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Abstract

Background: Colombia and Brazil are affected by severe cases of scorpionism. In Colombia the most dangerous accidents
are caused by Tityus pachyurus that is widely distributed around this country. In the Brazilian Amazonian region scorpion
stings are a common event caused by Tityus obscurus. The main objective of this work was to perform the molecular cloning
of the putative Na+-channel scorpion toxins (NaScTxs) from T. pachyurus and T. obscurus venom glands and to analyze their
phylogenetic relationship with other known NaScTxs from Tityus species.

Methodology/Principal Findings: cDNA libraries from venom glands of these two species were constructed and five
nucleotide sequences from T. pachyurus were identified as putative modulators of Na+-channels, and were named Tpa4,
Tpa5, Tpa6, Tpa7 and Tpa8; the latter being the first anti-insect excitatory b-class NaScTx in Tityus scorpion venom to be
described. Fifteen sequences from T. obscurus were identified as putative NaScTxs, among which three had been previously
described, and the others were named To4 to To15. The peptides Tpa4, Tpa5, Tpa6, To6, To7, To9, To10 and To14 are closely
related to the a-class NaScTxs, whereas Tpa7, Tpa8, To4, To8, To12 and To15 sequences are more related to the b-class
NaScTxs. To5 is possibly an arthropod specific toxin. To11 and To13 share sequence similarities with both a and b NaScTxs.
By means of phylogenetic analysis using the Maximum Parsimony method and the known NaScTxs from Tityus species,
these toxins were clustered into 14 distinct groups.

Conclusions/Significance: This communication describes new putative NaScTxs from T. pachyurus and T. obscurus and their
phylogenetic analysis. The results indicate clear geographic separation between scorpions of Tityus genus inhabiting the
Amazonian and Mountain Andes regions and those distributed over the Southern of the Amazonian rainforest. Based on the
consensus sequences for the different clusters, a new nomenclature for the NaScTxs is proposed.
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Introduction
Scorpion venoms are a rich mixture of several components,

among which are free nucleotides, lipids, biogenic amines, proteins

and peptides. Scorpion peptides can be classified into disulfide-

bridged (DBPs) and non-disulfide-bridged peptides (NDBPs). The

NDBPs exhibit diverse biological functions, including bradykinin-

potentiating, antimicrobial, hemolytic and immune-modulating

activities [1]. DBPs are considered the main molecules responsible

for the neurotoxic effects observed in scorpion envenoming as they

affect ion-channels function of excitable and non-excitable cells.

The best known DBPs are those specific for Na+ or K+ channels

(NaScTxs and KTxs, respectively) [2,3].

The NaScTxs are long-chain peptides with 55–76 amino acid

residues and cross-linked by three or four disulfide bridges [4,5,6].

They are divided into two main classes: the a-NaScTxs, that slow

or inhibit the current inactivation of Na+ channels and prolong

the action potential by binding to receptor site 3 of Na+ channels,

and the b-NaScTxs, mostly from New World (North and South

America) scorpions, which typically shift the voltage dependence

of activation to more hyperpolarized potentials and reduce the

peak current amplitude by binding to receptor site 4 of Na+

channels [7,8].

Alpha and beta-NaScTxs share a conserved three-dimensional

structure consisting of a babb topology (see review [9]). The a-

NaScTxs can be further divided into three sub-groups: ‘a-classic’,

that are very toxic to mammalians; ‘anti-insect a-NaScTxs’, which

are highlyspecific to Na+-channels of insects; and ‘a-like’, which

act on Na+-channels of both insects and mammalians [3,10]. The
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b-NaScTxs are divided into four sub-groups: anti-mammalian b-

toxins that are highly toxic to mammals; anti-insect excitatory

toxins; anti-insect depressant; and b-like toxins that are highly

active on both insect and mammalian Na+-channels [11,12,13].

The NaScTxs are responsible for the most dangerous ne-

urotoxic effects observed during human envenoming caused by

scorpion sting, also denominated scorpionism, which is a public

health problem around the world that mainly affects children and

has a complex and controversial treatment [14]. The geographical

variability in scorpion species and in their venom composition has

become extremely important to the production of effective anti-

venoms [15]. The scorpionism in Central and South America is

mainly caused by two genera of scorpions: Centruroides and Tityus,

both belonging to the Buthidae family. The genus Tityus has a wide

distribution from Costa Rica to Northern Argentina [16] and is

responsible for many severe casesofscorpionism in Brazil and

Colombia [17,18]. In Colombia, the most dangerous accidents are

caused by Tityus pachyurus [18], in Venezuela by T. discrepans and T.

zulianus [19] and in Brazil by T. obscurus at Amazonian region [20].

These four species inhabit the Northern part of South America

and are isolated by the Amazon Basin from the other species of

Tityus genus as: T. serrulatus, T. bahiensis, T. stigmurus and T.

fasciolatus from Brazil and T. trivittatus from Argentina. This

may suggest the existence of a phylogenetic relationship between

the NaScTxs of the venoms from scorpions distributed in the

Northern South America, as well as an evolutive differentiation

drove by biogeographic separation within South America.

In Colombia, Tityus pachyurus is distributed along the Magdalena

River valley in cities and villages between 400 to 1500 m of

altitude [21,22]. Its venom has a lethal dose in mice of 4.8 mg/kg,

and two of its toxins and one acidic peptide were previously

indentified, respectively: Tpa1, which acts on K+-channels, Tpa2,

which modulates Na+-channels, and Tpa3, of unknown function.

Its proteomic analysis showed at least 104 compounds with distinct

molecular masses [23].

Another Buthidae scorpion with medical importance from

Northern South America is Tityus obscurus Gervais, 1843 – a senior

synonym of both Tityus paraensis Kraepelin, 1896 and Tityus

cambridgei Pocock, 1897 [24], which is responsible for many

poisoning cases in humans in the Brazilian Amazonian region

[20]. To the same species of scorpion three different systematic

names were attributed. Here we decided to follow the earliest

taxonomic classification: T. obscurus. Analysis of the venom from

this scorpion demonstrated the existence of at least 102 distinct

peptide components, of which about 25% have their N-terminal

sequences determined [25] and, thus far, the complete primary

structure of six peptides are known. Three of them are K+-channel

specific toxins: Tc1, Tc30 and Tc32 [26,27]. The other three

toxins act on Na+-channels: Tc49b, a non a-scorpion toxin that at

100 nM concentration abolishes almost completely the Na+-

current in rat cerebellum granular cells [28]; Tc48a, a peptide

that affects Na+-permeability in F-11 cells lines in culture at

nanomolar concentrations [25]; and Tc48b/Tc49a, which affects

Na+-permeability in pituitary GH3 cells in culture, in a similar

mechanism as those reported for the a-scorpion toxins [29]. The

trivial names of these toxic peptidespreviouslyused were designed

from the abbreviation of the genus (T) and the species (c, from

cambridgei), followed by a number that corresponds to the elution

time (in minutes) from HPLC separation [26]. Since in this

communication the senior name of Tityus obscurus was adopted, the

trivial names are now named as ‘‘To’’followed by the number of

the peptide.

This study reports for the first time the molecular cloning of the

NaScTx precursors from T. pachyurus and T. obscurus scorpions by

means of cDNA library constructions of their venom glands,

presenting new putative NaScTxs and also the precursor sequences

of some Na+-channel peptides already described from previous

proteomic researches with these two scorpion venoms [23,25,28,29].

We also have employed proteomic approach, by means of

chromatographic, mass spectrometry and automated Edman

degradation analyses, to isolate some NaScTxs from T. pachyurus

and T. obscurus scorpion venoms and to determine, with the support

of the cDNA libraries, their primary sequences and molecular

masses. A complete phylogenetic analysis with these NaScTxs and

other Na+-channel toxins fromTityus genus species registered in

public database was performed to infer whether the geographic

separation between the scorpions of Tityus genus caused by the

Amazon Basin led to evolutionary changes in these sequences.

Materials and Methods

1. Venom source and chemicals
Nineteen specimens of T. pachyurus were collected in the

municipality of Mesitas de la Escuela, in the state of Cundina-

marca in Colombia, under the Corporación Autónoma Regional de

Cuandinamarca license number 1096, and 23 specimens of T.

obscurus were collected in the state of Amapá, Brazil, under the

Instituto Brasileiro do Meio Ambiente e dos Recursos Renováveis (IBAMA)

license number 048/2007-CGFAU. They were kept alive in the

laboratory at the University of Brası́lia, in individual terrariums

and fed fortnightly with cockroaches and received water ad libitum.

