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Abstract Every T cell receptor (TCR) repertoire is shaped by a complex probabilistic tangle of
genetically determined biases and immune exposures. T cells combine a random V(D)J recombination
process with a selection process to generate highly diverse and functional TCRs. The extent to which an
individual's genetic background is associated with their resulting TCR repertoire diversity has yet to be
fully explored. Using a previously published repertoire sequencing dataset paired with high-resolution
genome-wide genotyping from a large human cohort, we infer specific genetic loci associated with
V(D)J recombination probabilities using genome-wide association inference. We show that V(D)J gene
usage profiles are associated with variation in the TCRB locus and, specifically for the functional TCR
repertoire, variation in the major histocompatibility complex locus. Further, we identify specific vari-
ations in the genes encoding the Artemis protein and the TdT protein to be associated with biasing
junctional nucleotide deletion and N-insertion, respectively. These results refine our understanding of
genetically-determined TCR repertoire biases by confirming and extending previous studies on the
genetic determinants of V(D)J gene usage and providing the first examples of trans genetic variants
which are associated with modifying junctional diversity. Together, these insights lay the groundwork for
further explorations into how immune responses vary between individuals.

Editor's evaluation
This study demonstrates that genetic differences in areas of the genome outside the regions that
encode the TCR genes can affect the molecular properties of the TCRs that are made by somatic
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recombination. This paper will be of interest to a broad swathe of immunologists who study such
variable lymphocyte receptors. It combines several large datasets in an extremely statistically
rigorous analysis, producing results consistent with but substantially expanding upon the prior
knowledge of the field.

Introduction

Receptor proteins on the surfaces of T cells are an essential component of the cell-mediated adaptive
immune response in humans. Cells throughout the body regularly present protein fragments, known
as antigens, on cell-surface molecules called major histocompatibility complex (MHC). Each T cell
expresses a randomly-generated T cell receptor (TCR) which can bind the MHC-bound peptide and, if
necessary, initiate an immune response. As part of this immune response, a T cell will proliferate and
subsequent clones of that T cell will inherit the same antigen-specific TCR. Over time, the collection
of all TCRs in an individual (the TCR repertoire) will dynamically summarize their previous immune
exposures (Woodsworth et al., 2013).

To appropriately defend against a wide array of foreign pathogens, each individual has a highly
diverse TCR repertoire. To generate diverse and functional TCRs, T cells combine a random gener-
ation process called V(D)J recombination with a selection process for proper expression and MHC
recognition. Each TCR is composed of an a and a 8 protein chain which are both generated through
V(D)J recombination. In the 8 chain, the recombination process proceeds by randomly choosing from
a pool of V-gene, D-gene, and J-gene segments of the germline T cell receptor beta (TCRB) locus over
a series of steps. First, the intervening chromosomal DNA between a randomly chosen D- and J-gene
is removed to form a hairpin loop at the end of each gene (Gellert, 1994; Fugmann et al., 2000,
Schatz and Swanson, 2011). Next, these hairpin loops are nicked open, often asymmetrically, by the
Artemis-DNA-PKcs protein complex to create overhangs at the ends of each gene (Weigert et al.,
1978, Moshous et al., 2001; Ma et al., 2002; Lu et al., 2007; Zhao et al., 2020). Depending on the
location of the nick, the single-stranded overhang can contain short inverted repeats of gene terminal
sequence known as P-nucleotides (Nadel and Feeney, 1995, Gauss and Lieber, 1996; Nadel and
Feeney, 1997, Jackson et al., 2004). From here, nucleotides may be deleted from the gene ends
through an incompletely understood mechanism suggested to involve Artemis (Feeney et al., 1994;
Nadel and Feeney, 1995; Nadel and Feeney, 1997, Jackson et al., 2004; Gu et al., 2010; Zhao
et al., 2020). This nucleotide trimming can remove traces of P-nucleotides (Gauss and Lieber, 1996;
Srivastava and Robins, 2012). Next, non-templated nucleotides, known as N-insertions, can be added
between the gene segments by the enzyme terminal deoxynucleotidyl transferase (TdT) (Kallenbach
et al., 1992; Gilfillan et al., 1993; Komori et al., 1993). Once the nucleotide addition and deletion
steps are completed, the gene segments are ligated together. The process is then repeated between
this D-J junction and a random V-gene segment to generate a complete TCRP protein chain. After the
B chain has been generated, a similar « chain recombination proceeds, although without a D-gene,
to complete the TCR. Following the generation process, each completed TCR undergoes a selection
process in the thymus to limit autoreactivity and ensure its ability to correctly bind peptide antigens
presented on a specific MHC molecule (Goldrath and Bevan, 1999, Thomas and Crawford, 2019).

TCR repertoires vary between individuals and are a complicated tangle of genetically determined
biases and immune exposures. Disentangling these factors is essential for understanding how our
diverse repertoires support a powerful immune response. Previous efforts to unravel the genetic and
environmental determinants governing TCR repertoire diversity have been highly impactful despite
lacking high-throughput TCR repertoire sequencing data (Sharon et al., 2016; Gao et al., 2019)
and/or high-resolution genotype data (Rubelt et al., 2016; Emerson et al., 2017, Gao et al., 2019,
Krishna et al., 2020). For example, it has been shown that variation in the MHC locus biases TCR
V(D)J gene usage (Sharon et al., 2016; Gao et al., 2019) and has been associated with clusters of
shared receptors in response to Epstein-Barr virus epitope (DeWitt et al., 2018). Other studies have
reported biases in V(D)J gene usage (Zvyagin et al., 2014; Qi et al., 2016; Rubelt et al., 2016;
Pogorelyy et al., 2018; Tanno et al., 2020; Fischer et al., 2021), N-insertion lengths (Rubelt et al.,
2016), and repertoire similarity in response to acute infection (Qi et al., 2016; Pogorelyy et al., 2018)
for monozygotic twins. While this work clearly illustrates that genetic similarity implies TCR repertoire
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Table 1. Discovery cohort demographics.

Count
Sex Female 179
Male 197
Unknown 22
Age (in years) <10 12
11-20 1
21-30 48
31-40 70
41-50 103
51-60 70
> 60 22
Unknown 62
focessylomate PEAGUS (620 o s ;
"Asian”-associated 23
"“Caucasian”-associated 322
"Hispanic”-associated 30
"Middle Eastern”-associated 5
"Native American”-associated 10
CMV serostatus Positive 171
Negative 204
Unknown 23
Total 398

The online version of this article includes the following source data for table 1:

Source data 1. Subjects map from the original self-identified ancestry groups to ancestry-informative PCA clusters
(see Materials and methods).

similarity, the extent to which specific variations are associated with V(D)J recombination probabilities
has not been fully explored.

In this paper, we directly address the question of how an individual’s genetic background influences
their V(D)J recombination probabilities using large human discovery and validation cohorts for which
both TCR immunosequencing data (Emerson et al., 2017, DeWitt et al., 2018) and genotyping data
(Martin et al., 2020) are available. With the goal of identifying statistically significant associations
between single nucleotide polymorphisms (SNPs) and TCR repertoire features of interest using these
novel, paired datasets, we treat analysis as a genome-wide association (GWAS) inference with many
outcomes. Our results suggest that MHC and TCRB loci variations have an important role in deter-
mining the V(D)J gene usage profiles of each individual’s repertoire. At the junctions, we demonstrate
that variations in the genes encoding the Artemis protein and the TdT protein are associated with
biasing V- and J-gene nucleotide deletion and V-D and D-J-junction N-insertion, respectively.

