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Abstract
Background: The induction of cytokines by airway cells in vitro has been widely used to assess the
effects of ambient and occupational particles. This study measured cytotoxicity and the release of
the proinflammatory cytokines IL-6 and IL-8 by human bronchial epithelial cells treated with
manufactured nano- and micron-sized particles of Al2O3, CeO2, Fe2O3, NiO, SiO2, and TiO2, with
soil-derived particles from fugitive dust sources, and with the positive controls LPS, TNF-α, and
VOSO4.

Results: The nano-sized particles were not consistently more potent than an equal mass of
micron-sized particles of the same nominal composition for the induction of IL-6 and IL-8 secretion
in the in vitro models used in this study. The manufactured pure oxides were much less potent than
natural PM2.5 particles derived from soil dust, and the cells were highly responsive to the positive
controls. The nano-sized particles in the media caused artifacts in the measurement of IL-6 by
ELISA due to adsorption of the cytokine on the high-surface-area particles. The potency for
inducing IL-6 secretion by BEAS-2B cells did not correlate with the generation of reactive oxygen
species in cell-free media.

Conclusion: Direct comparisons of manufactured metal oxide nanoparticles and previously
studied types of particles and surrogate proinflammatory agonists showed that the metal oxide
particles have low potency to induce IL-6 secretion in BEAS-2B cells. Particle artifacts from non-
biological effects need to be considered in experiments of this type, and the limitations inherent in
cell culture studies must be considered when interpreting in vitro results. This study suggests that
manufactured metal oxide nanoparticles are not highly toxic to lung cells compared to
environmental particles.

Background
Nanosized particles of many different metal and ceramic
oxides are currently being commercially manufactured for

applications that include high-performance composite
materials, abrasives in semiconductor manufacturing,
photochemically active or wavelength selective surface
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coatings, process catalysts, electronic components, and
cosmetics. Particles smaller than 100 nm of carbon, silica
and titanium dioxide are currently sold as bulk chemicals,
and many more nanoparticle types will be produced in
tonnage quantities as manufacturing technology
improves and prices are reduced. Increased production
volume on nanomaterials will lead to increased human
and environmental exposure from normal use, fugitive
emissions, accidental spills, and disposal of materials after
use. Current environmental laws and occupational health
guidelines are based on the nominal chemical composi-
tion and seldom specify special standards for ultrafine or
nano-sized particles. The potential occupational health
and environmental effects of these nano-sized powders
are a public policy concern, and this research was funded
by a program addressing toxicology of manufactured
nanomaterials.

Particle-induced tissue inflammation has been proposed
as a central process connecting inhaled particles with
adverse health effects [1]. The onset and resolution of
inflammation is regulated by cytokines, a class of signal-
ing molecules associated with many processes including
cell growth and differentiation, physiological responses of
tissues, and recruitment of macrophages and other mobile
cells to specific sites [2-4]. Cytokine assays are widely used
in studies of lung cell responses to particles and other pol-
lutants [5]. Much of the recent in vitro particle toxicology
research has used ELISA assays to measure the cytokines
IL-6 [6-8], IL-8 [9-11], and TNF-α [12-14] in cell cultures
exposed to different types of solid particles.

There is increasing evidence suggesting that redox-active
transition metals associated with particles can induce pro-
inflammatory responses in lung cells [9,15-18]. Reactive
oxygen species (ROS) is a non-specific term that includes
both radicals (OH•, O2 

-•) and non-radicals (H2O2).
There is evidence for both extracellular and intracellular
reactions leading to ROS formation in particle-treated in
vitro systems [14,19,20]. Extracellular generation of ROS
has been proposed as a mechanism by which particles
may stimulate cell-surface receptors. The oxidation of the
probe dichlorodihydrofluorescein (DCFH) to the fluores-
cent compound 2' – 7' dichlorofluorescein (DCF) is a
common way of measuring ROS in cell cultures [21-23].
The DCFH assay measures multiple species including
RO2•, RO•, OH•, HOCl, ONOO- [24] and the products
of metal-catalyzed reactions involving peroxide.

Animal studies with carbon black and titanium dioxide
particles reported that particles smaller than 30 nm have
a greater ability to induce lung inflammation than larger
particles with the same nominal composition [25,26].
Both Donaldson [27] and Oberdörster [28] concluded in
reviews that ultrafine particles of low-solubility, low-tox-

icity materials are more inflammogenic in the rat lung
than larger particles from the same material, and hypoth-
esized that the effects are related to surface area and
involve oxidative stress.

Although many studies have investigated particle-induced
cytokine responses in vitro, it is difficult to make quantita-
tive comparisons of various particle types from the litera-
ture. Comparisons are confounded by differences
between studies in the biological model tested (rodent or
human macrophages or epithelial cells, immortalized or
normal cells), the experimental protocol (concentration,
duration), and endpoints reported (cell death, cytokine
secretion, changes in mRNA). This study used a consistent
set of in vitro experimental protocols to study six different
compositions of manufactured particles that are commer-
cially available as both nano- and micron sized powders.
We used a nominal diameter of 30 nm as the definition of
nanosized particles and compared these to particles larger
than 1 µm diameter of the same nominal chemical com-
position. We also compared the manufactured metal and
ceramic oxide particles to soil-derived dusts [29,30] and
to the positive controls lipopolysaccharide (LPS), tumor
necrosis factor-alpha (TNF-α) and soluble vanadium
(VOSO4). The objectives were to: 1) characterize the
proinflammatory cytokine response of human lung epi-
thelial cells treated in vitro with manufactured metal and
ceramic oxide particles, 2) compare nano-sized and
micron-sized particle pairs for several different oxides,
and 3) compare the cytokine responses induced by man-
ufactured oxide particles to the responses to natural min-
erals and surface-derived fugitive dusts.