Once a month the venom was extracted by electrical stimulation

of the last metassomal segment (telson), collected in 1.5 mL tubes,

diluted in deionized water and centrifuged at 10,0006 g for

15 min, discarding the pellet. Protein concentrations in the soluble

venom and in purified venom fractions were estimated by the

absorbance at 280 nm [30]. After protein quantification, the

samples were dried under vacuum and stored at 220uC. All

solvents and chemicals used in this study were analytical grade and

deionized water was used throughout.

2. Purification procedures
One mg of dried venom from T. pachyurus and T. obscurus,

separately,was solubilized in 200 mL deionized water, centrifuged

at 14,0006 g for 15 min at room temperature and the superna-

tant was submitted to high performance liquid chromatography

(HPLC), using an analytical C18 RP column (250 mm610 mm)

(Phenomenex, USA). The venom molecules were separated using

a linear gradient applied from solution A (0.12% trifluoroacetic

acid –TFA– in water) to 60% solution B (0.10% TFA in ace-

tonitrile) during 60 min and eluted at a flow rate of 1 mL/min,

with detection at 216 and 230 nm. Fractions were individually

and manually collected, vacuum dried and stored at 220uC until

use. The fractions of interest were further separated by HPLC

using optimized conditions based on their retention times and

percentage of B solution.

3. Mass spectrometry analysis
3.1. ESI-MS. The chromatographic fractions of interest from

T. pachyurus venom were reconstituted in a 50% acetonitrile/1%

acetic acid solution and directly applied into a Finnigan LCQDUO

ion trap mass spectrometer (San Jose, CA) using a Surveyor MS

syringe pump delivery system at a flow rate of 10 mL/min. The

fractions were splitted to allow only 5% of the sample to enter the

nanospray source. The operation voltage used was 2.00 kV and the

coaxial nitrogen flow was adjusted as needed for optimum sensitivity.

All spectra were obtained in the positive ion mode. Data acquisition

was performed on Xcalibur Windows NT PC data system.

Tityus pachyurus and T. obscurus NaScTxs
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3.2. MALDI-TOF MS. Molecular mass analysis from T.

obscurus venom fractions was performed on an UltraFlex III

MALDI TOF/TOF mass spectrometer (Bruker Daltonics, Ger-

many) in the positive linear mode. Chromatographic fractions were

reconstituted in deionized water at variable concentrations and

dissolved in an a-cyano-4-hydroxycinnamic acid matrix solution

(1:3, v:v), spotted in triplicate onto a MALDI target plate and

dried at room temperature for 15 min. Calibration of the system

was performed using the Peptide Calibration Standard for Mass

Spectrometry calibration mixture (up to 4000 Da mass range,

Bruker Daltonics). Spectra were processed with MassLynxTM 3.5

(Manchester, UK) and FlexAnalysis 2.4 (Bruker Daltonics,

Germany).

4. Amino acid sequence determination
Amino acid sequencing of purified peptides was performed by

the automated Edman degradation method on a PPSQ-23 protein

peptide sequencer (Shimadzu Co., Japan). For the To5 toxin from

T. obscurus venom the amino acid sequence was also determined by

MALDI – in source decay (ISD) utilizing 1,5-diaminonaphthalene

matrix solution [31]. Similarity searches were performed using

BLAST (www.ncbi.nlm.nih.gov/blast) and FASTA 3 (www.ebi.ac.

uk/fasta).

5. Construction of cDNA libraries and gene cloning
The cDNA libraries were separately constructed from total

RNA extracted from a single telson of a T. pachyurus and a T.

obscurus scorpion, as previously described [4]. The scorpions were

milked 5 days before RNA extraction. The RNAs of each species

were extracted using the SV Total RNA Isolation System Kit

(Promega, Madison, WI). The full-length cDNA libraries were

prepared by means of the Creator SMART cDNA Library

Construction kit (CLONTECH Lab., Palo Alto, CA). cDNA

inserts were cloned into the plasmids pDNR-LIB digested by

restriction enzymes Sfi I. The recombinant plasmids were trans-

formed into electrocompetent Escherichia coli DH5a. For the

polymerase chain reaction (PCR) of both cDNA libraries the

universal oligonucleotides T7 and M13 were used as primers.

Selected plasmids with cDNAs.400 bp were isolated using

alkaline lyses method, and single-pass sequencing of the 59-termini

was conducted with the primer T7 using an automatic sequencer

(Model 3100, Applied Biossystems, Foster City, CA) according to

the manufacturer’s instructions.

6. Bioinformatics analysis
To extract the high quality sequence region, the ESTs were

subjected to the Phred program as previously described [32] with

the window length set to 100 and the standard quality to 20. The

CrossMatch program was used to remove vector sequences. ESTs

that shared an identity of .95 out of 100 nucleotides were

assembled in contiguous sequences with the CAP3 program [33].

All these bioinformatics analysis were simultaneously run at

the http://www.biomol.unb.br/ site using default setup. The T.

pachyurus and T. obscurus cDNA sequences were searched against nr

public database using blastx and blastn algorithms http://www.

ncbi.nlm.nih.gov/blast/ with an e-value cut-off set to ,1025 to

identify putative functions of the new ESTs. All sequences were

examined for existence of signal peptides using the SignalP 3.0

program http://www.cbs.dtu.dk/services/SignalP/and the pro-

peptide cleavage site was determined from the known start site of

previously characterized mature toxins. The theoretical molecular

masses of the putative mature peptides were calculated in the

online service PeptideMass http://www.expasy.ch/tools/peptide-

mass.html. The nucleotide sequences obtained in this work are

deposited in EMBL Nucleotide Sequence Database numbers

HE585239 to HE585243 for T. pachyurus and HE585224 to

HE585238 for T. obscurus.

7. Alignment and phylogenetic analysis
Mature putative sodium toxins from T. pachyurus and T. obscurus

were compared with other sodium scorpion toxins of the Tityus

genus registered in the UniProt database http://www.uniprot.

org/. The toxin AaHIT4 (UniProtKB P21150), from the African

scorpion Androctonus australis, was selected as the outgroup [34].

Multiple sequence alignments were performed by CLUSTAL_X

1.83 software followed by manual adjustment [35]. This result was

subsequently used to build the phylogenetic analysis and consensus

sequences. In the sequence matrix, all positions containing gaps

and missing data were eliminated. The Maximum Parsimony

method with 500 Bootstrap replications [36] and Close-Neighbor-

Interchange algorithm model [37] on MEGA 5 software was used

in the reconstruction of the phylogenetic tree [38]. The analysis

involved 66 amino acid sequences.

Results

1. Molecular cloning
The titers of the non-amplified cDNA libraries obtained were

1.46104 cfu/mL with95% recombinant clones for T. pachyurus and

1.76104 cfu/mL with 95% recombinant clones for T. obscurus.

After the analysis from the venomous gland cDNA libraries, the

independent clones from T. pachyurus and T. obscurus were

submitted to bioinformatic analysis to remove vector and poor

quality sequences, and a total of 5 (in 3 contigs and 2 singlets)

nucleotide sequences of high quality from T. pachyurus and 15 (in

14 contigs and 1 singlet) from T. obscurus were identified as

precursors of putative modulators of Na+-channels, with a mean

read length of 254nucleotides (ranging from 243 to 266nucleo-

tides). These transcripts have in average a signal peptide with 20–

22 amino acid residues and a mature segment which shares several

amino acid residues characteristics of the typical NaScTxs as

well as the conformation of four disulfide bridges, as presented in

Fig. 1, which also includes the previously reported NaScTx Tpa2

[23]. One mature peptide (Tpa4) from T. pachyurus and ten

(Tc49b, Tc48a, Tc48b/Tc49a, To4, To5, To8, To9, To10, To11

and To12) from T. obscures might present the C-terminal amidated,

which is a conserved posttranslational modification in many

NaScTxs previously described [3]. When the nucleotide sequences

terminate with Gly followed by basic residues it is assumed

that these carboxy-terminal residues are removed by a carboxy-

peptidase, after which the remaining peptide would show the

most C-terminal amino acid amidated [39]. All sequences

were submitted to blastn and blastx searches against nr database

and an e-value,1025 was used as cut-off for confidential

homologue detection. The complete sequences of all precursors

of the putative NaScTx transcripts, described here below, are

deposited in the data bank as indicated in Material and methods

(section 2.6).

