load	HBsAg detection		HLA typing		Variants	identified
			(IU/mL)		HLA-A alleles	HLA-B alleles	HLA-C alleles	Major Variant	Minor Variant
106804	36	Female	171	Positive	A*33:03:01:01 A*74:01:01:01	B*15:03:01 B*15:10:01	C*02:10:01:01 C*03:04:02:01	L6I (ILSPFIPL*)	L6I (ILSPFIPLL)
100519	50	Female	175	Positive	A*11:01:01:01 A*29:02:01:01	B*15:02:01 B*44:03:01	C*08:01:01 C*16:01:01	L6I (ILSPFIPLL)	L6M (ILSPFMPL(L/*)
10977	48	Male	Undetected	Nonreactive	A*01:01:01:01 A*24:02:01:01	B*08:01:01 B*15:01:01	C*04:01:01 C*07:01:01	L6I (ILSPFIPLL)	ND
109317	43	Female	9670300	Positive	A*24:02:01:01 A*30:01:01:01	B*40:02:01 B*46:01:01	C*01:02:01 C*03:03:01	Index (ILSPFLPLL)	L8V (ILSPFLPVL)
98188	49	Female	<20	Positive	A*02:01:01:01 A*29:02:01:01	B*35:01:01 B*57:01:01	C*04:01:01 C*07:01:01	Index (ILSPFLPLL)	Several minor peaks
97352	46	Female	Undetected	Nonreactive	A*30:01:01:01 A*30:02:01:01	B*13:02:01 B*18:01:01	C*05:01:01 C*06:02:01	Index (ILSPFLPLL)	ND
112583	44	Female	<20	Nonreactive	A*03:02:01:01 A*33:01:01:01	B*14:02:01 B*27:05:02	C*02:02:02 C*08:02:01	L6I (ILSPFIPLL)	Index (ILSPFLPLL)
102628	36	Female	312	Positive	A*32:01:01:01 A*33:03:01:01	B*07:06:01 B*56:01:01	C*01:02:01 C*08:02:01	L2VL6I (IVSPFIPLL)	Several minor peaks
10727	49	Female	2191	Positive	A*02:01:01:01 A*29:01:01:01	B*07:02:01 B*51:02:01	C*07:02:01 C*15:02:01	I1TL6M (TLSPFMPLL)	L6M (ILSPFMPLL)
99826	60	Female	<20	Positive	A*01:01:01:01 A*68:02:01:01	B*07:02:01 B*15:10:01	C*03:04:02 C*07:02:01	S3N (ILNPFLPLL)	ND

Supplementary Table 8: Clinical characteristics, HLA class I haplotype and Env target sequence of patients with chronic HBV infection. HBV DNA (IU/mL) levels and HBsAg detection in the blood were provided by Sanguine Bioscience. HBV viral DNA was isolated from serum and amplified by PCR to sequence the surface antigen region. Both the major and minor variant sequences detected by NGS sequencing are mentioned. *Stop codon. ND = not detected.

Antibody	Clone	Company	Catalog number	Dilution
CD2-PerCP Cy5.5	RPA-2.10	Biolegend	300216	01:50
CD4-APC/Cy7	SK3	Biolegend	344616	01:50
CD8 BV711	RPA-T8	Biolegend	301043	01:50
CD69-APC	FN50	Biolegend	310910	01:50
CD25-PE	M-A251	Biolegend	302606	01:50
CD3-APC-Fire 750	SK7	Biolegend	344840	01:50
CD4-PerCP/Cy5.5	RPA-T4	Biolegend	300530	01:50
CD8-BB515	RPA-T8	Biolegend	564526	01:50
FITC anti-HBsAg	polyclonal	Abcam	ab21021	01:25
HLA-E-PE	3D12	Biolegend	342604	01:100
CD25-BV711	M-A251	Biolegend	356138	01:50
HLA-A3-FITC	GAP.A3	Invitrogen	11-5754-42	01:50
PE Mouse IgG1, κ Isotype	MOPC-21	BD Pharmingen	559320	1:50
HLA-E	3D12	Invivo Biotech services	N/A	10 μg/mL
HLA-A2	BB7.2	Invivo Biotech services	N/A	10 μg/mL

Supplementary Table 9. List of antibodies used in this study. HLA-E and HLA-A2 monoclonal antibodies were ordered and manufactured for Immunocore Ltd. N/A = not applicable. Antibodies validation was done by the manufacturer.

