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Optogenetics has a lot of potential to become an effective neuromodulative therapy for

clinical applications. Selecting the correct opsin is crucial to have an optimal optogenetic

tool. With computational modeling, the neuronal response to the current dynamics

of an opsin can be extensively and systematically tested. Unlike electrical stimulation

where the effect is directly defined by the applied field, the stimulation in optogenetics

is indirect, depending on the selected opsin’s non-linear kinetics. With the continuous

expansion of opsin possibilities, computational studies are difficult due to the need for an

accurate model of the selected opsin first. To this end, we propose a double two-state

opsin model as alternative to the conventional three and four state Markov models

used for opsin modeling. Furthermore, we provide a fitting procedure, which allows for

autonomous model fitting starting from a vast parameter space. With this procedure, we

successfully fitted two distinctive opsins
(

ChR2(H134R) and MerMAID
)

. Both models

are able to represent the experimental data with great accuracy and were obtained

within an acceptable time frame. This is due to the absence of differential equations

in the fitting procedure, with an enormous reduction in computational cost as result.

The performance of the proposed model with a fit to ChR2(H134R) was tested, by

comparing the neural response in a regular spiking neuron to the response obtained

with the non-instantaneous, four state Markov model (4SB), derived by Williams et al.

(2013). Finally, a computational speed gain was observed with the proposed model in

a regular spiking and sparse Pyramidal-Interneuron-Network-Gamma (sPING) network

simulation with respect to the 4SB-model, due to the former having two differential

equations less. Consequently, the proposed model allows for computationally efficient

optogenetic neurostimulation and with the proposed fitting procedure will be valuable for

further research in the field of optogenetics.

Keywords: computational optogenetics, computational efficiency, channelrhodopsin-H134R, MerMAID, model

fitting

1. INTRODUCTION

With optogenetics, neuronal firing can be controlled with light. This is achieved by genetically
expressing opsins, light sensitive ion channels or pumps, in cells or cell subtypes. The merger of
this genetic expression and optical stimulation results in superior spatiotemporal resolution with
respect to the conventional neuromodulation techniques. Consequently, it is an ideal investigative
tool for behavioral studies and a promising biomedical treatment for medical disorders such as
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epilepsy, Parkinson’s disease and beyond the brain conditions
(Aravanis et al., 2007; Abilez et al., 2011; Gerits and Vanduffel,
2013; Williams et al., 2013; Klapoetke et al., 2014; Carrette et al.,
2015; Chen et al., 2015; Tønnesen and Kokaia, 2017).

The first light sensitive ion channels were discovered in the
green alga Chlamydomonas reinhardtii by Nagel et al. (2002).
Genetic engineering has led to a variety of opsins, such as
red-shifted, step-function and ultrafast opsins, and mutants
with altered ion selectivity (Gunaydin et al., 2010; Gerits and
Vanduffel, 2013; Azimihashemi et al., 2014). An example of
the latter is ChR2(H134R), which is addressed in this paper.
Furthermore, other natural versions are continuously being
discovered as well. An example are the MerMAIDs, which is a
family of metagenomically discovered marine anion-conducting
and intensely desensitizing channelrhodopsins (Oppermann
et al., 2019).

In its initial dark-adapted (IDA) state and under voltage clamp
conditions, ChR2’s photocurrent exhibits a peak (Ipeak) and a
steady-state current (Iss) (Bruun et al., 2015). The peak is reached
within 1-2 ms and followed by fast decay onto a steady-state
plateau. This is due to light adaptation (Figure 1A, left). Post-
illumination, there is a bi-exponential decay back to baseline,
rendering the channel in an apparent dark-adapted state (DAapp).

FIGURE 1 | The Channelrhodopsin-2 photocurrent and photocycle. (A), The photocurrent for a single light pulse on the left. Right, response to a S1-S2 pulse

protocol with variable inter-pulse intervals. Light pulses are indicated with blue bars and target features with black arrows. (B), The unified photocycle as proposed by

Kuhne et al. (2019). (C), Previously proposed models. (C, top left) a three state cycle model with second light dependent step (dotted or dashed step) (Ernst et al.,

2008). (C top right) a four state branching model (Williams et al., 2013). (C bottom) a six state model with two extra activation intermediates (Grossman et al., 2013).

(D), The proposed double two-state opsin model (22OM) with separation of open-closing mechanism and conductance change due to dark-light adaptation. The

latter is captured in the mathematical R and S model state pair. DA and LA indicate dark and light adapted molecule states, respectively. O means open, C is closed

and D is desensitized. Blue arrows indicate light dependent rates.

This is observed by applying a second stimulation after a short
period of time (< 10 s), which results in a reduced transient
response with a maintained steady-state current (Figure 1A,
right) (Nikolic et al., 2009; Bruun et al., 2015).

ChR2 comprises seven transmembrane helices. These are
covalently bound with a retinal chromophore forming a
protonated retinal Schiff base (RSBH+). In its IDA (D470),
retinal is in an all-trans configuration (Bruun et al., 2015).
Upon illumination, a 13 trans-cis isomerization is triggered
that initiates a cascade of conformational changes with opening
of the pore as result (P520). Before returning back to the
dark adapted state, the channel converts to a non-conducting
state P470. This happens on a millisecond timescale, while
complete recovery takes seconds (Stehfest and Hegemann,
2010; Ritter et al., 2013; Volkov et al., 2017). There is strong
evidence for a second photocycle, with similar intermediates
(Stehfest and Hegemann, 2010; Schneider et al., 2013; Bruun
et al., 2015; Deisseroth and Hegemann, 2017). However, the
transition between the two photocycles is still under debate
(Bruun et al., 2015; Deisseroth and Hegemann, 2017). Recently,
Kuhne et al. (2019) proposed an unifying ChR2 photocycle
model consisting of two parallel photocycles, with three reaction
pathways (Figure 1B).
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In silico, the photocurrent is currently modeled with either
a three- or a four-state Markov model (Figure 1C). This is in
accordance with the single and double photocycle hypothesis,
respectively. The opening is reduced to a single state transition.
This is because the D480 → P500 and P500 → P390 transitions
occur on a much faster timescale. However, in order to
represent fast closure, slow recovery and a steady-state current,
a second photon absorption step is proposed for the three state
model (Nagel et al., 2003; Stehfest and Hegemann, 2010). The
photochemical transition either increases the recovery rate or
acts as equilibriummodulator between the open and desensitized
state. The six state model, as depicted in Figure 1C, bottom, is
an extended version of the four state model. The additional two
intermediates are to correctly account for the activation time after
retinal isomerizations and to avoid explicit time dependent rates
(Grossman et al., 2013). The four statemodel is in agreement with
the second photocycle hypothesis with modeling of two open and
closed states. The transition as depicted in Figure 1C, top right
is according to the older transition hypothesis, not to the latest
unifying photocycle model of Kuhne et al. (2019).