1.1. Sodium channel toxins from T. pachyurus. The five

NaScTx transcripts from T. pachyurus cDNA library were named

Tpa4, Tpa5, Tpa6, Tpa7 and Tpa8 (Fig. 1). These trivial names

come from the abbreviation of the genus, with the first letter

capitalized (T), and the first two letters in lowercase (pa) indicating

the specific epithet, and the following number used corresponds to

the chronological order of the description of a new toxic peptide,

as first suggested by Becerril and collaborators [40]. An equivalent

nomenclature was also adopted for theT. obscurus putative toxins

(‘‘To’’ and the corresponding number).

Tityus pachyurus and T. obscurus NaScTxs
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The Tpa4 can be classified as a classical a toxin by its high

identity (82%) with the TbTx5 (UniProtKB P0C5K8), identified

at transcript level from the Brazilian scorpion T. bahiensis [41],

and 81% identity with alpha-mammalian toxin Ts3 (UniProtKB

P01496) purified from the venom of another Brazilian scorpion

T. serrulatus [42]. This putative toxin has a theoretical average

molecular mass of 7405.0 Da (Table 1) and is constituted by 64

amino acid residues with 8 cysteines, which are likely to form

four disulfide bridges. By similarity, its C-terminal is enzymatically

cleaved at GKK and amidated.

Both Tpa5 and Tpa6 putative toxins have 66 amino acid

residues, theoretical molecular masses of 7342.4 and 7294.3 Da

(Table 1), respectively, and 8 cysteines each. These two Tpa toxins

have 67% identity with the putative alpha neurotoxin TdNa9

(UniProtKB C9X4K7) identified at transcript and protein levels,

and 66% with the putative neurotoxin TdNa10 (UniProtKB

C9X4K8), that has been evidenced at transcript level, both from

the Venezuelan scorpion T. discrepans [43].

Analysis of the Tpa7 toxin showed that it has 62 amino acid

residues, theoretical molecular mass of 6985.0 Da (Table 1), 8

cysteines, and can be classified as a b-NaScTx. This peptide shares

78% identity with the beta-neurotoxin Tz2 (UniProtKB Q1I165),

identified at transcript and protein levels from the Venezuelan

scorpion T. zulianus [44], and with the TdNa6 (UniProtKB

C9X4K4)from T. discrepans, also evidenced at both levels [43].

The putative Tpa8 toxin, which is constituted by 79 amino acid

residues and 8 cysteines, with a theoretical average molecular mass

of 8481.2 Da (Table 1), presented 43% identity with the toxin

LqhIT1b (UniProtKB P68722), identified at protein level from

Leiurus quinquestriatus hebraeus venom [45]. The Tpa8 toxin is the

first register of an anti-insect excitatory b-toxin from scorpions

of the Buthidae family from the New World (Fig. 2) and, by

similarity, presents an important structural feature, with the fourth

disulfide bridge shifted when compared to the other b-toxins. This

structural modification is an important and exclusive feature of the

anti-insect excitatory b-NaScTxs [12].

1.2. Sodium channel toxins from T. obscurus. Fifteen

distinct sequences from T. obscurus encode for NaScTxs (Fig. 1).

The mature peptides corresponding to three of them were

previously reported: Tc49b [28], Tc48a [25] and Tc48b/Tc49a

[29]. As we propose the adoption of the senior name Tityus obscurus

instead of T. cambridgei, these toxin names should be replaced to

To1, To2 and To3, respectively, where the following number

actually used corresponds to the description order for the Na+-

channel toxins. However, their actual trivial names were kept in

order to avoid any further confusion. Analysis of these three

transcript sequences, described for the first time in the present

study, revealed that the two last amino acid residues (-GK) from

their C-terminal were enzymatically removed, so these peptides

assumed their mature form. The signal peptides from Tc49b,

Tc48a and Tc48b/Tc49a transcripts have 20 amino acid residues

each, from which 15 are equal in all these precursor sequences

showing they are highly conserved (Fig. 1). These three peptides

are indicated in the chromatographic profile obtained by the

separation of 1.0 mg soluble venom from T. obscurus (Fig. 3).

Tc49b and Tc48b/Tc49a eluted together, as previously reported

[28,29], at 36.6 min.

N-terminal amino acid sequences and experimental molecular

masses corresponding to the mature peptides To4, To6 and To7

(showed in bold in Fig. 1) were previously described [25,28] and

early named as Tc54, Tc43 and Tc50, respectively (Table 1).

Their complete putative sequences were described for the first

time in the present study. The theoretical molecular masses

for these putative sequences, already considering the C-terminal

processing, are equivalent to their experimental molecular masses

[25], confirming the complete sequences (Table 1). Analysis

conducted with these transcripts showed that these precursors

encode mature peptides with 62 to 65 amino acid residues, each

with 8 cysteines which are likely to form four disulfide bridges. To4

mature toxin, which eluted at 40.0 min (Fig. 3) and has an

experimental molecular mass of 7253.2 Da and a C-terminal

posttranslational modification (-GKRK removal), shares a repre-

sentative identity (77%) with the putative beta-neurotoxin Td11

(UniProtKB Q1I173), identified at transcript level from T.

discrepans [44] and with the putative beta-neurotoxins TdNa7

(UniProtKB C9X4J8) (79%) and Td3 (UniProtKB Q1I177) (77%),

both identified at protein level from T. discrepans venom [43,44].

Both To6 and To7, with experimental molecular masses of 7266.0

and 7073.0 Da, respectively (Table 1), present high identity

(70 and 69%, respectively) with the putative neurotoxin TdNa10

(UniProtKB C9X4K8), evidenced at transcript level from

T. discrepans and 61 and 63%, respectively, with the putative

Figure 1. Multiple sequence alignment of Sodium-channel toxins from T. pachyurus (Tpa) and T. obscurus (To). The amino acid
sequences already described in literature are showed in bold. Predicted amino acid sequences are shown with the putative signal peptides in the left
and the putative mature toxins in the right, with the identified C-terminal prosequences shaded in black. Cys residues from the mature peptides are
shaded in grey.
doi:10.1371/journal.pone.0030478.g001

Tityus pachyurus and T. obscurus NaScTxs
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neurotoxin TdNa9 (UniProtKB C9X4K7), identified at protein

level from the same scorpion [43]. To6 and To7 eluted at 34.3 and

37.9 min, respectively, as showed in the chromatogram (Fig. 3).

Analysis conducted with the transcript To5 showed that it

encodes for a mature peptide with 62 amino acid residues found in

the scorpion venom and reported for the first time in the present

study (Fig. 1). This peptide, which eluted at 45.4 min in the crude

venom HPLC fractionation (Fig. 3), presented 62% identity with

Ardiscretin (UniProtKB P0C1X7), from T. discrepans scorpion

venom, a single polypeptide composed by 61 amino acid residues

with an amidated cysteine residue at the C-terminal end, packed

by four disulfide bridges [43]. The first 10 amino acid residues

from To5 sequence were similar to that described for Tc66 [25],

which eluted at 45.18 min. These two peptides present very close

molecular masses, however, Arg2 in To5 is replaced by Tyr2 in

Tc66. Considering their elution times in HPLC fractionations

(which were performed using identical procedures), and taking

into account their molecular masses, these differences might be

due to the presence of a homologous form eluting from the column

at the same percentage of acetonitrile. The average molecular

mass experimentally determined for To5 was 6937.1 Da, very

close to the theoretical molecular mass of 6937.7 Da (Table 1).

The first 40 amino acid residues from To5 were obtained by

Edman degradation and the complete sequence was confirmed by

MALDI-ISD, utilizing 1, 5-diaminonaphthalene matrix solution

(data not shown). The same sequence was obtained from the

results of the cDNA library. The activity of this peptide has not

been determined yet.