Results
Particle characterization
The particles used in this study are described in Table 1.
The surface-mean particle size calculated from nitrogen
adsorption area measurement was close to the nominal
particle size furnished by the vendor except for the super-
micron particles of NiO. The adsorbtion surface area was
much greater than the geometrical surface for the nominal
diameter indicating that the NiO particles either are aggre-
gates or have internal porosity. The natural dusts, pre-
pared by resuspension and aerodynamic separation with
an upper size cutpoint of <3 µm, also have high surface
area indicating that the nominal PM2.5 dust had a broad
size distribution and contained significant amounts of
smaller particles.

The elemental compositions of the natural soil-derived
dusts as measured by x-ray fluorescence are dominated by
the crustal elements, Al, Si, Ca, Mg, and Ti. The endotoxin
content, organic carbon content (functionally defined as
the carbon that is volatile in He atmosphere at tempera-
ture steps < 550°C) and the elemental carbon content
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(carbon that is removed in 2% O2/98% He at tempera-
tures from 550 to 800°C) are listed in Table 2.

Cell responses
Cell viability was evaluated to insure that low levels of
cytokine secretion were not caused by cell death during
the treatment period. Figure 1 shows the assay results for
the highest treatment concentration (53 µg/cm2) of parti-
cles and for the concentrations of positive controls listed
in Table 1. Only the VOSO4 positive control caused more
than 20% loss of cell viability at the 24-h time point, as
measured by the mitochondrial reduction of WST-8.

The release of IL-6 by the immortalized cell line BEAS-2B
in response to treatment with pairs of nano- and micron-
sized particles is shown in Figure 2. Experiments were
conducted in both KGM (2a and 2c) and LHC-9 media
(2b and 2d). Graphs in 2a and 2b show typical results
obtained from single experiments. Presented in this way
the data suggest that the metal oxide particles induce
small increases in IL-6 secretion, but that the nano-sized
particles are not consistently more potent than the larger
particles in each pair. Graphs 2c and 2d present the data
in 2a and 2b merged with a followup experiment and also
present the results from positive controls run in both
experiments. The agreement between the two experiments
is good, but the larger data set suggests that the IL-6
response to all the pure oxide manufactured particles is
small compared to the positive controls. The pure oxides
were also compared to kaolin (pottery clay), and Min-U-

Sil (commercial mechanically ground crystalline silica),
and neither of these particle was highly potent for induc-
ing IL-6 secretion. The experiments in Figure 2 were con-
ducted 5.3 and 53 µg/cm2 particle concentration in media
with 0.1% BSA added. Data shown are for the high parti-
cle treatment concentration and for the positive control
concentrations in Table 1. Similar small responses to pure
oxide particles compared to positive controls were seen at
the low dose and in experiments with as-formulated
media.

To further characterize the response of BEAS-2B cells to
the manufactured oxide particles we conducted a separate
set of experiments where each cell culture plate contained
two of the nano-sized particle types, soil-derived particles
from three different sites, and positive controls. Figure 3
shows the merged results of five independent experiments
conducted in KGM and LHC-9 media with particles at 53
µg/cm2 and with the positive controls at concentrations
listed in Table 1. The manufactured metal and ceramic
oxide particles were less potent for the induction of IL-6
release than an equal mass concentration of three differ-
ent soil-derived dusts. The LPS, TNF-a, and soluble vana-
dium are positive controls that show that the BEAS-2B
cells are capable of producing IL-6 under the experimental
conditions. The DD, JE, and MC samples are PM2.5-
enriched dusts prepared from surface soil samples, and
are the same materials used in our previous studies of
cytokine response in epithelial cells exposed to atmos-
pheric fugitive dust particles [29,30]. These data

Table 1: Particle characteristics.

Code Name Nominal Size
µm

Vendor Surface
m2/g

Surface mean
diameter µm

Comment

Al-N nano Al2O3 0.008 – 0.014 3 261 0.006 alpha alumina
Al-M micron Al2O3 1 1 7.7 0.21 gamma alumina
Ce-N nano CeO2 0.009 – 0.015 1 71.3 0.014
Ce-M micron CeO2 5 1 0.6 1.5
Fe-N nano Fe2O3 0.003 1 221 0.005
Fe-M micron Fe2O3 5 1 11.6 0.10
Ni-N nano NiO 0.010 – 0.020 5 145 0.006
Ni-M micron NiO < 10 5 56.9 0.016
Si-N nano SiO2 0.010 3 127 0.019 amorphous silica
Si-M micron SiO2 0.5 – 10 1 5.4 0.44 amorphous silica
Ti-N nano TiO2 0.005 3 242 0.006 anatase
Ti-M micron TiO2 1 – 2 1 3.5 0.41 rutile
KLN kaolin 2 24.3 0.1 commercial clay for ceramics
MUS Min-U-Sil < 5 6 ground crystalline silica
DD rural soil, Desert < 3 4 6.2 0.4 PM2.5-enriched natural dust
JE urban street, Juarez < 3 4 PM2.5-enriched natural dust
MNC rural soil, Mancos < 3 4 13.0 0.2 PM2.5-enriched natural dust
LPS lipopoly-saccharide soluble 5 positive control P. aeruginosa 1000 EU/mL
V VOSO4 soluble 1 positive control 19 µg/mL
TNF-α tumor necrosis factor alpha soluble 5 positive control 0.01 µg/mL