In silico studies, which allow for extensive and systematical
investigation of the effects of the current kinetics, require
an accurate model of the to be investigated opsin. To date,
an accurate model consists of four differential equations
(Williams et al., 2013). Using such a model therefore increases
the computational burden enormously, especially in case of
multi-compartment or network studies. Moreover, due to the
expanding possibilities, selection of the correct opsin is crucial
to have an optimal optogenetic tool. These four state Markov
models are not easily fit as they require preliminary knowledge of
the parameter space and its complex interactions. Furthermore,
finding the optimal parameters is time-consuming as the set of
differential equations has to be evaluated at each step in the
selected optimization algorithm.

In this study we propose, for the first time (to the authors’
knowledge), the use of a double two-state model structure
for modeling of the opsin’s photocurrents (Figure 1D). A fit
is created of the ChR2(H134R) mutant and compared to the
4SB model of Williams et al. (2013). The performance of
both models are tested in a regular spiking neuron (Pospischil
et al., 2008). The difference in computation speed is assessed
as well, this in the aforementioned regular spiking neuron
for different stimulation patterns and in the sparse Pyramidal-
Interneuron-Network-Gamma (sPING) network model (Börgers
and Kopell, 2005; Sherfey et al., 2018) with increasing number of
transfected neurons. Finally, the versatility of the proposedmodel
is evaluated with a fit to a MerMAID opsin. The improvements
of this work with respect to the current state of the art are:

• A double two-state opsin model structure resulting in a
reduced complexity of fifty percent, which leads to an
increase of computation speed valuable for optogenetic
neurostimulation in conductance based models.

• A fitting procedure that allows for autonomous and accurate
model fitting starting from a vast parameter space. Moreover,
the fit time is reduced significantly by using an analytical
solution to the set of differential equations (describing the

double two-state model structure), possible under voltage
clamp conditions and rectangular optical pulses.

• The proposed model structure can be used to accurately
describe distinctive opsins.

However, the model does not include the non-instantaneous
response of the retinal complex to light. Consequently,
the response to short (< τon) light pulses might be
overestimated. Preliminary results of this work have been
presented on the 28th Annual Computational Neuroscience
Meeting (CNS*2019) (Schoeters et al., 2019).

2. MATERIALS AND METHODS

In this study, a double two-state opsin model structure (22OM)
was tested as alternative for opsin modeling. Below, we first
describe the model in full and indicate the link between
parameters and certain features. Next, the fitting procedure is
elaborated. Finally, we describe the models and metrics used in
the analysis of the model performance and computational speed.

2.1. The Model
The proposed model is based on the original voltage gated
sodium model of Hodgkin and Huxley (Hodgkin and Huxley,
1952). It consists of two independent two-state pairs as depicted
in Figure 1D. In contrast to the sodiummodel, where the second
two-state pair represents the inactivation gate, it represents here
the change in conductance due to dark-light adaptation.

After a long enough dark period, the molecules are assumed
to be all in closed, dark adapted state. Upon stimulation, the
channel opens with a transition C→O. On a slightly slower time
scale the equilibrium between dark and light adapted molecules
is reached. Light adapted molecules have a lower conductance
than those that are in the dark adapted state. This change in
conductance is captured by a transition R→ S. The relationship
between these mathematical model states and the physical dark
and light adapted states of the opsin molecules is obtained via a
linear transformation, i.e., R = (gChR2 · DA + gLA · LA)/gChR2.
Consequently, R (S) is one (zero) when fully dark adapted and
gLA/gChR2 (respectively, 1− gLA/gChR2) when fully light adapted,
with gLA the conductivity of a light adapted channel. DA and LA
are the possibilities of the opsin molecules being in a dark or light
adapted state, respectively. By using the R state in the model, gLA
does not need to be determined, therefore reducing the number
ofmodel parameters. The established equilibria of both state pairs
depend on the level of optical excitation. After photostimulation,
the channels close (O → C). Moreover, they all return to the
dark adapted state after a long enough recovery period, which
is on a much slower time scale than the other temporal kinetics.
Because of this slower time scale, the transition S → R has to
be light dependent as well. Otherwise the equilibrium would be
completely on the side of S for every optical excitation level. The
ChR2 photocurrent can thus be determined as follows:

iChR2 = gChR2G(V) (O · R) (V − EChR2) (1)
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with

dO

dt
=

O∞(I,V)− O(t)

τO(I,V)
(2)

dR

dt
=

R∞(I,V)− R(t)

τR(I,V)
(3)

where gChR2 is the maximal specific conductivity of the fully
dark adapted channel, G(V) is a rectification function, V the
membrane potential, I the light intensity, EChR2 the equilibrium
potential and O the fraction of molecules in the open state, with
O∞ and τO its corresponding equilibrium and time constant. R∞
and τR are the respective equilibrium and time constants of the
R state.

Under voltage clamp conditions and a rectangular optical
pulse with constant light intensity, the photocurrent can be
expressed in a closed form analytical expression:

iChR2 = gChR2G(V)(O
on
ChR2(t)+ Ooff

ChR2(t)) · (R
on
ChR2(t)

+ RoffChR2(t))(V − EChR2) (4)

with

Oon
ChR2(t) =

[

O∞ − (O∞ − O0) exp

(

−
t − ton

τO(I,V)

)]

· 2(t − ton)2(toff − t) (5)

Ooff
ChR2(t) = Oon

ChR2(toff) exp

(

−
t − toff

τO(0,V)

)

2(t − toff) (6)

RonChR2(t) =

[

R∞ − (R∞ − R0) exp

(

−
t − ton

τR(I,V)

)]

· 2(t − ton)2(toff − t) (7)

RoffChR2(t) =

[

1−
(

1− RonChR2(toff)
)

· exp

(

−
t − toff

τR(0,V)

)]

2 (t − toff) (8)

with 2 the Heaviside function, O0 and R0 the initial values of
O and R at t = ton (respectively, 0 and 1 when fully dark
adapted) and, ton and toff, respectively, the onset and offset of the
optical pulse.