The To8 putative mature peptide presents a theoretical

molecular mass of 7050.0 Da (Table 1) if considered the expected

C-terminal processing (-GKRK removal) (Fig. 1). Its first ten N-

terminal amino acid residues were equal to those described for the

Table 1. Toxins from T. pachyurus and T. obscurus and their average molecular masses and retention times (RT).

Toxin Previous name MM RT (min) Reference

Theoretical Experimental

Tpa2 Tpa2 (P84631.1) 7522.5 7522.0 36.2 [23]

Tpa4 - 7405.4 - - This work

Tpa5 - 7342.4 - - This work

Tpa6 - 7294.3 - - This work

Tpa7 - 6985.0 - - This work

Tpa8 - 8481.2 - - This work

Tc49b Tc49b (P60214) 7404.5 7405.6 36.6 [28], this work

Tc48a Tc48a (P60212) 7319.3 7318.3 35.1 [25], this work

Tc48b/Tc49a Tc48b/Tc49a (P69213) 7385.4 7385.2 36.6 [29], this work

To4 Tc54 (P60215) 7254.6 7253.2 40.0 [28], this work

To5 - 6937.7 6937.1 45.4 This work

To6 Tc43 (P84685.1) 7266.3 7266.0 34.3 [25], this work

To7 Tc50 (P84688.1) 7074.1 7073.0 37.9 [25], this work

To8 - 7050.0 - - This work

To9 - 7155.2 - - This work

To10 - 6940.9 - - This work

To11 - 7154.2 - - This work

To12 - 7171.2 - - This work

To13 - 8054.0 - - This work

To14 - 7953.0 - - This work

To15 - 7195.1 - - This work

Swiss-Prot accession numbers are present when available.
doi:10.1371/journal.pone.0030478.t001

Figure 2. Multiple sequence alignment of Tpa8 with other anti-insect b excitatory NaScTxs from the Old World. Tpa8 putative toxin
from T. pachyurus, LqhIT1b from Leirus quinquestriatus hebraeus, Bj-xtrIT from Buthotus judaicus, AahIT1 from Androctonus australis, LqqIT1 from
Leiurus q.quinquestriatus, Lqh-xtrIT fromLeirus q. hebraeus and BmK IT-AP from Mesobuthus martensii.
doi:10.1371/journal.pone.0030478.g002
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peptide Tc61 described by Batista and collaborators [25], though

this last peptide presents an experimental molecular mass of

7105.0 Da. Therefore, due to the different molecular masses, To8

and Tc61 are probably different peptides. After the chromato-

graphic fractioning of T. obscurus venom performed in the present

study (Fig. 3), it was identified a peptide with 7107.8 Da, eluted at

42.8 min, equivalent to Tc61, which elutes at 42.64 min [25].

However, as this peptide was not obtained in sufficient amount to

be sequenced, the equivalence still has to be analyzed. The

putative peptide To8 shares considerable identity (58–62%) with

the putative beta-neurotoxins Td7 (UniProtKB Q1I164), Td10

(UniProtKB Q1I176), Td11 (UniProtKB Q1I173), Td6 (Uni-

ProtKB Q1I167) and Td9 (UniProtKB Q1I178), evidenced at

transcript level [44], and Td1 (UniProtKB Q1I180), Td3

(UniProtKB Q1I177) and Td2 (UniProtKB Q1I179), evidenced

at protein level from T. discrepans [43,44].

The putative sequences To9 to To15 (Fig. 1) had no equivalent

toxins found in the chromatographic profile until now, and, for

this reason, the experimental molecular masses could not be

determined (Table 1). The To9 mature peptide has an expected

molecular mass of 7155.2 Da and presents 98% identity with the

putative alpha-neurotoxin TdNa8 (UniProtKB C9X4K6), evi-

denced at transcript level from T. discrepans [43]. The signal

peptides of both putative sequences comprise the first 19 residues

at the N-terminal sequence and share 89% identity, with only

two different amino acids. The mature peptides from these two

putative sequences, which comprise 66 amino acid residues, have

only one amino acid different (Ala21 in To9 is replaced by

Glu21in TdNa8) (see Table S1 in Supporting Information).

Similar to TdNa8, To9 is thought to be post-translationally pro-

cessed to give a mature peptide of 63 amino acids, in which the C-

terminal amino acid proline is amidated (Fig. 1). The three

residues after the Pro in the precursor are GKK, which are

cleaved and the glycine residue provides the amine group for

amidation of Pro. To9 also presents 73% identity with TbTx5

(UniProtKB P0C5K8), a putative alpha-neurotoxin evidenced at

transcript level from the scorpion T. bahiensis [41], for which an

equal processing mechanism is also expected. To10 sequence

shares with To9 an equal signal peptide and also the same C-

terminal processing, with –GKK removal after Pro (Fig. 1). Its

putative mature sequence presents 6940.9 Da and 62 amino acid

residues, with only five residues different to To9.

The To11 mature sequence presents 93% identity with the

alpha-neurotoxin Tc48b/Tc49aand 90% identity with the puta-

tive beta-neurotoxins Tz1 (UniProtKB Q2NME3) and Td4

(UniProtKB Q1I174), identified at transcript and protein levels

from the Venezuelan scorpions T. zulianus and T. discrepans,

respectively [44,46]. Its signal peptide has 20 amino acid residues

and, by similarity, it is expected to contain a C-terminal processed

peptide by removal of the four last residues after Cys (-GKRK)

(Fig. 1). Assuming this maturation process is correct and that the

peptide is forming 4 disulfide-bridges, the expected molecular mass

for To11 mature peptide should be 7154.2 Da (Table 1).

Analysis conducted with the transcript To12 showed that, after

an expected C-terminal processing (-GK removal) and considering

a 20 amino acids signal peptide, this precursor encodes for a

peptide with 62 amino acid residues, with 8 cysteines which

are likely to be forming 4 disulfide bridges (Fig. 1), and with a

theoretical molecular mass of 7171.2 Da (Table 1). It presents high

identity (85%) with the Tb2-II (UniProtKB P60276) neurotoxin,

an active toxin against both mammals and insects evidenced at

protein level from T. bahiensis venom [47], and 82% with the beta-

neurotoxin Ts2 (toxin III-8) (UniProtKB P68410), from T.

serrulatus venom [48,49], and its homologous Tst2 (toxin III-8

like) (UniProtKB P68411), from T. bahiensis venom [40].

The first 9 and 11 amino acid residues from To13 and To14

mature sequences, respectively, were equal to that from Tc40

(UniProtKB P84683) and Tc41 (UniProtKB P84684) [25],

Figure 3. High performance liquid chromatography separation of 1.0 mg soluble venom from T. obscurus. This was performed in an
analytical C18 reversed phase column equilibrated with solution A (water in 0.1% TFA), using a gradient from 0 to 60% solution B (acetonitrile in
0.12% TFA) over 60 min, with a flow rate of 1 mL/min and absorbance at 216 nm. Fractions labeled in the chromatogram (Tc49b to To7) were
detected at both protein and transcript levels.
doi:10.1371/journal.pone.0030478.g003
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however, the theoretical and experimental molecular masses were

significantly different, even considering different C-terminal pro-

cessing and, as these putative sequences were grouped into contigs

with 3 and 9 reads, respectively, we disregard the possibility of

erroneous sequences. The To13 transcript has a signal peptide with

18 amino acid residues and a mature peptide with 71 amino acids

(Fig. 1), and a theoretical molecular mass of 8054.0 Da (Table 1).

The To13 mature toxin presents 43% identity with the putative

beta-neurotoxin LmNaTx1 (UniProtKB D9U297) and 42%

identity with the putative alpha-neurotoxin LmNaTx21.1 (Uni-

ProtKB P0CI53), both evidenced at transcript level from Lychas

mucronatus Asian scorpion [50]. The To14 transcript contains a

signal peptide with 19 amino acids and a mature peptide with 70

amino acid residues (Fig. 1), and an expected molecular mass of

7953.0 Da (Table 1). It presents 61% identity with Pg8 (UniProtKB

B7SNV8), a toxin evidenced at protein and transcript levels from

Parabuthus granulatus scorpion and able to generate protective

antibodies in mice [51].

The To15 precursor contains 83 amino acid residues (Fig. 1).