Supplier codes: 1) Alfa Aesar; 2) Capitol Ceramics, Salt Lake City, UT; 3) Nanostructured and Amorphous Materials, Los Alamos NM; 4) Natural 
mixture, field sampling by authors; 5) Sigma Aldrich; 6) US Silica.
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strengthen the conclusion that the IL-6 secretion response
of BEAS-2B cells to the pure oxides is small compared to
other previously studied and environmentally relevant
particle types.

Nano-sized SiO2 particles caused a statistically significant
increase in IL-6 compared to both the untreated control
and the cells treated with micron-sized SiO2 particles in six
consecutive experiments with BEAS-2B cells indicating a
reproducible pattern. For the other nano- and micron-
sized particle pairs there was no conclusive evidence for

the nanoparticles being consistently more potent than an
equal mass concentration of the paired micron-sized par-
ticles.

The relative responses of BEAS-2B cells in the two types of
cell culture media are characteristic of what we observed
in a separate study comparing different in vitro lung cell
models for particle toxicology [manuscript in prepara-
tion]. BEAS-2B cells in KGM media are highly responsive
to vanadium and other soluble metals, as has been
reported by others [31-34], but show relatively low
response to LPS. In LHC-9 media the relative response to
LPS and soluble metals is reversed.

The focus of this study was on IL-6 secretion by BEAS-2B
cells, but we also measured IL-8 secretion and tested other
cell types. Figure 4 shows typical IL-8 secretion data from
a typical experiment with treatment at the high particle
concentation. Again, any responses to the pure metal
oxides are small and near control levels, and similar small
responses were also seen at the low treatment concentra-

Table 2: Soil-derived particle composition.

Identification Organic 
Carbon, %

Elemental 
Carbon, %

Endotoxin 
EU/mg

DD 8.1 0.26 27
JE 21.1 1.6 274
MNC 3.8 0.48 5.3

Treatments at the maximum particle concentrations used in this study were not highly toxic to the cells as indicated by a mito-chondrial reductase assayFigure 1
Treatments at the maximum particle concentrations used in this study were not highly toxic to the cells as indicated by a mito-
chondrial reductase assay. Data are mean ± s.d., normalized by the control, N = 9, and are typical of multiple cell passages. * 
designates statistically different than control. Sample ID codes are in Table 1.
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IL-6 response of in vitro cell cultures treated with equal mass concentrations (53 µg/cm2) of nano- and micron-sized particles of the same nominal substanceFigure 2
IL-6 response of in vitro cell cultures treated with equal mass concentrations (53 µg/cm2) of nano- and micron-sized particles of 
the same nominal substance. A and B represent single experiments, N = 9. C and D are merged results from two independent 
experiments, N = 9 and N = 4 and have a broken scale to show the positive controls. A, C, : BEAS-2B cells in KGM media with 
0.1% BSA; B, D. BEAS-2B cells in LHC-9 media with 0.1% BSA, IL-6 concentrations in pg/mL, mean ± s.d. *denotes statistically 
greater than control. Treatment codes are in Table 1.
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Comparison of manufactured Fe2O3 and SiO2 nanoparticles to soil-derived dusts (DD, JE, MC) at 53 µg/cm2 and to positive controls at concentrations listed in Table 1Figure 3
Comparison of manufactured Fe2O3 and SiO2 nanoparticles to soil-derived dusts (DD, JE, MC) at 53 µg/cm2 and to positive 
controls at concentrations listed in Table 1. IL-6 concentration in pg/mL, mean ± standard error of the mean (95% confidence 
interval) based on 5 independent experiments. Note the discontinuity in the Y-axis scale. A. KGM media with BSA 0.1% BSA. 
B. LHC-9 with 0.1% BSA.
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tion. Figure 5 shows typical IL-6 secretion in normal
human bronchial epithelial cells (NHBE, Clonetics). The
NHBE cells produce much higher control levels of IL-6
than the BEAS-2B cells, but the increased secretion in
response to the pure oxide particles is small for both the
53 and 5.3 µg/cm2 particle treatmetn concentrations.