This is of particular use during the fitting procedure as the
model is fit to experimental data, recorded under the same
aforementioned conditions. Moreover, strong correlations
between the model time constants and experimentally
determined features (Figure 1A) are observed. These can
be exploited to obtain a first approximation of the model’s
parameters (see section 2.2). When τO ≪ τR, the transition rate
time constant τO can be easily obtained from the activation
(τon) and deactivation (τoff) time constants. Under the same
conditions, τR strongly correlates with the inactivation time
constant (τinact) when I 6= 0. The recovery time constant needs to
be scaled as shown in Equation 10 to get a good approximation

of the dark-light adaptation time constant under dark (I = 0)
conditions. This relationship is obtained by evaluating the
recovery time definition with the given model equations, i.e.,
τrecov = ton,2 − toff,1 → Ip,2/Ip,1 = 1 − exp(−1). Here, ton,2
is the onset time of the second pulse, toff,1 the offset of the first
pulse, and Ip,2 and Ip,1 the current peak value of second and first
pulse, respectively.

τO(I,V) ≈ τon, τO(0,V) ≈ τoff and τR(I,V) ≈ τinact (9)

τR(0,V) ≈ τrecov/

(

1− ln
1

1− Iratio

)

(10)

Furthermore, following conditions need to be met for the
relationship to hold true:

tp,1 − ton,1 ≈ tp,2 − ton,2

tp,1 − ton,1 > τO (11)

toff,1 − ton,1 > τR

The first, tp,i − ton,i is the time required to reach the peak value
since onset of pulse i. This needs to be approximately the same
in both first and second pulse, while these need to be significantly
larger than the activation time constant. The last one requires that
the steady-state value is reached at the end of the first pulse.

Unless specified, the time constants and time in this study are
in seconds, the membrane potential in mV and the intensity in
W/m2. The units of the conductance depend on the experimental
data of each opsin, i.e., mS/cm2 and µS in case of the
ChR2(H134R) and MerMAID fit, respectively.

2.2. The Fitting Procedure
Due to the dependency on both the potential and light intensity,
more than twenty parameters need to be inferred. This vast
parameter space impedes finding the optimal solution which is at
a high computational cost. To alleviate this, the fitting procedure
can be divided into four steps.

The first step is the extraction of the features, which is
described by Williams et al. (2013). The peak current (Ipeak) is
the maximal deflection from baseline. The steady-state current
(Iss) is the plateau value. The current ratio (Iratio) is then Iss/Ipeak.
The time constants are extracted using mono-exponential curve
fits. To this end, a nonlinear least-squares curve fit is performed,
with a trust-region-reflective algorithm. Furthermore, a multi-
start algorithmwith ten starting points was used to ensure finding
of the global solution. The variable and function tolerance were
set to 10−12. The recovery time constant, i.e., the time necessary
between two pulses to have a second peak current which is 63%
of the first peak (see definition in previous subsection), was
determined from a set of two-pulse experiments.

Next, τO and τR are fit to the obtained target data. Both are fit
to the corresponding time constants (see Equations 9, 10) using
the aforementioned nonlinear least-squares method. Again, a
multi-start algorithm is used but with 2000 starting points. For
the intensity dependence, sigmoidal functions on the log-scale
are used while for the voltage dependence a logistic regression
was selected. The two dependencies are combined by either
a multiplication or a reciprocal addition. The relationships
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and combination schemes are given by Equations 12–16, with
pi, i = 1 → 6 indicating the unknown parameters of each
relationship individually.

τO(I) =
p3

1+ exp(p1/p2) · I1/p2·ln(10)
(12)

τR(I) = p1

(

1−
p2

1+ exp(p3/p4) · I−1/p4·ln(10)

−
(1− p2)

1+ exp(p5/p6) · I−1/p6·ln(10)

)

(13)

τX(V) =
p1

1+ exp(−(V − p2)/p3)
(14)

τX(I,V) = τX(I) · τX(V) (15)

or
[

(

τX(I)
)−1

+
(

τX(V)
)−1

]−1
(16)

O∞(I) =
1

1+ exp(p1/p2) · I−1/p2·ln(10)
(17)

R∞(I) = 1−
p3

1+ exp(p1/p2) · I−1/p2·ln(10)
(18)

G(V) =
p1 ·

(

1− p2 exp(−(V − EChR2)/p3)
)

V − EChR2
(19)

In a third step, the parameters of the rectification function
G(V) and the equilibrium constants O∞ and R∞ are fit. The
used relationships are given in Equations 17–19, respectively.
The potential dependence of O∞ and R∞ are omitted because
this is mostly covered by the rectification function. The
parameter values are determined byminimizing the cost function
described below:

fcost =

(

1

N

[

∑

i=1→N

1Ipeak(Ii,Vi)
2 + 1Iss(Ii,Vi)

2 + 1Iratio(Ii,Vi)
2

])1/2

1Ix(Ii,Vi) = wx
(

yx(Ii,Vi)− tx,Ii ,Vi

)

, with x = peak, ss, ratio

(20)

Here, yx and tx,Ii ,Vi are, respectively the model output and
target value at stimulation values (I,V), with ypeak =

maxt(|i
on
ChR2

(t, I,V)|), yss = ion
ChR2

(toff) and yratio = yss/ypeak.
ion
ChR2

(t, I,V) is the current during the photostimulation pulse
(t ǫ [ton, toff]) for a certain intensity I and voltage V . The current
is calculated by evaluating Equations 4–8 with the determined
dependencies in the previous step. N is the total number of
stimulation sets (I,V). The minimization of fcost is performed
with the MATLAB fmincon-function and multi-start algorithm

with 3000 starting points to increase chance of finding the
global optimum. The upper and lower boundaries as well as the
initial conditions are summarized in Table 1. Extra nonlinear
constraints are applied to assure that O∞ approaches one for
high intensities (see sections 3.1, 3.4) and G(V) ≥ 0. A final
constraint ensures a current decay back to baseline after the
optical stimulation, i.e., ion(toff) > ioff(t) or O

on(toff) · R
on(toff) >

Ooff(t) · Roff(t), resulting in:

R∞(I,V) > 1−
τR(0,V)

τR(0,V)+ τO(0,V)
(21)

Finally, a global optimization is performed with the parameters
of all rate functions included. First, a new parameter space
is defined, which is 10% of the original parameter space but
centered around the values obtained in previous steps and limited
by the former.With the gathered dependencies, the ChR2 current
is calculated according to Equation 4. All model features are now
extracted in the same manner as performed on the experimental
data. These are used to determine a cost function which is the
weighted root mean square error Equation 20, with additional
terms: 1τon(I,V)

2, 1τoff(I,V)
2, 1τinact(I,V)

2 and 1τrec(I,V)
2.

Subsequently, the problem is optimized with a bounded particle
swarm optimization (Hassan et al., 2005; Helwig and Wanka,
2007; Chen, 2018), containing 1000 particles andwith a time limit
of 24 h. The same solver settings and constraints are imposed
as described in previous steps. The single-pulse experiments are
evaluated with a time step of 1.5 · 10−4 s, while for the two-pulse
experiments a step of 1 ms is used.

2.3. Performance Tests
In this study, two opsin fits were performed. First, a fit is made to
the data reported by Williams et al. (2013) of the ChR2(H134R)
(Williams et al., 2013). The model accuracy is compared to the
four stateMarkovmodel created by the same group. Four metrics
are used to analyze the goodness-of-fit, i.e., Root mean square
error (RMSE), Root mean square normalized error (RMSNE),
Root mean square weighted error (RMSWE) and root mean
square Z-score error (RMSZE):

RMSWE =

(

1

N

∑

i=1→N

w2
x ·
[

yx(Ii,Vi)− tx,Ii ,Vi
]2

)1/2

(22)

wherewx equals 1, 1/tx,Ii ,Vi , or 1/σx,Ii ,Vi in case of RMSE, RMSNE
or RMSZE, respectively. yx(Ii,Vi), tx,Ii ,Vi and σx,Ii ,Vi are themodel
output, target feature and standard deviation of target feature x
under intensity I and voltage V of set i, and wx are the weights
used in fcost. The metrics are also determined in the overall, time
constant features (τon + τoff + τinact + τrec) only and current
features (Ip + Iss + Iratio) only case. Here the squared errors of all
features are summed first before taking the root and mean. The
RMSWE is equivalent to the training error. However, it could not
be used to compare the model fits as the used weights were not
equal across fitting procedures (different weights were used in
the 4SB fit, see Williams et al., 2013). Therefore, the other metrics
were defined as well. Where the RMSE is biased by high values,
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TABLE 1 | Summary of all parameters.

τO(I) τO(V) τR(I) τR(V)

p1 p2 p3 p1 p2 p3 p1 p2 p3 p4 p5 p6 p1 p2 p3

LB –10 0 0 0 –100 –1,000 0 0 –10 0 –10 0 0 –100 –1,000

UB 10 20 1 100 100 1,000 10 1 10 20 10 20 100 100 1,000

X0 1 1 0.5 1 -50 10 1 0.5 0 0.125 3 0.5 1 –50 10

RSRS-intm. 1.93 0.68 0.022 23.26 0.14 12.40 10 0.56 –1.59 0.88 1.96 0.11 100 –38.94 14.70

RSRS-final 1.81 1.17 0.021 23.14 –0.39 13.19 10 0.56 –1.58 0.87 1.96 0.11 99.74 –38.69 12.02

PP-intm. 1.99 0.67 0.034 0.64 –89.16 14.31 6.74 0.50 2.00 0.11 –1.3 0.88 1.50 –70.01 19.13

PP-final 1.93 0.88 0.030 0.63 -88.67 8.37 6.73 0.50 1.98 0.11 –1.28 0.88 1.66 –64.54 28.55

MM-intm. 1.70 1.49 0.035 0.29 48.56 738.24 0.17 0.0081 –2.80 14.69 1.05 0.42 24.77 80.92 164.75

MM-final 3.70 3.35 0.037 0.20 49.99 718.60 0.18 0.0082 –3.00 15.57 0.998 0.429 24.42 80.87 172.82

O∞(I) R∞(I) G(V) gChR2 EChR2

p1 p2 p1 p2 p3 p1 p2 p3

LB –10 0 –10 0 0 0.8 0 - 1.1 - 0 - - 0 - –100

UB 10 20 10 20 1 100 - 100 - 500 - - 100 - 100

X0 1 1 1 1 0.1 0.9 1 - 10 - 50 - - 30 - 0

RSRS-intm. 3.45 0.71 2.03 0.13 0.71 9.91 (1) 1.24 46.17 1 (9.91) 0

RSRS-final 3.38 0.62 1.96 0.12 0.77 10.77 (1) 1.25 44.52 1 (10.77) 0

PP-intm. 3.45 0.71 1.99 0.15 0.73 8.93 (1) 1.27 42.37 1 (8.93) 0

PP-final 3.44 0.68 2.25 0.065 0.75 9.10 (1) 1.27 41.47 1 (9.10) 0

MM-intm 3.76 0.40 0.74 0.52 1.00 - - - 62.00 -3.64

MM-final 3.67 0.39 0.40 0.54 0.9987 - - - 62.22 -3.62

The boundary conditions, lower bounds (LB) and upper bounds (UB), of first 2 steps of the fitting procedure and initial values (X0). The intermediate (-intm) and final (-final) model parameters of the selected mutant and model, with RSRS

the H134R mutant with a double reciprocal addition combination of time constant dependencies (τX (I) and τX (V ), Equation 16), PP the H134R mutant with a double product combination of time constants dependencies Equation 15

and the MerMAID fit (MM). Parameters that varied between ChR2(H134R) and MM fit are separated with vertical line. Between brackets is another parameter solution, resulting in the same model.
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the RMSNE is biased by values close to zero and RMSZSE which
includes the uncertainty of the target features via σx,Ii ,Vi but could
not be determined for the recovery time constant.