Results

Discovery cohort data description

We worked with paired SNP array and TCRB-immunosequencing data representing 398 individuals
and over 35 million SNPs and/or indels (Table 1). TCR sequences can be separated into those that
code for a complete, full-length peptide sequence (which we will call ‘productive’ rearrangements)
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Table 2. We inferred the associations between genome-wide variation and many different TCR repertoire features for productive and
non-productive TCR sequences, separately.

For each TCR repertoire feature, we considered the significance of associations using a Bonferroni-corrected threshold established
to correct for each TCR feature subtype, the two TCR productivity types, and the total number of SNPs tested (described in detail in

Methods).

Repertoire feature

(significance threshold) Model type Feature subtype Productivity Significant association
?g('lgc))Jnglagieﬂ;Jsage simple Each of 60 V-genes Productive Yes, for 36 V-genes
Non-productive Yes, for 26 V-genes
Each of 2 D-genes Productive Yes, for both D-genes
Non-productive Yes, for both D-genes
Each of 14 J-genes Productive Yes, for 7 J-genes
Non-productive Yes, for 8 J-genes
Amount ojonucleotide trimming gene-conditioned V-gene trimming Productive Yes
(9.68 x 1079
Non-productive Yes
5" end D-gene trimming Productive No
Non-productive No
3" end D-gene trimming Productive No
Non-productive No
J-gene trimming Productive Yes
Non-productive Yes
”grzie;oci)N-insertions simple V-D-gene N-insertions Productive No
Non-productive Yes
D-J-gene N-insertions Productive No
Non-productive Yes

and ‘non-productive’ rearrangements that do not. Non-productive sequences can arise during TCR
generation steps if the V- and J-genes are shifted into different reading frames or a premature stop
codon is introduced in the junction region. A non-productive rearrangement can be sequenced as part
of the repertoire when a recombination event on one of a T cell’s two chromosomes fails to create a
functional receptor, followed by a successful recombination event on the other chromosome. Because
these non-productive sequences do not generate proteins that participate in the T cell selection
process within the thymus, they should not be subject to functional selection (Robins et al., 2010;
Murugan et al., 2012). As such, their recombination statistics should reflect only the V(D)J recombi-
nation generation process which occurs before the stage of thymic selection.

Inthe data cohort of 398 individuals, an average of 235,054 unique TCRB-chain nucleotide sequences
were sequenced per individual. Within each individual repertoire, roughly 18% of sequences were
classified as ‘non-productive’. Thus, we can analyze the productive and non-productive sequences
separately to distinguish between TCR generation and selection effects within each TCR repertoire.
Specifically, we inferred the associations between genome-wide variation and V(D)J gene usage of
each V-, D-, and J-gene, the extent of TCR nucleotide trimming, the number of TCR N-insertions,
and the fraction of non-gene-trimmed TCRs containing P-nucleotides for both productive and non-
productive sequences (Table 2).
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TCRB and MHC locus variation is associated with V-, D-, and J-gene

usage frequency

To quantify the effect of SNPs on the expression of various V-, D-, and J-genes during V(D)J recom-
bination, we designed a fixed effects model to assess the relationship between SNP genotype and
gene frequency across all individuals. We fit this 'simple model’ for each different V-, D-, and J-gene
in our paired dataset.

Because of the potential for population-substructure-related effects to inflate associations between
each SNP and gene usage frequency, we incorporated ancestry-informative principal components
(Conomos et al., 2015) based on the SNP genotypes for a subset of representative subjects as covari-
ates in each model (see Materials and methods for details). Diagnostic statistics show that this bias
correction is sufficient (Figure 5—source data 3).

With these methods, we consider the significance of associations at a Bonferroni-corrected whole-
genome p-value significance threshold of 5.09 x 107! (see Materials and methods). Using this conser-
vative threshold, we identified 9152 significant associations between the frequency of various V-,
D-, and J-genes and the genotype of SNPs genome-wide (Figure 1 and Figure 1—source data 1).
Of these significant associations, 7096 were located within the TCRB locus for both productive and
non-productive TCRs. The TCRB gene locus encodes the variable V-, D-, and J-gene segments which
are recombined during V(D)J recombination. In our dataset, there are 60 V-genes, 2 D-genes, and 14
J-genes uniquely expressed. As we would expect, we find that the expression of many of these genes
is associated with variation in the TCRB locus (Figure 2). For the significantly associated TCRB locus
SNPs, the median association effect magnitude was largest for the expression of TRBD1 (median
effect size = -0.038) followed by the expression of TRBD2 (median effect size = 0.035) and the expres-
sion of TRBV28 (median effect size = 0.019) all in productive TCRs (Figure 1—figure supplement 1).
Variation in the TCRB locus is most significantly associated (smallest p-value) with expression of the
gene TRBV28 within both productive (P =1.41x10~'%*) and non-productive (P =1.94x10~!46) TCRp
chains. We identified the largest number of significant associations between variation in the TCRB
locus and expression of the gene TRBV7-3 within productive TCRp chains (232 significant associations)
and the gene TRBJ1-2 within non-productive TCRp chains (290 significant associations).

Beyond the TCRB locus, we also identified 1242 significant SNP associations within the major
histocompatibility complex (MHC) locus. MHC proteins act by presenting self and foreign peptides
to TCRs for inspection. Because of this important role in the functionality of T cells, the TCR-MHC
interaction is important for thymic selection. We observe the expression of 12.1% of V-genes for
productive TCRs to be associated with variation in the MHC locus. For the significantly associated
MHC locus SNPs, the median association effect magnitude was largest for the expression of TRBV4-1
(median effect size = —0.004) followed by the expression of TRBV10-3 (median effect size = 0.0033)
(Figure 1—figure supplement 2). This associated MHC locus variation is located within sequences
which code for canonical, peptide-presenting MHC proteins. For example, the eight most significantly
associated SNPs were located within the HLA-DRB1 gene within the MHC locus. These top SNPs were
all associated with the expression of the gene TRBV10-3 within productive TCRs. As expected, the
expression of V-genes for non-productive TCRs is not associated with variation in the MHC locus. Like-
wise, the expression of D- and J-genes for both productive and non-productive TCRs is not associated
with variation in the MHC locus. These results refine and extend associations found in previous work
(Sharon et al., 2016; Gao et al., 2019).

We observed just one other long-range association region, in addition to the MHC locus, located
in proximity to the ZNF443 and ZNF709 loci on chromosome 19. Both of these zinc finger proteins
contain KRAB-domains and, thus, likely act as transcriptional repressors (Witzgall et al., 1994). In
this region, we observe 138 significant SNP associations for the expression of the V-gene TRBV24-
1. Of these 138 SNP associations, 76 were associations for TRBV24-1 expression in non-productive
TCRs and 62 were associations for TRBV24-1 expression in productive TCRs. Significant association
between variation near the ZNF443 locus and expression of TRBV24-1 in productive TCRs was also
noted previously (Sharon et al., 2016). Because the associations observed here are strongest for non-
productive TCRs, this chromosome 19 variation likely influences gene usage during TCR generation
steps, as opposed to selection. Variation in proximity to the ZNF443 and ZNF709 loci may alter the
resulting zinc finger proteins and lead to differential transcriptional repression of a site near TRBV24.
Because the transcription of unrearranged gene segments influences their recombination potential
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Figure 1. Many strong associations are present between V-, D-, and J-gene usage frequency and various SNPs genome-wide for both productive and
non-productive TCRs. The most significant SNP associations for the frequency of each of the 60 V-genes, 2 D-genes, and 14 J-genes are located within
the TCRB and MHC loci. Associations are colored by gene-type instead of by gene identity for simplicity. Only SNP associations whose P < 5 x 10~° are
shown here. The gray horizontal line corresponds to a Bonferroni-corrected p-value significance threshold of 5.09 x 10~ 1.