Particle artifacts
During initial experiments we observed apparent artifacts
in the measured cytokine concentrations and hypothe-
sized that surface adsorption on some particles reduced
the ELISA measurements. Experiments were conducted in
which a known amount of recombinant IL-6 was added to
suspensions of particles in cell culture media and in
media with supplemental protein. The data were consist-
ent with non-specific binding of IL-6 to surfaces. Figure 6a
and 6b show the effect of increasing exogenous protein
supplementation using bovine serum albumin (BSA) or
newborn calf serum on the measured IL-6 concentration
in cell-free suspensions of kaolin, nano-sized SiO2, and
TiO2. Without particles the measured IL-6 in cell culture
media was close to the standard in serum-based assay
diluent. The presence of 200 µg/mL of particles reduced
the measured IL-6 concentration compared to the IL-6
standard in assay diluent, denoted by * in the graph. The
measured IL-6 concentration increased with increasing
amounts of supplemental protein. Addition of greater
than 0.1% BSA and 1% FCS to the media resulted in a sta-
tistically significant increase in measured IL-6 compared
to the same particle suspension without supplemental
protein, denoted by # in the graph. Both the SiO2 and
TiO2nanoparticles resulted in a statistically significant
reduction in measured IL-6 compared to the standard for
all mixtures including the highest tested protein supple-
mentation: 3% BSA and 10% FCS. The highest level of
protein supplementation eliminated the measurement
artifact for 200 ug/mL of kaolin. The results presented
were obtained with KGM media, but similar results were
seen with LHC-9 media (data not shown).

Figure 6c shows the effect of adding logarithmically
increasing concentrations of kaolin and nano-sized
Fe2O3, SiO2, and TiO2 particles to cell culture media with-
out supplemental protein. Particle concentrations of 3.1,
10, and 31 µg/mL did not cause a statistically significant
decrease in measured IL-6. The p-values for 100 µg/mL of
kaolin and nano-SiO2 were only slightly greater than 0.05,
and the 316 µg/mL concentration of all particles resulted
in a statistically significant decrease. The 100 µg/mL parti-
cle concentration corresponds to the 53 µg/cm2 particle
concentration which was used as the high treatment level
in the cell response experiments (400 µL suspension in a
0.75 cm2 well). Protein concentrations, measured by the
Bradford assay and compared to a BSA standard, are 24
and 39 µg/mL for as-formulated KGM and LHC-9 media

respectively. Media used for cell culture contains slightly
higher protein due to cell secretions (2 – 4 µg/mL increase
at 24 h). The use of 0.1% BSA in the cell culture media
therefore corresponds to about a 50-fold increase in solu-
ble protein available to block non-specific binding.

The wetted plastic area in the cell culture well is about 2.4
cm2. In contrast, at 100 µg/mL of particles and 400 µL of
suspension per cell culture well the nitrogen adsorption
surface area of the particles ranges from 19 cm2 for kaolin
to 210 cm2 for nano-Al2O3, which is 1–2 orders of magni-
tude more than the wetted plastic surface area. Even if
nitrogen adsorption area is a poor surrogate for the surface
area available for aqueous protein adsorption, the differ-
ence in calculated area of the plastic and the particles sup-
ports the hypothesis that IL-6 adsorption on particle
surfaces was the mechanism responsible for the measure-
ment artifact.

Additional experiments were conducted with nano- and
micron-sized SiO2 at higher concentration of BSA than
used for the Figure 2 data. The data, Figure 7, show that
the response of BEAS-2B cells to the SiO2 particles remains
small, and this supports the conclusion that, with this in
vitro model, pure oxide nanoparticles are not highly
potent compared to either the soil-derived dusts or the
positive controls. Figure 7 suggests that the measured rank
order of response to the nano- and micron-sized particles
may switch as the exogeneous protein is increased, but the
difference between particle sizes did not reach statistical
significance for the 3% BSA concentration. The control
levels of IL-6 also showed a statistically significant
increase with increased BSA: 3, 9, 15 pg/mL for zero, 0.3
and 3% BSA respectively. Also, 3% BSA appears to reduce
the growth rate of the BEAS-2B cells relative to the as-for-
mulated media.

Endotoxin
We compared the relative potency of different commercial
LPS preparations (Sigma) to verify that the low response
to LPS was not due to the specific LPS type selected. Figure
8 shows the response of BEAS-2B cells in KGM (8a) and
LHC-9 (8b) media to treatment with 100 and 1000 endo-
toxin units/mL (EU/mL) of commercial LPS from
Escherichia coli 055:B5, Klebsiella pneumoniae, Pseu-
domonas aeruginosa serotype10. The E. coli and P. aeru-
ginosa LPS had similar potency. The data also show that
the response of BEAS-2B cells to all three tested types of
LPS was higher when the cells were cultured in LHC-9
media compared to KGM.

Cell-free ROS
The potency to induce IL-6 in BEAS-2B cells does not cor-
relate with the extracellular generation of reactive oxygen
species (ROS). Typical data for the generation of ROS by
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IL-8 response of in vitro cell cultures treated with equal mass concentrations (53 µg/cm2) of nano- and micron-sized particles of the same nominal substanceFigure 4
IL-8 response of in vitro cell cultures treated with equal mass concentrations (53 µg/cm2) of nano- and micron-sized particles of 
the same nominal substance. A. BEAS-2B cells in LHC-9 media with 0.1% BSA, B. NHBE cells in BEGM media with 0.1% BSA. 
IL-8 in pg/mL, mean ± s.d., N = 9, * denotes statistically greater than control. Treatment codes are in Table 1.
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particles in cell-free culture media are shown in Figure 9.
These data are measurements of the relative fluorescence
5 minutes after adding 300 µg/mL of particles to KGM
media, and are typical of readings taken from 1 to 10 min-
utes after adding the probe. The nano-sized NiO produced
the highest level of fluorescence from DCFH reagent oxi-
dation. For CeO, NiO, SiO2 and TiO2 the nanoparticles
produced statistically higher fluorescence than the
micron-sized particles. Figure 9b compares the nanoparti-
cles of NiO and SiO2 to the three soil derived dusts.