Both models are then implemented in a regular spiking
neuron, described in Pospischil et al. (2008). The strength
duration curves (SDC) are determined. When the irradiance is
selected as strength for the SDC, a poor fit is obtained. This
is due to the assumption of an RC equivalent circuit and a
rectangular stimulation pulse in the Hill-Lapicque relationship
Equation 23 (Noble and Stein, 1966; Williams and Entcheva,
2015). Therefore, the SDC fit is performed on the average inward
stimulation current or temporal averaged current (iChR2,avg,
TAC), as described by Williams and Entcheva (2015).

iChR2,avg =
IChR2,rheo

(

1− exp(− PD
τChR2,chron/ ln(2)

)
) (23)

iChR2,avg =
1

PD
·

∫ Tend

0
iChR2(t)dt (24)

with PD the pulse duration and Tend one second after the end of
the pulse. The relationship between the irradiance and iChR2,avg is
obtained through a power series fit, which allows calculation of
the irradiance rheobase (Irheo) and chronaxie (τchron) as follows:

Irheo = a · IbChR2,rheo + c (25)

τchron = −
τChR2,chron

ln(2)
ln

(

1−
IChR2,rheo

[(2 Irheo − c)/a]1/b

)

(26)

where a, b and c are parameters obtained in an empirically
power series fit of the irradiance curve vs. the inward stimulation
current (I = a · (iChR2,avg)

b + c) (Williams and Entcheva, 2015).
Moreover, the simulation speed is determined for different

stimulation paradigms, i.e., simulation time (Tend)/runtime in
a regular spiking neuron (Pospischil et al., 2008). Therefore, we
varied the pulse repetition frequency, stimulation time and duty
cycle. The intensity was fixed for each model and set to a value
that elicited a firing rate of 100 Hz in the regular spiking neuron
in case of a two pulse stimulation of 2 s with duty cycle 0.5 and
pulse repetition frequency of 1 Hz. Themodels were solved by the
MATLAB Variable Step Variable Order solver (VSVO) ode113-
solver (order 1-13, Adams-Bashort-Moulton predictor-corrector
pairs) (Shampine and Reichelt, 1997), with a maximum time
step of 100 µs and default tolerances, i.e., relative and absolute
tolerance equal to 10−3 and 10−6, respectively.

Finally, computational gain with the proposed model
compared to the 4 state Markov model was tested in a
network model with an increasing number of transfected
neurons. Therefore, we used the sparse Pyramidal-Interneuron-
Network-Gamma (sPING) (Börgers and Kopell, 2005), which
was implemented via the DynaSim toolbox (Sherfey et al., 2018).
The ChR2(H134R) models were added to the pyramidal neurons.
The number of inhibitory neurons was varied between 3 and
100 while the 4/1, pyramidal/interneuron-ratio was maintained.
The network was fully connected and the GABAa and AMPA

conductivities were scaled such that the total input per neuron
stayed the same, i.e., gGABAa = 2/(Nintern)[mS/cm2] = gAMPA,
with Nintern the number of interneurons in the sPING-network.
In each case a single pulse stimulation of 300 ms was applied
with a total simulation time of 500 ms. The irradiance was set
such that the firing rates were equal for both ChR2 models. The
study was performed with both a fixed step (10 µs) runge-kutta 4
solver and an ode15s-solver (stiff VSVO-solver, order 1-5, based
on numerical differentiation formulas) (Shampine and Reichelt,
1997) with a maximum time step of 100 µs, and a relative and
absolute tolerance of 10−6.

The results shown in this paper are computed with a 3.4 GHz
clock rate, quad core system and 8 GB RAM.

2.4. Versatility
The versatility of the proposed model structure is shown with a
fit to the MerMAID1 opsin (Oppermann et al., 2019). For more
detail on the data set, we refer to the work of Oppermann et al.
(2019). The same metrics as aforementioned are used to assess
the fit accuracy.

3. RESULTS

To test the feasibility of the proposed double two-state opsin
model structure (22OM), it was fit to two data sets. First,
we fitted the model to the data set of a ChR2(H134R)
opsin reported by Williams et al. (2013), which was collected
in a ChR2(H134R)-HEK293 stable cell line (Williams et al.,
2013). By the same group already a four state Markov model
was fit. This allowed us to analyze the performance of our
model in detail. To this end, a comparison of the response
to optical stimuli was made in a regular spiking neuron
(Pospischil et al., 2008). Moreover, the computational speed was
determined for different stimulation paradigms in the former
neuron model as well as in the sPING (Börgers and Kopell,
2005) network model with increasing number of transfected
neurons. Finally the versatility of the proposed modeling scheme
was assessed with a fit to a MerMAID opsin which is an
anion-conducting and intensely desensitizing channelrhodopsin.

3.1. The ChR2(H134R) Fit
A 22OM fit of the ChR2(H134R) opsin was obtained by
applying the fitting procedure, described in the materials and
methods section 2.2, to the experimental data. As Williams
et al. (2013) already reported the target features, the first
step could be omitted. The absence of differential equations
in our fitting procedure allowed for multiple fits to be made,
due to the significant reduction of the computational cost.
Multiple weight sets, non-linear constraints and combinations of
dependency addition of the time constants (product Equation 15
and reciprocal sum Equation 16) were tested. The parameters
of the two best fits are shown in Table 1, where RSRS and
PP is the fit with a double reciprocal sum and product
combination, respectively. Both results were obtained with
wpeak = 10, wss = 20, wratio = 50, won = 1000,
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FIGURE 2 | Normalized goodness-of-fit results of the model fits to the ChR2(H134R) data reported by Williams et al. (2013). Goodness-of-fit according to four

metrics: Root-mean-square error (A), Root-mean-square normalized error (B), Root-mean-square weighted error (C) and Root-mean-square of z-score error (D). The

compared models are the 4SB model reported by Williams et al. (2013), the 22OM model with twice the product combination of time constants (intermediate fit