The online version of this article includes the following source data and figure supplement(s) for figure 1:
Source data 1. There are 9152 significant associations between the frequency of various V-, D-, and J-genes and the genotype of SNPs genome-wide.
Source data 2. Genomic inflation factor values are less than 1.03 for all paired gene-frequency, productivity GWAS analyses.

Figure supplement 1. For the significantly associated TCRB locus SNPs, the median association effect magnitude was largest for the expression of
TRBD1 followed by the expression of TRBD2 and the expression of TRBV28 all in productive TCRs.

Figure supplement 2. For the significantly associated MHC locus SNPs, the median association effect magnitude was largest for the expression of
TRBV4-1 followed by the expression of TRBV10-3.

Figure supplement 3. The majority of significantly associated TCRB locus SNPs had similar gene usage association P-values between non-productive
and productive TCRs, but significantly associated MHC locus SNPs were only significant for gene usage of productive TCRs.

(Oltz, 2001), this difference in repression could subsequently change the usage frequency of the
TRBV24 gene.

DCLRE1C locus variation is associated with the extent of V-, D-, and
J-gene trimming

We hypothesized that SNPs across the genome, particularly those within V(D)J-recombination-
associated genes, may influence the extent of TCR nucleotide trimming at V(D)J TCRB gene junctions.
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Figure 2. Gene-usage frequency of many V-gene, D-gene, and J-gene segments is significantly associated with variation in the TCRB locus. The p-value
of the strongest TCRB SNP, gene-usage association for each different V-gene, D-gene, and J-gene segment is given on the X-axis. The proportion of
gene segments within each gene type is given on the Y-axis. The gray vertical lines correspond to a whole-genome-level Bonferroni-corrected p-value
significance threshold of 5.09 x 10711

The online version of this article includes the following source data for figure 2:

Source data 1. Top TCRB SNP, gene-usage association p-value for each different V-gene, D-gene, and J-gene.

It has been previously observed that the extent of trimming varies by V(D)J TCRB gene choice
(Figure 3—figure supplement 4; Nadel and Feeney, 1995, Nadel and Feeney, 1997; Jackson
et al., 2004; Murugan et al., 2012). In other words, two different V-genes (TRBV19 and TRBV20-1, for
example) will on average be trimmed to different extents due, in part, to differences in their terminal
nucleotide sequences (and the same is true for D- and J-genes). Thus, to quantify the effect of SNPs
on the extent of V-, D-, and J-gene trimming during V(D)J recombination, without confounding the
extent of trimming with TCRB gene choice, we designed a linear fixed effects model to measure the
correlation between each SNP and the number of nucleotide deletions, while conditioning out the
effect mediated by gene choice. We fit this ‘gene-conditioned model’ for each of the four trimming
types (V-gene trimming, 5' end D-gene trimming, 3’ end D-gene trimming, and J-gene trimming) on
our paired data set. We performed the analysis, as above, incorporating ancestry-informative principal
components in each model (detailed in Materials and methods). Diagnostic statistics show that this
correction for population-substructure-related biases is sufficient (Figure 3—source data 2). Here, we
considered the significance of associations at a Bonferroni-corrected whole-genome p-value signifi-
cance threshold of 9.68 x 10719 (see Materials and methods).

With these methods, we identified 317 significant SNP associations with the extent of nucleotide
trimming for various trimming types (Figure 3 and Figure 4—source data 1). We found 66 highly
significant associations between V- and J-gene trimming and SNPs within the DCLRET1C gene locus
for both productive and non-productive TCRs when considered in the whole-genome context. For
these significant DCLRE1C locus SNP associations, the magnitudes of the effects were greater for
non-productive TCRs compared to productive TCRs for both V-gene trimming and J-gene trimming
(Figure 4—figure supplement 1). The DCLRE1C gene encodes the Artemis protein, an endonu-
clease responsible for cutting the hairpin intermediate prior to nucleotide trimming and insertion
during V(D)J recombination. Many of the SNPs responsible for these 66 significant associations within
the DCLRE1C locus were shared between trimming and productivity types (Figure 4). The most
significantly-associated SNP (rs41298872) within this locus had a p-value of 3.18 x 1077 for J-gene
trimming of non-productive TCRs (Figure 3—figure supplement 2). This SNP was also significantly-
associated with J-gene trimming of productive (P =1.99x1072°) TCRs and V-gene trimming of produc-
tive (P =6.23x 10~2%) and non-productive (P =2.81x 10~2!) TCRs. We performed a conditional analysis
to identify potential independent secondary signals by including this SNP as an additional covariate
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Figure 3. SNP associations for all four trimming types reveal the most significant associations to be located within the TCRB and DCLRE1C loci for 5’ D-
gene trimming and J-gene trimming, respectively, when conditioning out effects mediated by gene choice when calculating the strength of association.
Only SNP associations whose P < 5 x 107 are shown here. The gray horizontal line corresponds to a Bonferroni-corrected p-value significance

threshold of 9.68 x 107 1°.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. There are 317 significant SNP associations with the extent of nucleotide trimming for various trimming types.
Source data 2. Genomic inflation factor values are less than 1.03 for all paired nucleotide trimming, productivity GWAS analyses.

Figure supplement 1. The SNP genotype for the SNP (rs2367486) most significantly associated with 5" end D-gene trimming within the TCRB locus is
also associated with TRBD2*02 allele genotype.

Figure supplement 2. Significant associations are no longer observed between 5" end D-gene trimming and variation in the TCRB locus after
correcting for TRBD2 allele genotype in our model formulation.

Figure supplement 3. Significant associations are also no longer observed between 5" end D-gene trimming and variation in the TCRB locus when
restricting the analysis to TCRs which contain TRBJT genes (and consequently contain TRBDT).

Figure supplement 4. The extent of nucleotide deletion varies by the gene allele identity for all gene types.

Figure supplement 5. Significant SNP associations are located within the MHC, TCRB, and DCLRE1C loci for all four trimming types when calculating
the strength of association without conditioning out effects mediated by gene choice.

Figure supplement 6. SNP associations for all fractions of non-gene-trimmed TCRs containing P-nucleotides are not significant within the DCLRETC
locus.

Figure supplement 7. SNP associations for the number of P-nucleotides are not significant within the DCLRE1C locus.
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Figure 4. Within the DCLRE1C locus, 93.8% of these significantly associated SNPs were located within introns. Additionally, many of these significant
SNP associations overlapped between trimming types. Downward arrows represent promoter/exon starting positions and upward arrows represent
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The online version of this article includes the following source data and figure supplement(s) for figure 4:
Source data 1. DCLRE1C locus SNP association p-values and locus positions.
Source data 2. There are two independent SNP signals within the DCLRE1C locus for J-gene trimming of non-productive TCRs.