Its putative signal peptide (19 residues) is removed and the re-

sulting 64 amino acid peptide has a theoretical molecular mass

of 7195.1 Da (Table 1).To15 mature toxin shows significant

sequence identity with the putative beta-neurotoxins TdNa6

(UniProtKB C9X4K4) (79%), evidenced at protein and transcript

levels from T. discrepans [43], and Tz2 (UniProtKB Q1I165) (77%),

evidenced at transcript level from T. zulianus venom gland [44].

2. Phylogenetic analysis
Sixty five peptides or deduced peptides from genes of known

scorpions of the genus Tityus demonstrated or supposed to be

specific for Na+-channels were used to build the molecular

phylogenetic analysis by the Maximum Parsimony (MP) method

presented in Fig. 4.It includes seventeen new NaScTx sequences,

five from T. pachyurus and twelve from T. obscurus (this communi-

cation), together with Tpa2 and three NaScTxs already described

from T. pachyurus and T. obscurus, respectively, and 44 known

NaScTx sequences from other Tityus genus species. The bootstrap

consensus tree inferred from 500 replicates was taken to represent

the evolutionary history of the taxa analyzed [36]. Branches cor-

responding to partitions reproduced in less than 50% bootstrap

replicates are collapsed. The percentage of replicate trees in which

the associated taxa clustered together in the bootstrap test (500

replicates) is shown next to the branches [36]. The MP tree was

obtained using the Close-Neighbor-Interchange algorithm [37] with

search level 2 in which the initial trees were obtained with the

random addition of sequences (10 replicates). There were a total of

47 positions in the final dataset.

Figure 4 shows the results of a rooted phylogenetic tree, where it

was possible to group the Na+-channel toxins identified from Tityus

genus scorpion venoms into 14 subfamilies (NaTx1 to NaTx14),

which were also used to form the consensus sequence groups

(Fig. 5). (For details, see Table S1 in Supporting Information).

The first cluster, NaTx1, shows a relationship between the

toxins Tpa7 from T. pachyurus,To15 from T. obscurus, Tz2

(UniProtKB Q1I165) from T. zulianus and TdNa6 (UniProtKB

C9X4K4) from T. discrepans. All these toxins present high sequence

similarity with b-NaScTxs. In the second cluster, NaTx2, a branch

is formed by Ardiscretin (UniProtKB P0C1X7), TdNa1 (Uni-

ProtKB C9X4J9), TdNa2 (UniProtKB C9X4K0), TdNa3 (Uni-

ProtKB C9X4K1), TdNa5 (UniProtKB C9X4K3) and Bactridin-

1 (UniProtKB P0CF39) from T. discrepans and To5 from T.

obscurus. Due to the sequence similarity with Ardiscretin, it is

expected that these toxins are also specific for arthropods. All these

toxins form the clusters named NaTx1 and NaTx2, which

Figure 4. Phylogenetic analysis of NaScTxs from T. pachyurus, T.
obscurus and other scorpions from Tityus genus. Filled symbols
indicate toxins from scorpions inhabiting the Northern region of the
Amazon Basin: square for T. pachyurus, circle for T. obscurus, triangle for
T. discrepans, and inverted triangle for T. zulianus toxins. Open symbols
indicate toxins from scorpions inhabiting the Southern part of the
Amazon Basin: square for T. bahiensis, triangle for T. stigmurus, inverted
triangle for T.costatus, circle for T. serrulatus, and rhombus for T.
fasciolatus toxins.
doi:10.1371/journal.pone.0030478.g004
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consensus sequences are presented in Fig. 5 and are from

scorpions inhabiting the Northern part of South America.

The NaTx3 group was formed by ten NaScTxs from which five

toxins – Tpa4 from T. pachyurus, To9, To10 and To14 from T.

obscurus and TdNa8 (UniProtKB C9X4K6) from T. discrepans –

belong to the species distributed inthe Northern partof the

Amazon river, and the other five toxins – Ts3 (UniProtKB

P01496) and Ts5 (UniProtKB P46115) from T. serrulatus, Tst3

(UniProtKB P0C8X5) from T. stigmurus and Tb3 (UniProtKB

P56608) and TbTx5 (UniProtKB P0C5K8) from T. bahiensis – are

from species distributed in the Southern region of the Amazon

Basin. This was the only branch in our phylogenetic relationship

hypothesis with the same proportion of toxins belonging to Tityus

genus species which inhabit the Southern and Northern areas of

the Amazon Basin. All sequences from this group share high

sequence similarities with the a-NaScTxs and form the consensus

sequence showed in Fig. 5.

The next cluster, NaTx4, comprises Ts6 (UniProtKB P45669)

and TsNTxP (UniProtKB O77463) toxins, from T. serrulatus,

TcoNTxP1 (UniProtKB Q5G8A8) from T. costatus, TbIT-1

(UniProtKB P60275) from T. bahiensis and Tf4 (UniprotKB

P83435) from T. fasciolatus. These four species inhabit the Southern

part of the Amazon Basin, with highly conserved domains (Fig. 5).

In the next branch, two main groups, NaTx5 and NaTx6, were

formed with most Na+-channel toxins from Tityus species in-

habiting the Southern region of South America. In the NaTx5

group, the closely related toxins Ts2 (UniProtKB P68410) from T.

serrulatus, Tst2 (UniProtKB P68411) from T. stigmurus, Tb2

(UniProtKB P56609) and Tb2-II (UniProtKB P60276)from T.

bahiensis were grouped with To12 toxin from T. obscurus, which is

the only NaScTx in this group belonging to a scorpion from the

Amazonian rainforest. In the next cluster, NaTx6, it is noteworthy

to see the close relationship between four NaScTxs identified in

scorpion venoms that inhabit the Southern area of the Amazonian

rainforest: Tco-gamma (UniProtKB Q5G8B8) from T. costatus,

Ts1 (UniProtKB P15226) from T. serrulatus, Tb1 (UniProtKB

P56611) from T. bahiensis and Tst1 (UniProtKB P56612) from T.

stigmurus. These peptides have high percentage of sequence identity

with b-NaScTxs, showing in the consensus sequences high con-

served domains along the whole sequences (Fig. 5).

From NaTx7 to NaTx14, there were only NaScTxs from

scorpions inhabiting the Northern region of South America,

strengthening the proposal of the geographic separation caused by

the Amazon Basin. The NaTx7 group included exclusively Na+-

channel toxins from T. pachyurus (Tpa5 and Tpa6), T. obscurus (To6

and To7) and T. discrepans (TdNa9 and TdNa10 – UniProtKB

C9X4K7 and C9X4K8, respectively). All these sequences present

sequence similarity with a-NaScTxs.

Due to their particular primary sequences, the next four

peptides – To13, Tpa8, To8 and Tc48a (UniProtKB P60212) –

formed independent branches that were labeled NaTx8,NaTx9,-

NaTx10 and NaTx11, respectively. Besides being in the same

branch, To13, from T. obscurus, and Tpa8, from T. pachyurus, were

classified into different subfamilies as they share only 29% identity.

All these peptides present sequence similarity with b-NaScTxs,

although Tc48a, previously described, has a mechanism of action

similar to the typical a-NaScTxs [25].

The toxins Tpa2 (UniProtKB P84631) and Tc49b (Uni-

ProtKBP60214) from T. pachyurus and T. obscurus, respectively,

formed the next cluster, named NaTx12. These two toxins, with

highly conserved domains (Fig. 5), share sequence similarity with b-

NaScTxs.

The next branch separates the NaTx13 group from the

NaTx14. The NaTx13 clusteris formed by eight toxins from T.

discrepans: Td11 (UniProtKB Q1I173), TdNa7 (UniProtKB

C9X4J8), Td3 (UniProtKB Q1I177), Td1 (UniProtKB Q1I180),

Td10 (UniProtKB Q1I176),Td6 (UniProtKB Q1I167),Td2 (Uni-

ProtKB Q1I179) and Td12 (UniProtKB Q1I172); and the To4

toxin from T. obscurus. The NaTx14 cluster, with a higher con-

served domain (Fig. 5), comprises six toxins from T. discrepans:

Bactridin-2 (UniProtKB P0CF37), Td4 (UniProtKB Q1I174), Td5

(UniProtKB Q1I169), Td8 (UniProtKB Q1I163), Td9 (Uni-

ProtKB Q1I178) andTd7 (UniProtKB Q1I164); two toxins from

T. obscurus: To11 and Tc48b/Tc49a (UniProtKB P60213); and

one toxin, Tz1 (UniProtKB Q2NME3), from T. zulianus. Similar

to Tc48a [25], Tc48b/Tc49atoxin also presents a mechanism of

action similar to the typical a-NaScTxs [29], besides presenting

sequence similarity with b-NaScTxs, such as all the other toxins

from these two clusters.