22OM: PP-intm and final fit 22OM: PP-final), and the 22OM model with twice the reciprocal addition combination of time constants (intermediate fit 22OM: RSRS-intm

and final fit 22OM: RSRS-final). The normalization value is given in the title of each sub-figure. all, τall and Iall, are errors where the squared errors of all features, all time

constants and all current features are, respectively, added first before taking the root and mean. The depicted legend is valid in all sub-figures.

winact = 1000, woff = 1000, wrecov = 20, and a
constraint where O∞(I,V) > 0.6 for I ≥ 5500 W/m2. The
weights are chosen as such to level the differences between
features to the same order of magnitude. As a result, all
features have the same impact in the cost function with a
slight preference for the current features. The time constant
features are all expressed in seconds, while their values
are in the order of milliseconds (except τrecov), explaining
the high weight values. The extra constraint is justified as
the current peak already starts to saturate for the highest
intensity values, thus clamping the intensity dependence of
the open steady-state value above the bending point in the
logistics curve.

The models’ accuracy according to the four goodness-of-fit
metrics Equation 22 are shown in Figure 2. Overall, a positive
effect of the final optimization step can be observed. The
largest impact is on the time constants, as expected. In the
second step of the fitting procedure, the transition rate time-
constants (τO and τR) are approximated with a one on one
relationship of the target features (see Equation 9 and 10). These
approximations are true in case of high differences in order
of magnitude. However, when the differences are smaller some
cross correlations exist, for instance τR strongly affects τon as
well, resulting in an underestimation of τO. We denote that
according to all metrics, the estimation accuracy of τon and
τinact increases, however, at the cost of τoff. Also, a significant

improvement is observed in case of τrecov. This deviation is due
to the fact that the conditions Equation 11 are not fully met.
Furthermore, an increased goodness-of-fit of the inactivation
time constant can be observed in case of the RSRS vs PP fit.
τR predominately defines both the inactivation and recovery
time constant. In case of the PP fit, a separation of variables
is applied where independence is assumed. However, as can
be seen in Figures 3F,H, a more clear voltage dependency is
present in τrecov compared to τinact. In other words, for low
intensities (with high time constants as result) the potential effect
is high while the effect is low for high intensities or small time
constants. This interdependence is exactly obtained with the
reciprocal addition scheme. The same, however less pronounced,
can be observed in case of the activation and deactivation time
constants (τon and τoff). Consequently, only the RSRS fit is used
in further analysis.

Figure 3 shows a detailed comparison of the outcome of
our model according to the RSRS fit and the 4SB model,
vs. the experimentally determined target features. Overall, it
can be observed that the proposed model performs at least
as well as the 4SB model. Moreover, all features are well
approximated. It can be seen that with the 4SB model, the
steady-state value is overestimated in case of negative potentials
(Figures 3A,E). However, a better representation is obtained for
positive potentials, which explains the lower root-mean-squared
normalized error (RMSNE, Figure 2B).
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FIGURE 3 | Comparison of model outcomes (4SB and 22OM: RSRS-final) with parameters obtained from experiments. (A), The ChR2(H134R) current during a pulse

of 0.5 s (indicated by blue bar) at a voltage clamp of –60 mV; according to the 4SB model (full lines) and 22OM model (dashed dotted lines). The colors indicate the

applied intensity and are valid in (A–G). The dotted line and square indicate respectively the experimental current peak and steady-state current at corresponding

intensity and potential. (B,D,F), Voltage dependence of respective τon, τoff, and τinact across four irradiance levels. (C,E,G), The current-voltage curves of the peak,

steady-state and current ratio, respectively. The asterisks with errorbars indicate the experimental mean ± standard deviation. (H), The recovery time constant as

function of the membrane potential for three different irradiance levels as depicted in the plot.

3.2. Neural Response in Regular Spiking
Neuron
To analyze the neural response, the strength duration curves
(SDC) are determined of the proposed 22OM model with
RSRS fit and the 4SB model in a regular spiking neuron,
described in Pospischil et al. (2008). First, the Hill-Lapicque
model fit is performed on temporal average current (TAC),

as described in section 2.3. Very good fits were obtained
for both models. The adjusted r2 (R̄2) of TAC vs. PD are
0.9961 and 0.9953 for the 22OM and 4SB model, respectively.
The rheobase of the 22OM model (0.49 µA/cm2) is slightly
higher than when the 4SB is used (0.47 µA/cm2). Also the

chronaxie is higher (47.51 ms vs. 39.45 ms). Consequently,
according to the 4SB model for any pulse duration, less charge
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FIGURE 4 | The strength duration curves (SDC) of the 22OM RSRS and 4SB

model in a regular spiking neuron. (A), Irradiance vs. pulse duration with a

mapping (dashed line) of the SDC in (B) according to a power series. (B),

Temporal average current or average injected current vs. pulse duration.

Dashed line represents the Hill-Lapicque model fit. The rheobase and

chronaxie are depicted in the figures. The results of the 22OM and 4SB model

are in purple and green, respectively.

is injected optogenetically to excite a regular spiking neuron
via a ChR2(H134R) opsin. The difference between the models
can be attributed to the difference in deactivation time constant
(τoff). This is higher in the 22OM model resulting in a slower
closing mechanism and thus increased current injection after
the AP. A good cell-type-specific empirical mapping of TAC
to irradiance was obtained as well (Equation 25), with R̄2

values of 0.9449 (22OM) and 0.9638 (4SB). The parameter
values are respectively, a = 8.18, b = 1.26 and c = 1.68, and
a = 22.30, b = 1.51 and c = 12.32 in case of the 22OM and 4SB
mapping. The lower R̄2 of the 22OM mapping resulted also in
a slightly lower value of 0.9298 for the irradiance to PD curve
while this is 0.9509 in case of the 4SB fit. Based on the mapping
parameters and Figure 4, it can be seen that lower intensity level
results in higher injected currents when the 22OMmodel is used.
Indeed, extrapolation of the model fit to low intensities results
in higher open probabilities than for the 4SB model, hence the
difference in irradiance rheobase of 4.90 W/m2 vs. 19.01 W/m2.
Based on the higher peak values for high intensities in case of

the 4SB model, one could expect convergence of the irradiance
SDCs. However, due to the slow activation kinetics, the peak
value is not reached at small pulse durations. Even though the
activation time constant is overall higher for the 22OM model
(Figure 3B), the bi-exponential current rise due to the extra state
variable

[

τChR2 · dp/dt = S0(I) − p, a time-dependent function
reflecting the probabilistic, non-instantaneous response of the
ChR2-retinal complex to light Williams et al., 2013

]

in the 4SB
model results in a lower current value at the end of the pulse.