Discussion
We used the in vitro responses of cultured human lung epi-
thelial cells as a model system to study the potential inha-
lation health effects of several types of commercially
available manufactured nanoparticles of metal and
ceramic oxides. Similar in vitro airway epithelial cell mod-
els have been used to study many other types of environ-
mentally relevant PM. Examples of studies with BEAS-2B
cells include ambient particulate matter,[35] residual oil
fly ash,[31,33,36] wood smoke and Mt St. Helens ash,
[37] and tire and pavement wear particles. [38] Examples

of work with A549 cells includes TiO2 and Fe2O3,[10]
urban PM, [39] road and quarry dust [6,40] and swine
barn dust. [41]In vitro models are ideal for studying
molecular mechanisms of toxicity because of the ease of
manipulation and because the simplified biological sys-
tem is not confounded by regulatory processes acting in
the whole animal. Studies of this type are frequently
designed to study specific toxicological mechanisms by
inducing a strong response that can be ameliorated by
cotreatment with antagonists.

The small difference between equal mass doses of nano-
and micron-sized particles of the same nominal substance
and the general low level of response to the oxide particles
were contrary to the initial study hypothesis. Further
investigation into molecular mechanisms of oxide nano-
particle interaction with airway cells will require an alter-
native in vitro model because the responses of BEAS-2B
cells to nanoparticles were small. Our observation of
small size-dependent differences may be due to either the
low potency of the pure oxide particles or the characteris-
tics of the BEAS-2B cells.

IL-6 response for a typical experiment with NHBE cells in BEGM media with 0.1% BSA treated at the same particle concentra-tion as previous figuresFigure 5
IL-6 response for a typical experiment with NHBE cells in BEGM media with 0.1% BSA treated at the same particle concentra-
tion as previous figures. IL-6 concentrations in pg/mL, mean ± s.d., N = 9, *denotes statistically greater than control. Treatment 
codes are in Table 1.
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High surface area particles can interfere with measurement of cytokines in cell-free media containing a known aliquot of recombinant IL-6Figure 6
High surface area particles can interfere with measurement of cytokines in cell-free media containing a known aliquot of 
recombinant IL-6. A. Addition of 200 µg/mL of nano-SiO2, nano-TiO2, or kaolin to KGM media with the indicated concentra-
tion of BSA added. B. Addition of 200 µg/mL of nano-SiO2, nano-TiO2, or kaolin to KGM media with the indicated concentra-
tion of bovine serum added. C. The effect of adding increasing amounts of the indicated particles to KGM media without 
supplemental protein. Measured IL-6 divided by standard, * indicates significantly less than standard prepared in assay diluent, # 
indicates significantly greater than the IL-6 in the same particle suspension in media without exogenous protein addition, (two-
tailed, p < 0.05). N = 3.
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The pure metal oxides may not be highly potent for induc-
ing proinflammatory cytokine signaling responses in lung
epithelial cell lines. If true, this is good news for the man-
ufacturers and users of oxide nanoparticles. Most in vitro
reports of high potency for nanoparticles have involved
either carbon-rich particles [42,43] or macrophage-like
cell types such as RAW264.7, [44] J774A.1, [43] or THP-1
[45]. However, it is possible that the immortalized BEAS-
2B epithelial cells do not respond to particles in the same
way as tissues in a whole animal. The widely assumed
hypothesis that nanoparticles are more potent is based
largely on the seminal animal exposure studies with car-
bon black [46] and TiO2[47]. Caution is needed when
comparing the rank order of potency of particles in vitro
and in vivo, as was illustrated in a comparison of gasoline
and diesel engine particles. [48]

We used crystalline silica (Min-U-Sil) as a prototype
supermicron particle with known lung-damaging effects,
but saw low cytotoxicity and IL-6 response. In seven
experiments where control levels of IL-6 were well within
the limit of detection the fold increase in response to a 50
µg/cm2 treatment with Min-U-Sil ranged from 1.8- to 7.3-
fold. The literature reports on the response of cultured
cells to specific particle types, such as silica, shows com-
plex and somewhat inconsistent patterns. Our observed
response to Min-U-Sil and TiO2 can be compared to the
results of Steerenberg et al., [49] who reported no increase
over control for IL-6 in BEAS-2B cells treated with TiO2,
comparable responses for diesel particles and α-quartz
(17 ± 16 and 11 ± 15 fold), and higher response (59 ± 57
fold) response to fumed silica. Steerenberg's results sug-
gest that different silica preparations have different

potency, and that the IL-6 response of BEAS-2B cells is
highly variable as indicated in Steerenberg's data where
the standard deviation of IL-6 was comparable to the
mean. A study by Xu et al. showed an inverted dose-
response in A549 cells treated with Min-U-Sil with the
0.039 mg/mL treatment giving higher response than the
0.62 or 2.5 mg/mL treatments [50]. Xu also reported
standard deviations approaching 50% of the mean for IL-
6 response. In another study, DQ12 quartz was more cyto-
toxic than silicasol particles (60 and 100 nm) and neither
quartz or silicasol nanoparticles induced IL-6 in A549
cells. [45] Micron-sized TiO2 is sometimes considered an
inert particle and used as a negative control in particle
studies, [30,49] but other studies have shown that nano-
TiO2 can be proinflammatory in vivo [47,51] and can be
taken up by nonphagocytic mechanisms by macrophages
in vitro [52].