Figure supplement 1. For the significantly associated DCLRETC locus SNPs, the magnitudes of the effects were greater for non-productive TCRs
compared to productive TCRs for both V-gene trimming and J-gene trimming.

Figure supplement 2. The extent of J-gene trimming changes as a function of SNP genotype for the SNP (rs41298872) most significantly associated
with J-gene trimming within the DCLRETC locus.

Figure supplement 3. The extent of V- and J-gene trimming of productive and non-productive TCRp chains changes as a function of SNP genotype
within the discovery cohort for a non-synonymous DCLRE1C SNP (rs12768894, c.728A>Q).

Figure supplement 4. The extent of V-gene trimming.

Figure supplement 5. The extent of V- (A) and J-gene (B) trimming of productive and non-productive TCRa chains changes as a function of SNP
genotype within the validation cohort for a non-synonymous DCLRETC SNP (rs12768894, c728A>G).

within the model. This analysis revealed a second, independent SNP signal (rs35441642) within the
DCLRE1C locus for J-gene trimming of non-productive TCRs (Figure 4—source data 2). None of
the other nucleotide trimming type, productivity status combinations had significant evidence for
secondary independent signals.

Our procedure also identified many highly significant associations between 5’ end D-gene trimming
and SNPs within the TCRB gene locus, however these appear to result from correlations between SNP
genotype and TRBD2 allele genotype (Figure 3—figure supplement 1). If we correct for TRBD2
allele genotype in our model formulation (see Materials and methods), we no longer observe these
associations between SNPs within the TCRB gene locus and the extent of 5 end D-gene trimming
(Figure 3—figure supplement 2). TRBDZ2 allele genotype could be acting as a confounding variable
due to linked local genetic variation which influences nucleotide trimming and/or D-gene assign-
ment ambiguity variation as a function of TRBDZ2 allele genotype. To explore the extent of possible
D-gene assignment ambiguity variation, we restricted our analysis to TCRs which contain TRBJ1 genes
and consequently contain TRBD1 due to topological constraints during V(D)J recombination (Robins
et al., 2010, Murphy and Weaver, 2016). With this approach, we also no longer observe associations
between SNPs within the TCRB gene locus and the extent of 5 end D-gene trimming, and addition-
ally, we do observe significant associations between SNPs within the DCLRE1C locus and 5" and 3’ end
D-gene trimming which were not observed in the original genome-wide analysis (Figure 3—figure
supplement 3).

Our fixed effects model formulation for these inferences is important: if we don’t condition on gene
choice then additional, and presumably spurious, associations arise. Indeed, when implementing the
‘simple model’ designed to quantify the association between the four trimming types and genome-
wide SNP genotypes, without conditioning out the effect mediated by gene choice, we observe addi-
tional associations between SNPs within the MHC locus and V-gene trimming of productive TCRs and
between SNPs within the TCRB locus and V-gene and 3’ end D-gene trimming of, again, productive
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TCRs (Figure 3—figure supplement 5). This is perhaps not surprising, as we noted earlier that vari-
ations in the MHC and TCRB loci are associated with gene usage frequencies in productive TCRs
(Figure 1), and different genes have different trimming distributions (determined in part by the nucle-
otide sequences at their termini).

Because P-nucleotides can be present at V(D)J junctions in the absence of nucleotide trimming
(Murphy and Weaver, 2016), we hypothesized that similar DCLRE1C locus variation may also be
associated with P-addition. Interestingly, we did not identify any strong associations between SNPs
within the DCLRE1C locus and the fraction of non-gene-trimmed TCRs containing P-nucleotides when
implementing our ‘gene-conditioned model’, despite the known role of the Artemis protein in func-
tioning as an endonuclease responsible for cutting the hairpin intermediate, and thus, potentially
creating P-nucleotides during V(D)J recombination (Figure 3—figure supplement 6). We observe
similar results when quantifying the effect of genome-wide SNPs on the number of V-, D-, and J-gene
P-nucleotides per TCR (Figure 3—figure supplement 7).

DNTT locus variation is associated with the number of V-D and D-J
N-insertions

Unlike V-, D-, or J-gene nucleotide trimming length, the number of nucleotide N-insertions between
V-D and D-J genes does not vary substantially with V(D)J TCRB gene choice (Figure 5—figure supple-
ment 1; Murugan et al., 2012). Thus, to infer the association between SNPs and the number of
nucleotide N-insertions, we implemented a ‘simple model’, without conditioning out any effect medi-
ated by gene choice. Again, because of the potential for population-substructure-related effects to
inflate associations between each SNP and the number of N-insertions, we incorporated ancestry-
informative principal components as covariates in each model (detailed in Materials and methods).
Diagnostic statistics show that this bias correction is sufficient (Figure 5—source data 3).

With these methods, we identified three associations between SNPs and the number of nucle-
otide N-insertions using a Bonferroni-corrected whole-genome P-value significance threshold of
1.94 x 1077 (see Materials and methods) (Figure 5 and Figure 5—source data 1). Two SNPs within
the DNTT gene locus (rs2273892 and rs12569756) were responsible for these associations. The DNTT
gene encodes the terminal deoxynucleotidyl transferase (TdT) protein which is a specialized DNA
polymerase responsible for adding non-templated (N) nucleotides to coding junctions during V(D)J
recombination. When we restrict our analysis to TCRs which contain TRBJ1 genes and consequently
eliminate potential D-gene assignment ambiguity, we continue to observe these DNTT associations
(Figure 5—figure supplement 2).

Since the TdT protein has an important mechanistic role in the N-insertion process and because
we already identified SNPs within the DNTT locus to be weakly associated with the number of N-in-
sertions at V(D)J gene junctions, we wanted to explore the locus further. Restricting the analysis to
the extended DNTT locus reduced the multiple testing burden such that 232 significant associations
emerged (Figure 5 and Figure 5—source data 2). For these significant DNTT locus SNP associations,
the magnitudes of the effects were greater for non-productive TCRs compared to productive TCRs
for both V-D-gene junction N-insertion and D-J-gene junction N-insertion (Figure 6—figure supple-
ment 1). Many of the SNPs responsible for these 232 significant associations within the extended
DNTT locus were shared between insertion and productivity types (Figure 6). While most of these
associations are likely the result of a single independent signal for each insertion and productivity
type, we performed a conditional analysis to identify potential independent secondary signals. To do
so, we included the most significant SNP within the DNTT locus for each insertion and productivity
type as a covariate in the model. With this approach, we identified rs2273892 as the primary indepen-
dent signal for D-J N-insertion of non-productive TCRs and rs12569756 as the primary independent
signal for D-J N-insertion of productive TCRs and V-D N-insertion of productive and non-productive
TCRs. However, these two SNPs are tightly linked and, thus, likely both represent the same, primary
independent signal. This analysis did not reveal any significant evidence for secondary independent
signals.

We found that correcting for population-substructure-related effects was especially important in
our primary genome-wide analysis, which led us to discover differences in the extent of N-insertion
by ancestry-informative PCA cluster. Indeed, if we don't incorporate correction terms for population-
substructure-related biases in our model formulation, we observe many strongly significant
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Figure 5. SNPs within the DNTT locus are associated with the extent of N-insertion. (A) There are three associations for SNPs within the DNTT locus
which are significant when considered in the whole-genome context. The gray horizontal line corresponds to a whole-genome Bonferroni-corrected P-
value significance threshold of 1.94 x 10~°.(B) Using a DNTT gene-level significance threshold, many more SNPs within the extended DNTT locus have
significant associations for both N-insertion types. Here, the gray horizontal line corresponds to a gene-level Bonferroni-corrected P-value significance
threshold of 1.28 x 1077 (calculated using gene-level Bonferroni correction for the 977 SNPs within 200 kb of the DNTT locus, see Materials and
methods). For both (A) and (B), only SNP associations whose P < 5 x 1073 are shown.