3.3. Computational Speed
The proposed model in this study contains only two differential
equations, which is 50% less in comparison with the 4SB model.
Consequently, a reduction of the computational time is expected.
Figures 5A–F summarizes the computational speed for different
stimulation protocols in a regular spiking neuron. This for fixed
irradiances (22OM: 3162 W/m2 and 4SB: 1259 W/m2) set to a
value that elicit a firing rate of 100 Hz, as described in section
2.3. Figures 5A–D show an overall increase of the computational
speed in favor of the 22OM model, with a maximum of 25%
for high frequency and duty cycle stimulation. On average the
relative difference of the simulation speeds, i.e., simulation speed
with 22OM minus simulation speed with 4SB with respect to the
latter, is about 20%. Because the simulations were solved using
a variable step solver, the difference in firing rate could distort
the effective simulation speed, as during an action potential a
smaller timestep is selected. Therefore, the relative difference of
the simulation speed normalized to the firing rate is depicted as
well, with an increase of the gain to 60% as result. The runtime vs.
number of transfected neurons is depicted in Figures 5G–I. The
simulation outcomes were the same with the variable and fixed
step solver, validating the solver settings. Moreover, the firing rate
was equal for both opsin models, hence no normalization was
necessary. A clear reduction can be observed when the 22OM
model is selected instead of the 4SB model, both with a fixed and
variable step solver. The time gain by using the proposed model
is 15% (5%) in case of 12 neurons and goes up to 40% (15%) and
rising when 400 transfected neurons are included with a variable
(fixed) step solver.

3.4. Versatility of the Proposed Model
Finally, we address the versatility of the proposed model and
the fitting procedure. Due to the increasing number of possible
opsins, it is favorable that their kinetics can be correctly modeled
and a fit is easily obtained without preliminary knowledge.
To this end, we applied our fitting procedure to experimental
data of a MerMAID opsin, which has unlike classical ChR2 a
very strong desensitization (Oppermann et al., 2019). Starting
from the photocurrent traces, the target features had to be
extracted first. Next the parameter space was defined. The
rectification function was omitted because this was not observed
in the experimental data. Aside from this, the lower bound and
initial condition of only the third parameter of R∞ was altered
(Table 1). This straight forward adjustment was made due to
the strong desensitization. The weights of the cost function were
set to wpeak = 0.04, wss = 1, wratio = 250, won = 10000,
winact = 10000, woff = 10000, wrecov = 10, again to level the
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FIGURE 5 | The computational speed of optogenetic neuromodulation in a regular spiking (RS) neuron and sparse Pyramidal-Interneuron-Network-Gamma (sPING).

(A–F), Simulation speed, i.e., simulation time/runtime, for different stimulation protocols with varying pulse duration (PD) and pulse repetition frequency (PRF) in a

regular spiking neuron, described by Pospischil et al. (2008). (A), The absolute simulation speed with the 22OM-RSRS fit. (B), The simulation speed with the 4SB

model. Colorbar is valid for (A) and (B). (C), The relative difference, i.e., (22OM-4SB)/4SB. (D), The effect of the duty cycle on the simulation speed. (E), The difference

in firing rate in case of the 22OM model vs. 4SB. (F), The relative difference of simulation speed normalized to the firing rate. (G–I), Runtime of a continuous 300 ms

optical pulse in the sparse Pyramidal-Interneuron-Network-Gamma (sPING), with increasing number of transfected neurons. (G), Runtime with a variable step solver.

(H), Runtime with a fixed step solver. (I), Relative computation gain, i.e., -(22OM-4SB)/4SB. The used intensities are shown in the titles of (A,B), which give rise to a

100 Hz firing rate (see section 2.3).

errors to the same order of magnitude. Because no saturation
of the current was observed at high intensity levels a constraint:
O∞(I,V) < 0.5 for I ≤ 4000W/m2, was added.

The result of the fit is shown in Figure 6. The parameters
of the final and intermediate fit are summarized in Table 1.
The model here is with a double product combination of the
time constant dependencies. Because the recovery time constant
was only determined under one condition, there is no evidence
on the interdependence of the variables. This is also supported
by the small voltage dependence of the (de)activation time
constants. Overall, it can be stated that a good fit is obtained as
all kinetics are expressed correctly. Only, the deactivation time
constant seems to be underestimated. This is a consequence of
the constraint in Equation 21, which ensures a current decay
back to baseline after optical stimulation. Due to its strong
desensitization, R∞ has to be small, thus inducing an upper
limit on τO(0,V), which defines the deactivation time constant.

The trade off is justified due to the higher uncertainty of the
deactivation time constant (see Figure 6D). Moreover, the overall
effect is expected to be low as can be seen in the right inset of
Figure 6A.

4. DISCUSSION

The proposed double two-state model structure for the
modeling of opsins appears to be a good alternative to
the computationally more expensive four state Markov, non-
instantaneous models. All features are represented, with even
some improved fit accuracy in comparison with a four
state Markov variant. Furthermore, with the proposed fitting
procedure, we were able to fit two opsins, ChR2(H134R) and
MerMAID. Although the prominent difference of the mutants
kinetics, the fitting procedure allowed us to get these fits
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FIGURE 6 | Comparison of the 22OM-Mermaid (final fit) model outcomes and experimental data. (A), In gray, the photocurrent of a voltage clamp experiment during a

0.5 s continuous illumination with an intensity of 3,734 W/m2 (indicated with blue bar on top) (Oppermann et al., 2019); In red, the corresponding model outcome. Left

inset is a zoom of the current peak (0.045–0.075 s, indicated with black bar). Right inset is a zoom of the current deactivation (0.45–0.7 s, indicated with a blue

square). (B–G), The voltage dependence of the target features (τon, Ipeak, τoff, Iss, τinact, and Iratio ) at an irradiance of 3,734.4 W/m2 is shown in blue. The light

dependence at a holding potential of –60 mV is depicted in red. (H), Ratio of the peak currents in response to a two-pulse stimulation protocol at –60 mV and