The comparisons of nano- and micron-sized oxide parti-
cles with environmental dusts provide an important con-
text to interpret the cytokine results. Taken in isolation,
our data show patterns, for example nano-sized silica
inducing a statistically significant response compared to
the micron-sized silica. However, as shown in Figures 2c
and 2d and Figure 3 the IL-6 secretion of BEAS-2B cells
treated with all the pure oxide particle types is low com-
pared to the response to both the positive controls and
some samples of soil-derived dust, a ubiquitous pollutant
that is often considered benign. Further, the response of
BEAS-2B cells to soil-derived dust is comparable to, or
smaller than, the response of these cells to soluble metal
salts such as synthetic residual oil fly ash (ROFA) used in
our work [30] and in many studies by the US EPA [31-
34,53,54] and others. The relative potency of the metal
oxide, environmental, and soluble metal-rich materials
suggests the possibility that most of the variation shown
in Figures 2a and 2b consists of artifacts occuring near the
control level of IL-6 and not robust oxide particle-induced
signaling responses relevant to tissue inflammation.

The low potency of the metal oxides is consistent with our
previous work showing that IL-6 secretion by BEAS-2B
cells is correlated to the low volatility organic components
[30] and that heating soil-derived dust to 300–550°C
removes the potent components from soil-derived dusts.
We have previously considered the possibility that the
potent factor in the soil-derived dusts is endotoxin. Evi-
dence includes the poor correlation between the potency
for inducing IL-6 and the endotoxin content [30], and the
observation that the response to the soil-derived particles
is much greater than the response to commercial endo-
toxin applied at much higher concentration than the
measured endotoxin in the dust sample. [29] The rank
order of IL-6 secretion and endotoxin content for the DD,
JE and MNC samples correlate, but the correlation of IL-6

Response of BEAS-2B cells to SiO2 particles when treated in LHC-9 media with varying concentration of BSAFigure 7
Response of BEAS-2B cells to SiO2 particles when treated in 
LHC-9 media with varying concentration of BSA. Data are 
merged from two independent experiments, mean ± s.d., N 
= 12, * indicates statistically significant difference between 
particle sizes.
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IL-6 response of BEAS-2B cells treated with the indicated concentrations of commercial lipopolysaccharide from three bacte-rial strainsFigure 8
IL-6 response of BEAS-2B cells treated with the indicated concentrations of commercial lipopolysaccharide from three bacte-
rial strains. A. in KGM media. B. in LHC-9 media. Mean ± standard error of the mean, N = 6–12 determinations.
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Reactive oxygen species produced by nano- and micron-sized metal oxide particles as measured by relative fluorescence in the cell-free DCFH assayFigure 9
Reactive oxygen species produced by nano- and micron-sized metal oxide particles as measured by relative fluorescence in the 
cell-free DCFH assay. A. comparison of nano- and micron-sized particles of the indicated oxides. * indicates statistically signifi-
cant difference between particle sizes for the pair. B. comparison of two nanoparticles to soil-derived dusts. Data are mean ± 
s.d., N = 3.
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with endotoxin was weaker in a larger group of 28 sam-
ples giving an R2 = 0.43 [30]. As seen in Table 2, the
potency rank order of the three soil-derived dusts corre-
lates with the both the endotoxin content and the organic
carbon content, supporting the hypothesis that other
organic compounds besides endotoxin may be the potent
factor(s).

The extracellular generation of ROS by surface-catalyzed
reactions [55-58] has been proposed as a mechanism by
which particles may damage biomolecules [20] or activate
cell-surface receptor proteins. [59,60] In this study the
potency for induction of IL-6 secretion did not correlate
with extracellular ROS. The lack of correlation between
ROS and cytokine response is similar to the results of
Ovrevik et al. in a study of mineral particles and iron con-
tent. [61] A study with NHBE cells treated with coarse,
fine, and ultrafine ambient particles found that the coarse
PM was more potent for inducing cytokines but not intra-
cellular ROS. [62]

Caution is needed in generalizing from these in vitro
results to human exposures because of effects associated
with the particular biological model used for the experi-
ments. Because cells in vitro are isolated from the chemical
and neural signaling that takes place in a whole organism
there is no a priori reason to expect any one cell model to
be the best surrogate for tissues in vivo. In a concurrent
project we have found that different combinations of cell
line, culture media, and passaging protocol details can
change the cytokine secretion response to a given particle
treatment [Manuscript in preparation]. We therefore
reported the results of the same particle treatments used in
several different cell models, and further compared the
manufactured oxide particles to other particles previously
tested using the same cell line and protocol.