The online version of this article includes the following source data and figure supplement(s) for figure 5:

Source data 1. There are three significant associations between SNPs genome-wide and the number of nucleotide N-insertions.

Source data 2. There are 232 significant associations between SNPs genome-wide and the number of nucleotide N-insertions when restricting the
analysis to the extended DNTT locus.

Source data 3. Genomic inflation factor values are less than 1.03 for all paired N-insertion, productivity GWAS analyses.

Figure supplement 1. The extent of N-insertion does not vary substantially by the gene allele identity for any gene type.

Figure supplement 2. Significant associations continue to be observed within the DNTT locus for both V-D- and D-J-gene-junction N-insertions when
restricting the analysis to TCRs which contain TRBJ1 genes and consequently contain TRBD1.

associations, particularly within the DNTT locus. This hinted at important PCA-cluster level effects.
When we look closely at the average number of N-insertions (combining the number of V-D and D-J
N-insertions) across TCR repertoires by PCA cluster, we note that subjects from the ‘Asian’-associated
PCA cluster have significantly fewer total N-insertions for productive (P = 0.006 without Bonferroni
correction) and non-productive (P = 0.014 without Bonferroni correction) TCRs when compared to
the population mean (using a one-sample t-test) (Figure 7). The total N-insertions for productive
TCRs within the ‘Asian’-associated PCA cluster remain significantly different from the population
mean after Bonferroni multiple testing correction (corrected P = 0.036). Furthermore, the ‘Asian’- and
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Figure 6. Within the DNTT locus, many of the significant SNP associations overlapped between N-insertion types when using DNTT gene-level
Bonferroni-corrected p-value significance threshold of 1.28 x 107>. Downward arrows represent promoter/exon starting positions and upward arrows
represent promoter/exon ending positions.

The online version of this article includes the following source data and figure supplement(s) for figure 6:
Source data 1. DNTT locus SNP association p-values and locus positions.

Figure supplement 1. For these significant DNTT locus SNP associations, the magnitudes of the effects were greater for non-productive TCRs
compared to productive TCRs for both V-D-gene junction N-insertion and D-J-gene junction N-insertion.

Figure supplement 2. The extent of V-D and D-J N-insertion of productive and non-productive TCRp chains changes as a function of SNP genotype
within the discovery cohort for an intronic DNTT SNP (rs3762093).

Figure supplement 3. An intronic SNP (rs3762093) within the DNTT gene locus is not strongly associated with the number of V-D (A) or D-J (B) N-inserts

within productive or non-productive TCRp chains in the validation cohort.

Figure supplement 4. An intronic SNP (rs3762093) within the DNTT gene locus is significantly associated with the number of V-J N-inserts for
productive TCRa chains in the validation cohort.

‘Hispanic’-associated PCA clusters had significantly higher mean SNP allele frequencies for SNPs
within the extended DNTT region that were associated with fewer N-insertions when compared to
the mean population allele frequency (P =7.32x10~20 for the ‘Asian’-associated PCA cluster and
P =1.17x107 for the "Hispanic’-associated PCA cluster using a one-sample t-test with Bonferroni
multiple testing correction) (Figure 8).

Validation analysis

To validate our results, we worked with paired ancestry-informative marker (AIM) SNP array and TCRa-
and TCRB-immunosequencing data representing 94 individuals and 2 SNPs (which overlap with the
discovery dataset) from an independent validation cohort (Table 3 and see Materials and methods).
In contrast to the discovery cohort, this cohort contains different demographics, shallower RNA-seg-
based TCR-sequencing, and a sparser set of SNPs. However, TCR-sequencing for both TCRa and
TCRp chains is available.

We were able to validate a discovery-cohort significantly associated DCLRETC SNP within this
validation cohort. While none of the independent DCLRET1C SNPs from the discovery-cohort analysis
overlapped with the validation cohort SNP set, a single, non-synonymous SNP (rs12768894, c.728A >
G) within the DCLRE1C locus was present in both SNP sets. This SNP was one of the significant associ-
ations we observed for V-gene trimming (productive P =2.16x10~'%; non-productive P =7.21x10~!4)
and J-gene trimming (productive P =1.23x10~'}; non-productive P =6.62x 10~ '2) of TCRB chains in the
genome-wide discovery cohort analysis (Figure 4—figure supplement 3). Using the same methods,
we identified significant associations between this SNP and J-gene trimming of productive TCRa and
TCRp chains and V-gene trimming of both productive and non-productive TCRa and TCRB chains
within the validation cohort (Table 4, Figure 4—figure supplement 4, and Figure 4—figure supple-
ment 5). Associations between rs127688%94 and both types of D-gene trimming of TCRp chains were
not significant for either cohort.

We were unable to validate the most significantly associated DNTT SNPs due to lack of overlap
between the SNP sets for the discovery and validation cohorts; a discovery-cohort weakly associated
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Figure 7. The TCR repertoires for subjects in the ‘Asian’-associated PCA-cluster contain fewer N-insertions for productive TCRs when compared to the
population mean computed across all 666 subjects (dashed, red horizontal line). The p-values from a one-sample t-test (without Bonferroni multiple
testing correction) for each PCA cluster compared to the population mean are reported at the top of the plot.

The online version of this article includes the following source data and figure supplement(s) for figure 7:

Source data 1. PCA-cluster and average number of N-insertions by subject.

Figure supplement 1. The population mean is dominated by subjects in the ‘Caucasian’-associated PCA-cluster.

SNP (rs3762093) failed to reach statistical significance for all N-insertion types, but had the same direc-
tion of effect in the validation cohort as follows. Within the discovery cohort, rs3762093 genotype was
weakly associated with the number of V-D N-insertions (productive P =1.37x10~% non-productive
P =1.50x10"7) and D-J N-insertions (productive P =9.43 x 1079 non-productive P =1.94x 10~7) within
TCRP chains (Figure 6—figure supplement 2). Within the validation cohort, this SNP was signifi-
cantly associated with the number of V-J N-insertions within productive TCRa chains (Table 4 and
Figure 6—figure supplement 4). However, this SNP was not significantly associated with the number
of V-D or D-J N-insertions within productive or non-productive TCRp chains or the number of V-J N-in-
sertions within non-productive TCRa chains within the validation cohort (Table 4, Figure 6—figure
supplement 3, and Figure 6—figure supplement 4). Despite the lack of significance, we noted that
the model coefficients for rs3762093 genotype were in the same direction (i.e. the minor allele was
associated with fewer N-insertions) for all N-insertion and productivity types within TCRB chains for
both cohorts. Further, while TCRa chain sequencing was not available for the discovery cohort, we
observed stronger associations between rs3762093 genotype and the extent of N-insertion for both
productivity types within TCRa chains compared to TCRB chains within the validation cohort. Perhaps
with a larger validation cohort, significant associations would be present for all N-insertion types.