Discussion

In this work, we have employed a transcriptomic approach to

investigate Na+-channel putative peptides. They are supposed to

be modulators of Na+-channel function and were obtained from

both T. pachyurus and T. obscurusscorpions. In addition, a proteomic

Figure 5. Consensus sequences for the 14 proposed subfamilies of NaTxs from scorpions of the genus Tityus. Amino acid sequences
were obtained by classical proteomic approach and/or predicted by cDNA library constructions from scorpion venom glands. Acidic and basic
residues are shown in red and blue, respectively. Cys residues are shown in bold.
doi:10.1371/journal.pone.0030478.g005
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approach was used in order to obtain their primary sequence and

molecular masses. Data published previously and public data

banks with these venom peptides were also used in order to

complete these parameters. Phylogenetic analysis with Tityus

NaScTxs was done to infer whether the geographic separation

between the scorpions of Tityus genus living in the North and

South of the Amazon region led to evolutionary changes in these

sequences.

Using the cDNA libraries obtained from one venomous gland

from T. pachyurus and one from T. obscurus, a considerable number

of clones were obtained and sequenced: 4 different nucleotide

sequences of high quality from T. pachyurus and 15 from T. obscurus

were identified as precursors of putative modulators of Na+-

channels. It is important to notice that only one scorpion of each

species was used, thus the variations on structure sequences found

cannot be attributed to intra-species variations. Although this

information does not represent the total number of NaScTxs

present in their venom, since we constructed a non-amplified

library, it could be expected that clone number reflects the actual

prevalence of a given transcript. The representativeness of the

components was more effectively demonstrated for T. obscurus, as

many NaScTxs present in its cDNA library were also detected at

protein level in this study and also in previous proteomic analysis

conducted with the venom of this species [25,28,29]. The

experimental molecular masses of many peptides identified in

T.obscurus venom are equivalent to the theoretical molecular

masses of putative mature toxins (Table 1). In the last years,

transcriptomic and proteomic approaches have been used to

explore the molecular composition of venoms, showing the great

number of different toxin families [52]. Considering these two

approaches, however, the transcriptomic strategy shows to be

more effective in the description of new venom peptide sequences

[53,54], including even the atypical venom molecules that can

hardly be isolated by conventional methods [55].

Novel trivial toxin names were suggested in this communication

for the NaScTxs partially described from T. obscurus scorpion

venom (Table 1), as they carry information about the junior name

Tityus cambridgei Pocock, 1897 [24]. Tc54, which was partially

described by Batista and collaborators [28], was renamed To4.

The To5 denomination was given to a new toxin, evidenced at

protein and transcript levels in the present study and which

presents considerable identity with Ardiscretin, a toxin from T.

discrepans venom which was shown to be specific for invertebrates

(crickets, triatomides, crabs and squids), but non-toxic to mice at

the dose assayed [56]. The Tc43 and Tc50 [25] were renamed

To6 and To7, and the other putative NaScTxs from T. obscurus,

with no equivalent toxins detected at protein level until now, were

named To8 to To15 (Table 1).To avoid further misunderstand-

ings, T. pachyurus NaScTxs nomenclature has begun with Tpa4 in

the present study, even though Tpa1 and Tpa3 are not Na+-

channel toxins [23].

An advance in the study and discovery of novel peptide toxins

from scorpion venoms using the proteomic and transcriptomic

approaches [53,57,58] has increased the need for development of

a rational nomenclature for naming these toxins in order to

facilitate future cataloguing and analysis (see review [59]). Since

the novel nomenclature proposed by King and collaborators [59]is

not universally accepted we decided to maintain the general

denomination of a- and b-toxins, adding however the results of

our phylogenetic analysis, that certainly can help a better way of

classifying these toxic peptides (see below). The nomenclature

proposed by Tytgat and collaborators [2] for the potassium

channel scorpion toxins, based on a primary sequence alignment

of the toxins and considering the cysteine and other highly

conserved residues, was successfully adopted by researches and it is

in constant update, thus permitting the inclusion of new K+ toxin

families.

Based on the currently used nomenclature for the K+-channel

scorpion toxins [2] and in order to avoid many denominations for

a single peptide, as it occurs with many T. serrulatus toxins [60], we

propose a new unified nomenclature for the long-chain NaScTxs.

The 65 peptide sequences from Tityus scorpion venoms used in our

phylogenetic analysis were clustered in 14 subfamilies named

NaTx1 to NaTx14 (Fig. 4), based on the alignment of cysteine

residues and other highly conserved domains (Fig. 5). In the

Supporting Information (Table S1) included in this manuscript,

the individual members of each of the subfamilies are presented

with their amino acid sequences, percentage of identity with the

first described toxin from each subfamily, main features, and

corresponding references. This classification method permits the

continuous addition of new Na+-channel scorpion toxins in the

presented groups, by the addition, in the chronological order of

description, of a new cardinal number after the subfamily number

(see the fourth column of Table S1 in Supporting Information),

and even the inclusion of new subfamilies, as different NaScTxs

are discovered. The proposed nomenclature can be adopted by

toxins or peptides identified by both methods, direct protein

isolation and transcript levels, and do not abolish the trivial names

used until now, which are also important to facilitate remembering

the biological source of the toxins, as many of them are associated

with the scorpion species denomination.

As mentioned above, the new putative toxins identified in this

study present sequence similarities with other previously identified

toxins and for this reason, some are classified as a (Tpa4, Tpa5,

Tpa6, To6, To7, To9, To10 and To14) and b NaScTxs (Tpa7,

To4, To8, To12 and To15), although some special cases should

be highlighted.The Tpa8 toxin was classified as an anti-insect

excitatory b-NaScTx for its structural similarity with the classical

excitatory toxins from buthid scorpions from the Old World

(Fig. 2). Into the NaScTxs, the b excitatory are the largest peptides

in length, with 70–76 amino acid residues, and share a common

scaffold comprising an a-helix and three stranded anti-parallel b-

sheet stabilized by four disulfide bridges. However, in the

excitatory toxins the fourth disulfide bridge is shifted when

compared to the other b toxins [12,61]. By similarity with the Bj-

xtrIT toxin (UniProtKB P56637), from the Asian buthid scorpion

Buthotus judaicus (Fig. 2), we could infer two active domains: the

pharmacophore, which in Tpa8 consists of Glu25, Asp26, Asp36

flanked by Phe33 and Val41, and the second amino acid cluster in

the functional surface, which is formed by hydrophobic residues

positioned on the C-terminal (Phe77 and Val78).

Tc49b toxin [28] presents 64 amino acid residues and 7405.6 Da

(Table 1) and shares 82% identity with Tpa2, a b-NaScTx from T.

pachyurus scorpion venom [23]and 69% with the putative beta-

neurotoxins Tz1 and Td4, identified at transcript and protein levels

from the Venezuelan scorpions T. zulianus and T. discrepans, re-

spectively [44,46]. The actual electrophysiological data with Tc49b

is not sufficient to allow speculations on its fine mechanism of action,

but as it does not seem to change the inactivation mechanism of

Na+-channels, it is suggestive that this toxin does not act as a typical

a-NaScTx [28]. Tc48a toxin, which presents 65 amino acid residues

and 7318.3 Da [25] (Table 1), has considerable identity (63–65%)

with the putative beta-neurotoxins Td11, Td7, Td1, Td12, Td3 and

Td10 from T. discrepans [43,44], but its mechanism of action is

similar to that from the typical a-NaScTxs [25]. In a similar way,

Tc48b/Tc49atoxin, which presents 64 amino acid residues and

7385.2 Da [29] (Table 1), shares high identity (90%) with the beta-

neurotoxins Tz1 and Td4 from T. zulianus and T. discrepans,

Tityus pachyurus and T. obscurus NaScTxs
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respectively [44,46], but it affects Na+-permeability in pituitary

GH3 cells in a similar mechanism as those reported for the a-

scorpion toxins [29]. To8 putative mature peptide, which shares 58

to 62% identity with many putative beta-neurotoxins from T.

discrepans (see Results, section 3.1.2), also has considerable identity

with Tc49b (62%), Tc48b/Tc49a (58%) and Tc48a (55%).