High surface area materials can adsorb chemicals from
cell culture media and therefore confound data from in
vitro toxicology experiments. Adsorbtion of cytokines has
been shown by both the work of Seagrave et al. [63] with
IL-8 in the presence of carbon black, and our experiments
with IL-6 in the presence of oxide particles. Carbon parti-
cles have also been reported to adsorb indicators, such as
neutral red and MTT, from the media introducing artifacts
into viability assays. [64] Particle surfaces can have indi-
rect effects on cells in vitro by adsorbing trace nutrients or
growth factors from the finite volume of culture media
and making these vital factors less available to the cells.
[64]

A key confounding issue is the extent that the cytokine
adsorbtion artifact presented in Figures 6 and 7 is respon-
sible for the low potency of the oxide particles when com-
pared to soils and the small differences between the nano-

sized and micron-sized particles. Figure 7 suggests that the
rank order may be influenced by the adsorbtion artifact,
but this is a qualitative trend that did not reach statistical
significance. The experiments quantifying the effect of
supplemental protein on cell-free measurements of IL-6
indicated that the particle concentration used for the cell
treatments was borderline for causing a statistically signif-
icant reduction in measured IL-6. Combined, this evi-
dence suggests that the low responses to metal oxide
particle treatments reported in this study are a real lack of
cell activation and not the result of a false negative artifact.
Given the general low level of in vitro BEAS-2B cell
response to the oxide particles compared to the environ-
mental particles, it may be more productive to do further
study of particle size differences in another cell model and
measuring other endpoints. However, the possibility that
nanoparticles, and other high-surface-area particles can
cause non-biological artifacts should be considered in the
design of future experiments.

Conclusion
This study, using lung epithelial cells in vitro, indicates
that manufactured particles of Al, Ce, Fe, Ni, Si, and Ti
oxides occasionally induced statistically significant
increases in the secretion of the proinflammatory
cytokines IL-6 and IL-8, but these responses were not
robust and were small compared to certain soil-derived
environmental dusts and positive controls. We tested the
hypothesis that nano-sized metal oxide particles are more
potent than micron-sized particles of the same nominal
substance, but results were inconclusive due to the low
responses. The changes in cytokine secretion by the oxide
particle-treated cells are detectable, but may not be bio-
logically important because the particle-induced
responses are comparable to passage-to-passage variation
in control levels and are small compared to the effects of
other potential agonists such as TNF-α, a cytokine pro-
duced by macrophages in response to particles in vivo.
Animal studies with carbon particles continue to report
inflammatory responses that correlate with surface area
[65], so the lack of a consistent size-dependent response
in this study may reflect either a difference between inor-
ganic oxide versus carbon/organic particles or a difference
between cell culture and whole animal responses. High
concentrations of suspended particles, especially nano-
sized particles, can interfere with ELISA measurements of
cytokine secretion, and this should be considered in both
interpretation of the published literature and in the design
of future experimentals.

This study adds to the growing literature on the biological
effects of nanomaterials. While inhalation exposure to
any mineral dust should be minimized, this in vitro study
suggests that manufactured metal oxide nanoparticles are
not exceptionally potent for causing proinflammatory sig-
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naling in airway epithelial cells when compared to more
conventional ambient and occupational dusts.

Methods
Materials
The nano-sized and micron-sized particles and the posi-
tive controls were purchased from commercial suppliers
indicated in Table 1. The three soil-derived dusts DD, JE,
and MNC were derived from field samples collected on an
unpaved desert road in Utah, on an urban street in Ciadud
Juàrez, Mexico, and from native soil at a remote desert site
in Utah respectively. The DD, JE, and MNC particles are
identical to samples 18, 16, 28 respectively in [30] which
deals with the correlation between chemical composition
of soil-derived dusts and IL-6 induction in BEAS-2B cells.
The samples DD and MNC also correspond to UTDG and
UTMC in [66] which contains detailed composition data
and describes the procedures used for chemical analysis.
The field samples were resuspended in the laboratory, and
the particles were aerodynamically separated to provide a
PM2.5-enriched material for the cell treatments as previ-
ously described [30,67].

Surface area
Particle surface area per mass was measured by nitrogen
adsorption (BET single point method) using a Quanta-
chrome Monosorb analyzer. Surface determinations were
run in duplicate for both the adsorption and desorption
periods. Surface mean diameter was calculated assuming
spherical particles and the mineral density from hand-
books.

Cell culture
Four different cell culture models were used: the immor-
talized cell line BEAS-2B in LHC-9 media, BEAS-2B cells in
KGM media, A549 cells in DMEM/F12, and normal
human bronchial epithelial cells (NHBE) in BEGM
media. Table 3 summarizes the details of the protocols
used for the different cell culture models. The generic cell
culture protocol consisted of growing the cells in an incu-
bator at 37°C/6% CO2 in 75 or 150 cm2 flasks, replacing
media every 2–3 days, and passaging before confluence by
dislodging with trypsin, washing, and seeding new flasks
or treatment wells. The use of LHC-9 media for BEAS-2B

cells was based on the original work of Lechner et al. [68],
particle studies by other laboratories, for example [69],
and our prior studies. [29,30] The protocol for BEAS-2B
cells in KGM was based on the methods originally devel-
oped by the US EPA and since used in multiple studies
[31,36,70,71]. The protocol for the NHBE cells was based
on the supplier's recommendation. Particle experiments
consisted of seeding 48-well plates (Costar, Fisher Scien-
tific) with cells, allowing a recovery period for the cells to
attach and proliferate, replacing the culture media with
fresh media containing the treatments, and harvesting the
media for cytokine analysis 24 hr after treatment. Culture
media were used both as formulated and with 0.1% added
bovine serum albumin.