Discussion

V(D)J recombination is a complex stochastic process that enables the generation of diverse TCR reper-
toires. Our results show that genetic variation in various V(D)J recombination genes has a key role in
shaping the TCR repertoire through biasing V(D)J gene choice, nucleotide trimming, and N-insertion
in a broad population sample. While we recognize that there may be a complicated entanglement
between allelic variation and local cis-acting effects, we were primarily interested in identifying strong,
trans-acting associations. By leveraging the unique pairing of TCRpB chain immunosequencing and
genome-wide genotype data, we have (1) confirmed and extended previous studies on the genetic
determinants of TCR V-gene usage, (2) discovered associations between common genetic variants
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Figure 8. SNPs within the DNTT region that are associated with fewer N-insertions have a higher mean allele
frequency within the ‘Asian’-associated PCA-cluster when compared to the population mean allele frequency
computed across the 398 discovery cohort subjects (dashed, red horizontal line). The p-values from a one-sample
t-test (without Bonferroni multiple testing correction) for each PCA cluster compared to the population mean are
reported at the top of the plot. The population mean is dominated by subjects in the ‘Caucasian’-associated PCA
cluster (Figure 7—figure supplement 1).

The online version of this article includes the following source data for figure 8:

Source data 1. Allele frequencies by PCA-cluster for SNPs within the DNTT locus that are associated with fewer
N-insertions.

within the DCLRET1C and DNTT loci and V(D)J junctional trimming and N-insertions, respectively, (3)
developed a method for quantifying the extent of the associations between genetic variations and
junctional features, directly, without confounding gene choice effects, and (4) revealed differences in
the extent of N-insertion by ancestry-informative
PCA cluster.

We note an abundance of associations between

Table 3. Validation cohort demographics.

Count .
variation in the TCRB locus and V(D)J gene usage
Sex Female 58 biases for both productive and non-productive
Male 36 TCRs. Although previous reports have revealed
. similar patterns of association for productive
Age (in years <10 26

ge (in years) TCRs (Sharon et al., 2016; Gao et al., 2019),
11-20 15 our results refine and extend this result by quan-
21-30 13 tifying the extent of TCRB locus variation on V(D)
J gene usage for non-productive TCRs. This high-

31-40 12 . L. . . .
lights that locus variation is associated with TCR
41-50 1 generation-related gene usage biases, in addition
51-60 9 to potential thymic selection biases for productive
> &0 8 TCRs. These TCR generation-related gene usage
biases likely reflect local gene regulation and/or
Self-reported ethnicity Hispanic or Latino 94 recombination efficiency effects. For example,
CMV serostatus Positive 37 one of the SNPs most significantly associated with
i TRBV28 expression (rs17213) is located within the

Negative 57 N . .
recombination signal sequence at the 3'-end of
Total 94 the gene and, thus, could be involved directly
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Table 4. We inferred the associations between SNP genotype and TCR repertoire features for two SNPs overlapping between
discovery-cohort and validation-cohort SNP sets.

We considered the significance of the validation cohort associations at a Bonferroni-corrected SNP-level p-value significance
threshold of 0.0042 for trimming and 0.0083 for N-insertion (see Materials and methods). Validation cohort p-values are one-tailed.
* Discovery-cohort associations were only significant when considered at the DNTT -gene level significance threshold, not at the
whole-genome significance threshold.

SNP TCR chain Repertoire feature Productivity type Discovery cohort significant association Validation cohort significant association
rs12768894  TCRP V-gene trimming Productive Yes (2.16 x 1074 Yes (7.17 x 107)
Non-productive Yes (7.21 x 1074 Yes (8.75 x 1079
J-gene trimming Productive Yes (1.23 x 107™") Yes (5.16 x 1079
Non-productive Yes (6.62 x 1079 No (4.18 x 1079
TCRa V-gene trimming Productive N/A Yes (2.59 x 107%)
Non-productive N/A Yes (2.68 x 107)
J-gene trimming Productive N/A Yes (6.29 x 1072
Non-productive N/A No (9.99 x 107%)
rs3762093 TCRB V-D N-insertion Productive Yes* (1.37 x 1079) No (0.153)
Non-productive Yes* (1.50 x 107) No (0.059)
D-J N-insertion Productive Yes* (9.43 x107%) No (0.137)
Non-productive Yes* (1.94 x 107) No (0.006)
TCRa V-J N-insertion Productive N/A Yes (0.006)
Non-productive N/A No (0.031)

in changing the recombination efficiency of TRBV28. Thus, different expression levels of various
genes could be promoted by variation within non-coding regions such as promoters, 5'UTRs and
leader sequences, introns, or recombination signal sequences. Polymorphisms within these regions
have been suggested to influence V(D)J gene expression levels within B-cell receptor repertoires
(Mikocziova et al., 2021). We also observed that variation in the MHC locus is associated with V-gene
usage biases for productive TCRs, but not non-productive TCRs. These MHC locus associations are
likely only observed for V-gene usage since the V-gene locus, exclusively, encodes the TCR regions
(complementarity-determining regions 1 and 2) which directly contact MHC during peptide presen-
tation (Murphy and Weaver, 2016). While significant associations between MHC locus variation and
V-gene usage have been identified previously (Sharon et al., 2016; Gao et al., 2019), the specific
MHC locus variants and V-genes responsible for the most significant of these associations differed
between the two studies and from those reported here. This variation is likely the result of population
composition and/or exposure history differences between the various study cohorts. Despite their
differences, both previous studies have suggested that the thymic selection of certain V-genes may be
biased by germline-encoded TCR-MHC compatibilities in an MHC dependent manner (Sharon et al.,
2016; Gao et al., 2019). Because of our observed distinction between associations present between
MHC variation and V-gene usage in productive versus non-productive TCRs, our work supports this
hypothesis.

We have identified, for the first time, specific genetic variants which are associated with modi-
fying the extent of N-insertion and nucleotide trimming. While many previous studies have reported
evidence of genetic influences on overall gene usage (Zvyagin et al., 2014, Qi et al., 2016; Rubelt
et al., 2016; Pogorelyy et al., 2018; Tanno et al., 2020; Fischer et al., 2021) and repertoire similarity
in response to acute infection (Qi et al., 2016; Pogorelyy et al., 2018), there have been few explora-
tions into how heritable factors may bias TCR junctional features beyond reports of genetic similarity
implying overall TCR repertoire similarity (Krishna et al., 2020; Rubelt et al., 2016). Here, we noted
that variation in the gene encoding the Artemis protein (DCLRE1C) is associated with the extent of
V- and J-gene nucleotide trimming for both productive and non-productive TCRs. These associa-
tions are strongest for non-productive TCRs suggesting a TCR generation-related repertoire bias. It is
well established that the Artemis protein, in complex with DNA-PKcs, functions as an endonuclease

Russell et al. eLife 2022;11:€73475. DOI: https://doi.org/10.7554/eLife.73475 15 of 30


https://doi.org/10.7554/eLife.73475

e Llfe Research article

Immunology and Inflammation

responsible for cutting the hairpin intermediate, and thus, potentially creating P-nucleotides prior to
nucleotide trimming during V(D)J recombination (Weigert et al., 1978; Moshous et al., 2001, Ma
et al., 2002; Lu et al., 2007). The direct involvement of Artemis in the nucleotide trimming mecha-
nism, however, has yet to be confirmed. It has been shown that the Artemis protein possesses single-
strand-specific 5’ to 3’ exonuclease activity (Ma et al., 2002; Li et al., 2014) and, thus, may be properly
positioned to trim nucleotides. A non-synonymous SNP within DCLRE1C (rs12768894, c.728A > G)
was one of the significant associations we observed for V- and J-gene nucleotide trimming in both
the primary cohort and the independent validation cohort. Perhaps this mutation, or other linked
non-synonymous DCLRETC variation that was not studied here, is directly involved in the trimming
changes we observe. We did not observe strong associations between variation in the DCLRE1C locus
and the number of P-nucleotides or the fraction of non-gene-trimmed TCRs containing P-nucleotides,
despite the established mutually exclusive relationship between P-addition and nucleotide trimming
(Gauss and Lieber, 1996; Srivastava and Robins, 2012, Murphy and Weaver, 2016). However,
the absence of P-nucleotide associations at the DCLRETC locus could be the result of restricting the
analyses to the non-gene-trimmed repertoire subset. Perhaps with a larger dataset these associations
would be present.