Contrary to Tc49b and to all other putative beta-neurotoxins

which showed identity with To8, these latter two toxins present a

mechanism of action similar to that from the typical a-NaScTx

[25,28,29]. To11 and To13 putative toxins also have sequence

similarities with both a and b-NaScTxs.

Tc48a and Tc48b/Tc49a toxins and the discovery of several

new scorpion peptides assumed to be toxic suggested the existence

of some inconsistence on the designation of a-toxins found in the

Old World and the b-toxins in the New World (see review [62]). It

imposes the question whether it is possible to classify the toxins

into alpha or beta classes only by searching against databases

without previous acquisition of electrophysiological data. This is

currently done when only transcriptomic analysis is performed,

without direct measurement of the real biological function, and is

important as it contributes to the knowledge of the state of art in

scorpion toxins, but not sufficient to determine their real activity.

There are also several peptides with typical long-chain structure

that display divergent effects and do not fit strictly into classical

a or b classes. AahSTR1, a non-toxic peptide isolated from the

North African scorpion Androctonus australis Hector, shares

sequence similarity with Old World a-toxins, whereas its 3D

structure is similar to that from the New World b-toxins [63].

AahIT4, another long-chain peptide isolated from this same

scorpion venom, modulates the specific binding of both a- and b-

type anti-mammal scorpion toxins to the mammal Na+-channel

and is also toxic to insects. Therefore, this peptide is a possible

phylogenetic link between Old World and New World scorpion

toxins [34], and for this reason it was selected as the outgroup in

our phylogenetic analysis. BmP09 [64] and KAaH1 [65], from M.

martensii and A. australis Hector, respectively, specifically block K+-

channels, despite the fact that they are structurally more closely

related with other NaScTxs. Another peptide named Birtoxin,

which has only three disulfide bonds and shares high homology

with Centruroides b-toxins, was recently isolated from the South

African scorpion Parabuthus transvaalicus [66].

Froy and Gurevitz [62] have proposed an evolutionary route for

the NaScTxs in which the ancestral b-toxin might have developed

into a-toxins before the separation of the continents, which can

explain the existence of some a-toxins in South America buthids (e.g.

CsEV, Ts3 and Ts5, the two latter clustered in the NaTx3subfamily

– Fig. 4) and the large portion of a-toxins in Old World scorpion

venoms. In the New World, the ancestral b-toxin has more likely

developed into the existing b-toxins (e.g. Cn2, Css II and Ts1, the

latter clustered in the NaTx6subfamily – Fig. 4), which predominate

in the New World buthid scorpion venoms, and has also given rise to

a new group of a-toxins, named by the authors a9-toxins, as they

have preserved the b-toxin structure but acquired pharmacological

features of a-toxins similar to that from the Old World (e.g. CsEv1,

CsEv3). Due to the sequence similarity of the Tityus a-toxins to

the Old World a-toxins, it is possible that the ancestor that gave

rise to this genus existed before the separation of South America

from Africa. The ancestral Tityus b-toxins might have further

developed into the existing b-toxins that actually predominate in

these venoms [62].

In the a-NaScTxs, the active surfaces can be identified by two

domains: the ‘‘core-domain’’ is formed by residues of the loops

connecting the secondary structure elements of the molecule core,

which have a chemical nature highly conserved and is predominated

by positively charged and hydrophobic residues, and the ‘‘NC-

domain’’ comprises five residues (between the 8–12 chain position)

and a C-terminal segment formed by a residue-turn in the positions

56–64 [67,68]. These structural features, common to the Old World

a-NaScTxs, are present in the toxins from the NaTx3 cluster (Fig. 4),

which includes the new putative toxins Tpa4 from T. pachyurus and

To9, To10 and To14 from T. obscurus, with the ‘‘core-domain’’

formed by acidic and hydrophobic residues and the ‘‘NC-domain’’

more variable in amino acids but with a basic C-terminal tail. This is

in agreement with the proposed by Gurevitz and collaborators [61]

in which the a-toxins contain a conserved hydrophobic surface and

the carboxy-terminal stretch has a limited degree of structural

freedom that permits the formation of a variety of bioactive regions.

In that cluster it is also observed an important region that is the

conserved N-terminal surface constituted by the hydrophilic and

basic amino acids Lys1, Lys2, Asp3, Gly/Asp4, Tyr5 and Pro6

(Fig. 5), being these features observed only in the New World a-

NaScTxs.

The NaTx7cluster (Fig. 4) is also formed by toxins with high

similarity with the a-NaScTxs and all of them are from scorpions

that inhabit the Northern of the Amazon region. These toxins

share the same active surfaces, owning the ‘‘core-domain’’ and the

‘‘NC-domain’’ postulated by Gordon and collaborators [67] but

the ‘‘core-domain’’ in this toxin group is more similar to the ‘‘core-

domain’’ from the a-like toxins from the Old World scorpion

venom. The N-terminal surface of the toxins from this cluster

shares the hydrophilic feature of the N-terminal region of the

NaTx3 cluster, but is less variable in relation to the amino acids

that confer the basic property. In the NaTx4 cluster (Fig. 4 and

Table S1 from Supporting Information), four toxins were

previously classified as a-NaScTxs, with only one peptide (TbIT-

1) classified as b-NaScTx.

The NaTx1, NaTx2, NaTx5, NaTx6 and NaTx9 to

NaTx14clusters (Fig. 4) are closely related with the b-NaScTxs.

Cohen and collaborators [69] suggested that the pharmacophore

is one of the bioactive surfaces on b-NaScTxs and is associated

with the a-helix of the toxin peptide. Another bioactive surface is

the C-terminal tail and the loop that links the a-helix with the b-

sheet [12,61]. In the NaTx5, NaTx6 and NaTx14 clusters

obtained by the phylogenetic relationship presented here (Fig. 4),

the pharmacophore surface is constituted by amino acid residues

that are closely related with the amino acids of the anti-mam-

malian and anti-insect b-NaScTx pharmacophores, suggesting

that theseb-toxins of the genus Tityus are also toxic to insects. The

clusters NaTx1, NaTx2and NaTx9 to NaTx13 have the amino

acid residues of the pharmacophore surface similar to the ph-

armacophore of the depressant anti-insect b-NaScTxs, although it

was demonstrated that the Tc48a toxin, in the NaTx11cluster,

presents a b-type structure, but an a-type action on mammals

[25],and that the Tpa2 toxin, in the NaTx12 cluster, also presents

activity on mammals [23]. In all these clusters related with the

b-NaScTxs, the C-terminal surface is variable, strengthening the

idea that the C-terminal region in sodium toxins is in constant

evolution, process that may have occurred in parallel to the evo-

lutionary changes of target sites in sodium channels [61].

From our analysis, the phylogenetic inference of Tityus scorpion

NaTxs revealed a strong separation between the species T. pachyurus,

T. obscurus, T. discrepans and T. zulianus living in the Northern part

of the Amazon Basin and those living in its Southern part, as

T. serrulatus, T. bahiensis, T. stigmurus, T. costatus and T. fasciolatus. This

separation coincides with the morphoclimatic regions (Amazon,

Guyana, Choco, Atlantic Forest, Araucaria, Chacao, Cerrado,

Caatinga, Pantanal, Gran Sabana, Llanos, Cerrado-Amazon

transition region, Chacao-Amazon transition region and Pacific) of

Tityus pachyurus and T. obscurus NaScTxs
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tropical South America, which is one of the most biologically diverse

regions on Earth [70,71].T. obscurus is distributed in the Northern

part of the Amazon region in Brazil, whereas T. pachyurus, T.

discrepans and T. zulianus are localized in the Mountain Andes region,

the first in Colombia and the others in Venezuela.