Cell line	Supplier	Catalogue number	Media	Modifications
K562	ATCC*	CCL-243	R10	Lentiviral transduction with θ_2 m-HLA-E*01:01 or θ_2 m-HLA-E*01:03 single chain gene-fusion constructs
HEPG2	ATCC*	НВ 8065	E10	Stable transfection with minigene encoding peptide of interest (ILSP index, L6I, or S3N). Lentiviral transduction with full length <i>62m-HLA-E*01:03</i> .
PLC/PRF/5	Public Health England	85061113	D10	Lentiviral transduction with full length $ extit{\beta}_2$ m-HLA-E*01:03
THP-1	ATCC*	TIB202	R10	CRISPR-Cas9 knockout of <i>B2M</i> and <i>CIITA</i> ; lentiviral transduction with θ_2m -HLA-E*01:01 or θ_2m -HLA-E*01:03 single chain gene-fusion constructs

Supplementary Table 10 Cell lines, suppliers, and culture conditions. R10 = RPMI media supplemented with 1% (v/v) penicillin/streptomycin, 2 mM L-glutamine, and 10% fetal calf serum (FCS); D10 and E10 are DMEM and EMEM supplemented as R10. *ATCC = American Type Culture Collection (Manassas, USA).

Primer Name	Primer direction	Primer sequence 5'-3'	Application
HLA-E-genotyping_Fwd	Forward	GGTCTCACACCCTGCAGTGGA	HLA-E genotyping
HLA-E-genotyping_Rev	Reverse	AGCCCTGTGGACCCTCTT	HLA-E genotyping
β ₂ m-sgRNA_Fwd	Forward	CTCGCGCTACTCTCTTTC	CRISPR-KO
β ₂ m-sgRNA_Rev	Reverse	GGCCACGGAGCGAGACATCT	CRISPR-KO
CIITA-sgRNA_Fwd	Forward	CTACCACTTCTATGACCAGA	CRISPR-KO
CIITA-sgRNA_Rev	Reverse	CATCGCTGTTAAGAAGCTCC	CRISPR-KO
HBV surface Ag_Fwd	Forward	GACTYGTGGTGGACTTCTC	PCR
HBV surface Ag_Rev	Reverse	TCAGCAAAYACTYGGCA	PCR
HBV nested_Fwd	Forward	TGGATGTCTGCGGCGTTTTATCAT	PCR
HBV nested_Rev	Reverse	ATDCKTTGACANACTTTCCAATCAA	PCR
HBV-sequencing_Fwd	Forward	CACHTGTATTCCCATCCCA	Sanger Sequencing

Supplementary Table 11. List of primers used in this study.

Supplementary References

- 1. Fergusson, J. R. *et al.* Immune-Mobilizing Monoclonal T Cell Receptors Mediate Specific and Rapid Elimination of Hepatitis B–Infected Cells. *Hepatology* **72**, 1528–1540 (2020).
- 2. Pietra, G. *et al.* HLA-E-restricted recognition of cytomegalovirus-derived peptides by human CD8+ cytolytic T lymphocytes. *Proc. Natl. Acad. Sci.* **100**, 10896–10901 (2003).
- 3. Michaëlsson, J. *et al.* A Signal Peptide Derived from hsp60 Binds HLA-E and Interferes with CD94/NKG2A Recognition. *J. Exp. Med.* **196**, 1403–1414 (2002).
- 4. Joosten, S. A. *et al.* Mycobacterium tuberculosis Peptides Presented by HLA-E Molecules Are Targets for Human CD8+ T-Cells with Cytotoxic as well as Regulatory Activity. *Plos Pathog* **6**, e1000782 (2010).
- 5. Barber, C. *et al.* Structure-guided stabilization of pathogen-derived peptide-HLA-E complexes using non-natural amino acids conserves native TCR recognition. *Eur J Immunol* (2022) doi:10.1002/eji.202149745.
- 6. Molero-Abraham, M., Lafuente, E. M., Flower, D. R. & Reche, P. A. Selection of Conserved Epitopes from Hepatitis C Virus for Pan-Populational Stimulation of T-Cell Responses. *J. Immunol. Res.* **2013**, 601943 (2013).