Further, we have identified associations between variation in the gene encoding the TdT protein
(DNTT) and the number of N-insertions for both productive and non-productive TCRs. Because of the
established, direct involvement of the TdT protein in the N-insertion mechanism, these DNTT locus
variations could be influencing the function of the TdT protein. These significant associations were
slightly stronger for non-productive TCRs perhaps suggesting that thymic selection may limit the
mechanistic effects of locus variation. Interestingly, we noted that the extent of N-insertion varies by
ancestry-informative PCA cluster. Specifically, we found that the 'Asian’-associated PCA cluster had
significantly fewer N-insertions for productive TCRs when compared to the population mean which is
dominated by the ‘Caucasian’-associated PCA cluster. This finding is, perhaps, related to the influence
of broad heritable factors biasing the extent of N-insertions.

The significant SNPs associated with changing the extent of nucleotide trimming and N-insertion
identified here could be expression quantitative trait loci (eQTLs); however, experimental work will be
required to determine whether these SNPs modify the expression of DCLRE1C and DNTT, respectively.
More work is also required to elucidate the mechanistic relationship between DCLRE1C locus variation
and nucleotide trimming changes. After characterizing these relationships, future work can focus on iden-
tifying correlations between TCR repertoires and host immune exposures while accounting for genetically
determined repertoire biases identified here. These directions would allow us to continue disentangling
the genetic and environmental determinants governing TCR repertoire diversity.

There are several key limitations of our approach which are intrinsic to the data used in this study.
First, the lack of overlap between SNP sets for the discovery and validation cohorts limited our ability
to directly validate our strongest inferences. Next, it is possible that the SNP array data used here
does not capture all potential causal variation. As such, a significantly associated SNP present in our
SNP array data could simply be in linkage disequilibrium with a causal SNP which was either poorly
imputed or not tested here. Previous work has suggested that polymorphisms within the immuno-
globulin V-gene region are not completely captured by existing SNP array technology, and have been
underrepresented in previous genome-wide association studies (Watson and Breden, 2012). SNP
coverage of the TCRp locus is thought to be even sparser (Omer et al., 2022), and thus, much of
the actual TCRp variation present within our data cohort is likely not captured by the SNP dataset
used here (which contains 7,304 SNPs within the TRB locus, hg19:chr7:141950000-142550000). Lastly,
we have used the recombination statistics from non-productive rearrangements here as a means
of studying the V(D)J recombination generation process in the absence of selection; however, we
acknowledge that the repertoire of non-productive rearrangements may be an imperfect proxy for
a pre-selection TCR repertoire. Since each non-productive rearrangement is sequenced due to the
presence in the same T cell of a successful rearrangement that survived selection, it is possible that
within-cell correlation between rearrangement events could imprint selection effects onto the non-
productive repertoire. However, we are not aware of any evidence for a mechanism in which produc-
tive and non-productive recombination events at the TCR locus are significantly correlated. As such,
we are assuming that the productive and non-productive recombination events are independent, and
thus, the recombination statistics from the repertoire of non-productive rearrangements should reflect
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that of a pre-selection repertoire as is common in the literature (Robins et al., 2010; Murugan et al.,
2012; Zvyagin et al., 2014; Rubelt et al., 2016; Pogorelyy et al., 2018).

Another key constraint is the challenge of inferring the V(D)J rearrangements from the final nucle-
otide sequences due to the poor characterization of the TCRA and TCRB loci. The TCRA and TCRB
regions have been historically difficult to reliably map using short read sequencing due to their repeti-
tive and complex nature. While recent work has identified many new TRBV alleles, many more undoc-
umented TRBV alleles likely remain to be discovered (Omer et al., 2022). As such, the incomplete
characterization of the TCRB locus limited our ability to infer the correct V(D)J -gene allele for each
final nucleotide sequence. Further, the TCR sequencing technology used here leverages relatively
short-read sequencing which captures only a portion of the V-gene present in each sequence. Because
many TRBV alleles are identical to other TRBV alleles for much of the V-gene region present in these
sequences, it can be difficult to unambiguously assign V-gene usage to the final nucleotide sequences.
D-gene usage assignment is also challenging due to the short length of the TRBD alleles (12-16
nucleotides before nucleotide trimming and N-insertion). We have found that controlling for D-gene
assignment ambiguity in the nucleotide trimming and N-insertion analyses results in similar significant
associations within the DNTT and DCLRE1C loci. Although we cannot rule out some effect of incor-
rect V(D)J -gene assignment bias for trans associations resulting from the signal being ‘masked’ by
stronger TCRB locus signals, these biases seem to be mostly restricted to cis associations.

In summary, we have found that the usage of TCRB genes is associated with variation in MHC and
TCRB loci, the number of N-insertions is associated with DNTT variation, and the extent of nucleotide
trimming is associated with DCLRE1C variation. Our results clearly demonstrate how variation in V(D)
J recombination-related genes can bias TCR repertoire combinatorial and junctional diversity. In the
case of B cells, genetically determined V(D)J gene usage biases within B-cell receptor repertoires have
been linked to functional consequences for the overall immune response to specific antigens and,
thus, an increased susceptibility to certain diseases (Mikocziova et al., 2021). As such, the genetic
TCR repertoire biases identified here lay the groundwork for further exploration into the diversity of
immune responses and disease susceptibilities between individuals. Such studies will enhance our
understanding of how an individual’s diverse TCR repertoire can support a unique, robust immune
response to disease and vaccination. Our findings also provide a step towards the ability to under-
stand and predict an individual’s TCR repertoire composition which will be critical for the future devel-
opment of personalized therapeutic interventions and rational vaccine design.