Similarly, the Amazonian region is famous for high biodiversity,

the highlands of the transition zone between the Andes and the

lowlands of the Amazon Basin show particularly high species

diversity. Hypotheses proposed to explain the high levels of diversity

in the highlands include repeated parapatric speciation across

ecological gradients spanning the transition zone, repeated allopatric

speciation across geographic barriers between the highlands and

lowlands, divergence across geographic barriers within the transition

zone and simple lineage accumulation over long periods of time,

which were influent facts in the patters of divergence in frogs of

the genus Epipedobates [72]. These parameters are also observed in

scorpion speciation and divergence. Lourenço [73] postulated that

South American tropical scorpions exhibit a high degree of en-

demism in the Amazon and Atlantic Forest transition, in the

Amazon and Choco Forest transition, and also in the Andes region,

all areas which appear to be the epicenter of scorpion diversity in

the World. This could be observed in the phylogenetic analysis

presented here, where the NaScTxs from T. pachyurus and T. obscurus

were mostly grouped with T. discrepans and T. zulianus NaScTxs

(Fig. 4), all species belonging to the Amazon and Andes transition.

This statement is consistent with the criteria that Tityus reaches

its greatest diversity in the Northwestern part of South America

with half of the species described from Colombia, Ecuador and

Venezuela [19,74]. The other scorpion species – T. costatus, T.

bahiensis, T. stigmurus, T. serrulatus and T. fasciolatus – belong to the

Amazon and Atlantic Forest transition and also to Cerrado biome.

These ecogeographical differences and environmental changes

in the South American scorpion habitats not only contributes with

the speciation process on scorpion of the Tityus genus, but also lead

to important diversity of components in scorpion venoms. It is

worth mentioning that the diversity in scorpion venoms not only

occurs between species, but also into populations of the same

species. In the comparative venom gland transcriptome analysis

of Lychas mucrunatus scorpions from different geographical regions,

it was revealed high intraspecific toxic gene diversity and that

scorpions evolve to adapt a new environment by altering the

primary structure and abundance of venom peptides and proteins

[50]. This intraspecific diversity of scorpion venom peptides was

also showed in the venom of Scorpio maurus palmatus from four

geographically isolated localities in Egypt [15].

All these evidences in inter and intraspecific variation of scorpion

venoms caused by geographical isolation should be considered in

the significant variations of the scorpionism symptoms. In this

regard, an investigation addressing phylogeography of Androctonus

species in Tunisia shows evidence for regional variation in toxins

from A. australis venom between the two morphological forms A. a.

garzonii and A. a. hector, and between another species of Androctonus,

suggesting the anti-venom production using both A. australis

subspecies [75]. Differently, in a recent study made by Amaro

and collaborators [76], it was showed that a human antibody

fragment (ScFv) specific for the Ts1toxin (UniProtKB P15226) from

T. serrulatus scorpion venom had a stronger recognition for the Ts1

toxin, for which it was built, but also 60% of recognition for Tc49b

from T. obscurus, 50% for Tpa2 from T. pachyurus and 15% for Cn2

from Centruroides noxius. Nevertheless, this result still indicates a

difference between these toxins and the geographical separation of

the Tityus genus species.

The geographical separation inferred in the phylogenetic tree

performed in this study can be also observed by the differential

clinical manifestations due to a scorpion sting. Scorpion en-

venomation is an important public health problem in tropical and

subtropical zones due to its frequent incidence and potential

severity, and the management of some cases can be difficult

especially in regions with limited medical facilities, as it happens

in several remote areas of the Mountain Andes and Amazon

regions [14].

In the envenoming caused by T. obscurus, the main observed

effects are central neurotoxicity as myoclonia, dysmetria, dysar-

thria and ataxia, with minimum or no autonomic manifestations

[20,77]. Although T. obscurus has an Amazonian distribution and

T. pachyurus, T. discrepans and T. zulianushave a Mountain Andes

distribution, all these species share the clinical manifestations in the

scorpionism cases as central neurotoxicity [20,78,79], similar to

other species found in the Northwestern of the Amazon Basin, as

T. asthenes and T. nematochiurus, from Colombia, and T. perijanensis,

from Venezuela, which are phylogenetically related [19,79] and

are also responsible for severe envenomation cases [18,79]. These

clinical manifestations are different to the symptoms caused by the

stings from scorpions found in the Southeastern part of Brazil,

where the manifestations observed are mainly autonomic with few

or no neurotoxic effects [77,80,81].

Otherwise, in Venezuela, it was reported in the scorpionism

evoked by Tityus neospartanus acute pancreatitis and cardiac

electrical abnormalities evidenced by premature auricular and

ventricular contractions, elevation of the ST segment, depression

of the J point, prominent U wave, depression of the ST segment

and sinus arrhythmia [82]. These effects are different from those

caused by other Tityus species from Venezuela and Brazil. In

this regard, it has been proposed grouping the scorpion species

responsible for severe scorpionism cases in Venezuela into toxi-

nological provinces, based on the clinical consequences of the

envenomation, the immunological cross-reactivity of their venoms

and their phylogenetic affinity [19].

The phylogenetic separation proposed in the present study

might be considered for producing efficient anti-venoms for the

scorpionism caused in these different regions of South America.

There are several evidences suggesting the existence of a strong

biogeographic influence on Tityus speciation as well as in the

toxinological properties of venoms [74]. Otherwise, there are some

evidences that the commercial anti-venoms do not have the same

power of neutralization on envenomation caused by Tityus species

in different regions. T. discrepans anti-venom, for example, does not

abolish the effect of T. serrulatus venom [83] and has a medium

to low power against T. zulianus and T. perijanensis [84]. These

observations should be taken into consideration by the diverse

countries of the region for the fabrication of anti-venoms.

Supporting Information

Table S1 Proposed nomenclature for the 65 members
grouped in 14 subfamilies of long-chain NaTxs from
Tityus genus scorpions. Gaps were introduced to improve the

alignment. Identical residues of each subfamily are shaded in grey.

The percentage identity (% Id.) was calculated using ClustalW

algorithm (http://www.ebi.ac.uk/Tools/msa/clustalw2/), consid-

ering as 100% the toxin which completes primary sequence was

firstly described from each subfamily. In the Characteristics

column, three parameters were considered. (i) Protein existence: P

for the toxins isolated and partially or completely sequenced from

the venom; P* for the toxins which were similar to the putative

toxins only by molecular mass comparison; T for the putative

toxins evidenced at transcript level. (ii) Function: Arthr, Mice, Ins

and Frog for toxins active on arthropods, mice, insects or frog

Tityus pachyurus and T. obscurus NaScTxs
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nerve, respectively; Antm for antimicrobial peptides; Immun for

an immunogenic protein; and Allerg for a peptide which induced

generalized allergic reaction on mice. (iii) Classification: a or b
for the toxins with electrophysiological data by means of patch

clamp techniques; a9 for the toxins with b-toxin structure but

pharmacological features of a-toxins; a for the toxin for which the

a-activity was proposed by means of sucrose gap experiments. For

(ii) and (iii) parameters, the not underlined items are those

predicted by sequence similarity, but not experimentally deter-

mined. The toxins from Tityus pachyurus (Tpa2, Tpa4, Tpa5, Tpa6,

Tpa7 and Tpa8) and Tityus obscurus (Tc49b, Tc48a, Tc48b/Tc49a

and To4 to To15) are in bold. Ts1, Ts2, Ts3, Ts5, Ts6, TsNTxP

are from T. serrulatus; Tb1, Tb2, Tb2-II, Tb3, TbTx5 and TbIT-1

are from T. bahiensis; Tst1, Tst2 and Tst3 are from T. stigmurus;

Tco-gamma and TcoNTxP1 are from T. costatus; Tf4 is from T.

fasciolatus; Tz1 and Tz2 are from T. zulianus; and Td1 to Td12,

TdNa1, TdNa2, TdNa3, TdNa5, TdNa6, TdNa7, TdNa8,

TdNa9, TdNa10, Ardiscretin, Bactridin-1 and Bactridin-2 are

from T. discrepans. The new toxins identified or completely se-

quenced in the present study are identified by traces in the

reference column. Partially sequenced toxins were not taken into

account.
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26. Batista CV, Gómez-Lagunas F, Lucas S, Possani LD (2000) Tc1, from Tityus

cambridgei, is the first member of a new subfamily of scorpion toxin that blocks
K+-channels. FEBS Lett 486: 117–120.
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