Particle treatment
Particles were weighed, mixed with cell culture media,
and resuspended by sonication and vortexing immedi-
ately before adding to the cell wells. The treatment exper-
imental design consisted of multiple treatments applied
to cells from a single passage to minimize confounding of
comparisons by passage-to-passage variation of the cul-
tured cells. Each multiwell cell culture plate included pos-
itive and negative controls. Results were replicated using
additional independent passages of cells. Particle treat-
ment concentrations were 0.53, 5.3 and 53 µg/cm2 which
correspond to 1, 10 and 100 µg/mL respectively for the
cell culture plates and media volumes used.

Cell viability
Viable cell count was measured using the Cell Counting
Kit -8 assay from Dojindo Laboratories. This assay
assumes that the relative number of cells is linear with the
metabolic activity indicated by mitocondrial reduction of
WST-8 (2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-
5-(2,4-disulfophenyl)-2H-tetrazolium, monosodium
salt) to produce a water-soluble product. Data are quanti-
fied by absorption at 450 nm, corrected by absorption at
650 nm, using a Molecular Devices plate reader.

Cytokine protein secretion
The cytokines IL-6 and IL-8 were measured using an
enzyme-linked immunosorbent assay (ELISA). Antibod-
ies, cytokine standard, and avidin horseradish peroxidase

Table 3: Cell culture methods.

Cells BEAS-2B BEAS-2B NHBE A549

Supplier US EPA US EPA Cambrex ATCC
Culture Media KGM LHC-9 BEGM DMEM/F12 10% FBS
Supplier Clonetics CC-3001 with CC-3111 kit Biosource Clonetics ATCC
Precoat on culture surface No No Collagen/fibronectin No
Seeding in treatment wells 35,000/cm2 35,000/cm2 2500/cm2 20,000/cm2

Seeding to PM treatment 3 days 3 days 7 days 3 days
Passage Number 75–85 75–85 5–7 80–82
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(AVHRP) for IL-6 were obtained from eBioscience; the IL-
8 assay used a Human CXCL8/IL-8 DuoSet kit (DY208)
from R&D Systems. Nunc MaxiSorp immuno plates
(Fisher Scientific) were coated overnight with antibody;
room-temperature incubations on a plate rocker were car-
ried out with sample and standards, biotin-conjugated
antibody, and AVHRP with thorough washing with 0.05%
Tween-20 in PBS pH 7.0 between steps. After a 1-hour
incubation with ABTS substrate, the plates were read at
405 nm using a Molecular Devices plate reader with Soft-
Max Pro software, and cytokine concentrations were cal-
culated against a standard curve prepared in duplicate.

Cell-free artifacts of high-surface PM
The experiments to quantify particle artifacts in the
cytokine analysis used the addition of known amounts of
recombinant human IL-6 from R&D Systems to various
aqueous phases including water, phosphate buffered
saline, LHC-9 or KGM cell culture media, cell culture
media supplemented with serum or BSA, and media con-
ditioned by growing cells for 24-h. Mixtures of IL-6 in the
aqueous phase were incubated alone or with particles,
centrifuged to separate the particles, decanted, and stored
frozen until analyzed by ELISA. Cytokine quantification
was by both direct comparison of measured concentra-
tions in particle-free versus particle-treated samples and
by a standard curve using recombinant IL-6 in serum-
based assay diluent and prepared in duplicate at the time
of analysis. Most cell-free experiments used concentra-
tions similar to typical cell culture experiments, for exam-
ple, 100 µg/mL particles, 200 pg/mL IL-6. However, the
hypothesis-testing experimental conditions were varied
over a wide range using logarithmically spaced nominal
values: particles from zero to 400 µg/mL, IL-6 from zero
to 10,000 pg/mL, incubation time from 5 minutes to over-
night.

Endotoxin
Endotoxin was measured using the chromogenic Limulus
Amebocyte Lysate (LAL) assay kit QCL-1000 (Cambrex
Biosciences).

Cell-free ROS
The generation of reactive oxygen species in cell-free
media was determined using the dichlorodihydrofluores-
cein diacetate (DCFH-DA) reagent (Molecular Probes #D-
399). The method was based on studies of extracellular
ROS generation by silica [57]. For cell-free experiments
the acetate was cleaved to form the non-fluorescent pre-
cursor by treatment with 0.1 M NaOH followed by neu-
tralization and dilution to working concentration.
Dichlorodihydrofluorescein (DCFH) is converted to the
fluorescent product dichlorofluorescein by oxidation. Par-
ticles were added to 10 µM DCFH at 10–1000 µg/mL final
concentration, incubated, and read at fixed intervals start-

ing immediately after DCFH addition. Data in Figure 9
were from the third reading, nominally starting at 5 min-
utes. Fluorescence was read on a Perkin Elmer Victor 3 V
Multilabel counter using 485 nm excitation and 535 nm
emission. Freshly diluted hydrogen peroxide was used as
a positive control.

Statistics
Data were analyzed with JMP software (SAS Institute).
Paired comparisons were made using Student's t-test,
comparison of multiple treatments to a common control
used one-way ANOVA with Dunnett's test, and p < 0.05
was considered significant.
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