3,734 W/m2 as function of the inter-pulse interval. The recovery time (the interval time necessary to have a ratio of 63%), is indicated with a black arrow.

with only minor adjustments of the parameter space and
constraints. Therefore, creating the possibility for autonomous
model fitting based on photocurrent traces. Moreover, a good
fit is obtained within an acceptable time frame, due to the
absence of differential equations in the fitting procedure,
which is not achievable in case of a four state Markov
model. The intermediate fit is obtained within 3 h, while
the final fit always flagged the time limit of 24 h. Increasing
the limit improves the fit accuracy but only small changes
were observed. Fine tuning of the optimization settings,
such as number of particles or tolerances, could reduce the
training error even more. However, this is out of the scope
of this study.

The proposed model is an empirical model. The fit
is performed on a limited dataset thus extrapolation
should be treated with care. This is clear from the neural
response results in section 3.2. Although both the 4SB
and our model were fit to the same experimental data, a

clear discrepancy between the fitted rheobase is observed
[

4.90 W/m2 (22OM) vs. 19.01 W/m2 (4SB)
]

. Unlike the
chronaxie where the difference can be attributed to the
model’s structure, the difference in rheobase is due to the
discrepancy between opening rates after extrapolation to low
intensities, attributed to the fit and intensity dependence chosen
in each model. More experiments are required in order to
validate this.

The dependencies chosen here are all, except the rectification,
sigmoidal. Therefore, they are all bounded and monotonic. This
is in accordance with a channel’s behavior, i.e., increased and
faster opening at higher intensities but limited to an open
probability of one. We opted for a biphasic logistics function
for τR(I) modeling. This is in agreement with the hypothesis
of the necessity of two light dependent rates

[

(R → S) and (S
→ R), see section 2.1

]

and the second and third photochemical
pathways described by Kuhne et al. (2019) (Figure 1). Other
functions were tested, e.g., weibull or asymmetric logistics with
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double intensity dependence, however no improvement was
observed. Initially, separation of variables was assumed to suffice
due to the lack of experimental evidence of complex channel
interdependence of both irradiance and potential of each feature
separately. However, due to the models structure, τon and τoff
share the same voltage dependency, as well as τinact an τrecov.
The voltage dependence of τrecov and τoff was clearly more
pronounced in the experimental data of the ChR2(H134R)
mutant. Therefore, the reciprocal addition Equation 16was tested
as alternative, resulting in an improved fit accuracy. However,
this only scales down the voltage dependent effect on τon and
τinact while the same relationship is maintained. The necessity
of more complex relationships could be investigated in future
work as well as the need for voltage dependence of the rate
functions steady-state values (O∞ and R∞), which was omitted
in this study.

Currently the model incorporates voltage and irradiance
dependence. Studies have however shown the importance of
pH on the channel kinetics in many opsins. Furthermore,
ion concentrations have an impact on the reversal potentials
and current rectification (Berndt et al., 2010; Stehfest and
Hegemann, 2010). Schneider et al. (2013), postulated a model
based on the kinetics of multiple ion species interacting with
the channel, with an improved representation of the current
rectification (Schneider et al., 2013; Williams et al., 2013).
While the photocurrent properties are unaffected by pH-changes,
the MerMAID photocurrent is strongly dependent on the Cl−

concentrations. The fit performed here was on experimental data
recorded with an extracellular Cl− concentration of 150 mM
and intracellular Cl− of 120 mM, explaining the depolarizing
currents (negative sign in Figure 6) as an anion conducting
channel. By changing the extracellular concentration to 10 mM,
the channel’s reversal potential is shifted to the reversal potential
of Cl−. (The concentrations are exchanged with respect to
a conventional neuron, where the typical intracellular and
extracellular concentrations are 10 and 120 mM, respectively.
This explains the experimentally measured depolarizing currents
(negative sign), while one would expect hyperpolarizing currents
(positive sign) from a Cl− conducting channel.) Evidence of
the Cl− effect on channel kinetics is still absent but further
experiments are needed (Oppermann et al., 2019). Consequently,
the model fit shown here can be used in computational studies
but the reversal potential should be adjusted accordingly.

With the current model structure, the model responds
instantaneously to light (see left inset Figure 6A). With the 4SB
model this is circumvented by adding a extra state variable
with a time constant of 1.5 ms. It is clear that for long (PD
>> τon) continuous pulses its effect is negligible, as activation
is dominated by the activation time constant. However, with
short bursts or pulses, this non-instantaneous activation becomes
prominent as observed in section 3.2. In future work, it could
therefore be interesting to incorporate this non-instantaneous
response. This could probably be obtained by adding an extra
state variable, as performed with the 4SB model, however at the
cost of the computational speed. Another possibility is to raise the
open state, O(t), to a higher power, smoothing the transition but
without irradiance control. Modification of the model’s structure

could be circumvented by gradually increasing the intensity,
instead of applying a rectangular pulse.

5. CONCLUSION

To facilitate computational studies in the field of optogenetics,
we proposed a double two-state opsin model structure as
alternative to the conventional three and four state Markov
models. In the proposed model, the second state pair represents
the conductance regulation due the dark-light adaptation. With
this model type, a reduction in complexity is obtained resulting
in only two differential equations compared to four in case
of the preferred, non-instantaneous four state Markov models
used for opsin modeling. With the provided fitting procedure,
autonomous model fits of two distinctive opsins

(

ChR2(H134R)
and MerMAID

)

were obtained. Both model fits were performed
within an acceptable time frame thanks to the absence of
differential equations and parameter space reduction associated
with the multi step approach. Moreover, both models are able to
represent the experimental data with great accuracy. Due to the
model’s structure, there is, however, an instantaneous response
to light, overestimating the injected current at very short pulses
(< τon). Furthermore, pH and ion concentration dependence are
not incorporated. In its current state with only two differential
equations, the computational speed is increased up to 25% in
a regular spiking neuron and up to 40% in a network of 400
transfected neurons.
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