Materials and methods

Designation

Source or reference

Identifiers

Additional information

Dash et al., 2017, Bradley

Version 0.0.2; Software can be found

Software, Algorithm TCRdist et al., 2017 on GitHub
Version 1.2.9; Software can be found
Software, Algorithm migec Shugay et al., 2014 RRID: SCR_016337 on GitHub

CD3-PerCP eFluor710 (Mouse

Cat: 46-0037-42; RRID:

Antibody monoclonal) Thermo Fisher Scientific AB_1834395 0.012 pg per 1 million cells (1:100)
Cat: 563875; RRID:
Antibody CD4-BV650 (Mouse monoclonal) BD Biosciences AB_2687486 2 pl per 1 million cells (1:50)
CD8-APC Fire750 (Mouse Cat: 344746; RRID:
Antibody monoclonal) Biolegend AB_2572095 0.1 pg per 1 million cells (1:100)
TCRy/5—PE Cy7 (Mouse Cat: 331222; RRID:
Antibody monoclonal) Biolegend AB_2562891 1 pg per 1 million cells (1:40)
Cat: 564220; RRID:
Other Fc Block BD Biosciences AB_2728082 2.5 pg per 1 million cells (1:20)
Other Live/Dead Aqua Tonbo Biosciences Cat: 13-0870 T100 1 ul per 1 million cells (1:100)

Commercial assay, kit

Qiagen QlAamp DNA Mini Kit

Qiagen

Cat: 51,306

Continued on next page
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Continued

Reagent type (species) or

resource Designation Source or reference Identifiers Additional information
Commercial assay, kit Tagman SNP Genotyping Assay Thermo Fisher Scientific Cat: 4351379

Commercial assay, kit TagMan Genotyping Master Mix ~ Thermo Fisher Scientific Cat: 4371353

Discovery cohort dataset
TCRp repertoire sequence data for 666 healthy bone marrow donor subjects was downloaded from
the Adaptive Biotechnologies website using the link provided in the original publication (Emerson
et al., 2017). For both the discovery and validation cohorts, V, D, and J genes were assigned by
comparing the TCRp-chain (and TCRa-chain for the validation cohort) nucleotide sequences to the
human IMGT/GENE-DB TCRB (or TCRA) allele sequences (Giudicelli et al., 2005). To infer the extent
of nucleotide trimming, N-insertion, and P-addition for each TCRB-chain (and TCRa-chain) nucleotide
sequence, the most parsimonious V(D)J recombination scenario was assigned to each sequence using
the TCRdist pipeline (Dash et al., 2017). The V(D)J recombination scenario requiring the fewest N-in-
sertions was defined as the most parsimonious scenario.

SNP array data corresponding to 398 of these subjects was downloaded from The database of
Genotypes and Phenotypes (accession number: phs001918). Details of the SNP array dataset, geno-
type imputation, and quality control have been described previously (Martin et al., 2020).

Validation cohort dataset

Peripheral blood mononuclear cell (PBMC) samples were collected from 150 healthy subjects recruited
at the Health Center Sécrates Flores Vivas (HCSFV) in Managua, Nicaragua (Ng et al., 2016). Healthy
participants were recruited as contacts of influenza infected index patients and blood samples were
collected at both the initial visit and a 30-day follow-up visit. Participants provided written informed
consent and parental permission was obtained from parents or legal guardians of children, in addition
to verbal assent from children aged 6 years and older. This study was approved by the Institutional
Review Boards at the University of Michigan (HUM 00091392) and the Centro Nacional de Diag-
ndstico y Referencia (Ministry of Health, Nicaragua; CIRE 06/07/10-025).

With these samples, PBMCs were stained with CD3-PerCP eFluor710 (Thermo Cat. 46-0037-42),
CD4-BV650 (BD Biosciences Cat. 563875), CD8-APC Fire750 (Biolegend Cat. 344746), and gdCy7
(Biolegend Cat. 331222). Briefly, after thawing from cryopreservation and plating in a 96-well round
bottom plate, cells were spun down and resuspended in 50 pL of human Fc block (BD Biosciences Cat.
564220) in Dulbecco’s phosphate-buffered saline (DPBS) at 5 pL per test (one test = 1.0 x 10° cells)
and incubated for 10 min at room temperature. Afterwards, 50 pL of a 2 X Live/Dead Aqua (Tonbo
Cat. 13-0870 T100, 1 pL per test, 1 test = 1.0 x 10° cells) and pre-titrated surface antibody cocktail in
DPBS were added to each well and cells were incubated for 30 min on ice and in the dark. Cells were
washed, resuspended in sort buffer and bulk sorted into polystyrene tubes. Afterwards, samples were
spun down, pellets were resuspended in 350 uL of RNA lysis buffer, and stored at -80°C in labeled
epitubes.

From here, DNA was extracted from 200 pL of neutrophil pellets using the Qiagen QlAamp DNA
Mini Kit (Cat. 51306). Bulk repertoires for sorted CD4 and CD8 T cells were generated in accor-
dance with the protocol developed by Egorov et al., 2015, and sequencing was performed on the
NovaSeq by the Hartwell Center at St. Jude. Raw cDNA sequencing data were processed with the
MIGEC software package (Shugay et al., 2014) to define error-corrected TCRA and TCRB transcript
sequences, which were then analyzed as described above for the discovery cohort data (Emerson
et al.,, 2017).

Genotypes for SNPs of interest corresponding to 94 of these subjects were pulled from Infinium
Global Screening Array-24 v3.0 BeadChip results, which measures 654,027 SNP markers including
multi-ethnic genome-wide content, curated clinical research variants, and quality control markers. High
quality DNA was extracted using the Qiagen QlAamp DNA Mini Kit (Cat. 51306), and submitted to
the St. Jude Hartwell Center for preparation and processing. Two SNPs, rs72640001 and rs72772435,
were not included on this chip and were determined using Thermo Fisher TagMan SNP Genotyping
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Assays (Cat. 4351379, Assay ID C__99271581_10 and C__99587751_10, respectively) and TagMan
Genotyping Master Mix (Cat. 4371353) according to the kit manual.

Data preparation

With these paired SNP array and TCR-immunosequencing for both the discovery and validation
cohorts, we aimed to identify significant associations between these SNPs and various TCR repertoire
features. Because we would expect a difference in these phenotypes depending on whether a TCR
sequence is classified as productive or non-productive, we split the data based on this TCR produc-
tivity status and computed associations separately for the two groups.

We also subset the SNP data further based on several quality control metrics. We filtered the SNP
array data to use only SNPs with a minor allele frequency above 0.05 in our analyses which excluded
SNPs for which all subjects had the same genotype. For the discovery cohort, this filtering procedure
and previous quality control (Martin et al., 2020) left 6,456,824 SNPs (of the original 35 million SNPs)
remaining for our analyses. Only 2 SNPs from the validation cohort overlapped with this discovery
cohort SNP set. For each of these discovery and validation cohort SNPs, when fitting each asso-
ciation model, we excluded observations which contained a missing SNP genotype. Next, for the
TCR repertoire data, we excluded repertoires which contained a relatively small number of TCRs
(log;(TCR count) < 4.25 for productive TCRs and log;,(TCR count) < 3.5 for non-productive TCRs) from
the analyses. Also, when fitting models for gene usage (i.e. V-gene usage, D-gene usage, and J-gene
usage) we have restricted our analyses to observations which contain non-orphan genes. Lastly, for
TCRB-chains, if a D-gene is trimmed so much that the D-gene is unidentifiable, the inference pipeline
used to infer TCRB genes for each sequenced TCR does not report a D-gene. Instead, this D-gene (if
it is indeed present) is reported as a V-J N-insertion. Because of this, we excluded these observations
when fitting models for TCR features involving the D-gene (i.e. D-gene usage, both V-D and D-J junc-
tion N-insertions, D-gene P-additions, and D-gene nucleotide trimming).

Notation

The discovery dataset contains observations for a total of I = 398 subjects and the validation dataset
contains observations for a total of I =94 subjects. Within each cohort, for subject i € {1,...,1}, we
observe a total of N; TCRs which, here, represents the number of TCRs which compose each subject’s
TCR repertoire. Thus, for each TCR k € {1,...,N;}, we measure a TCR feature of interest, y;, such as
the number of V-D N-insertions, the extent of V-trimming, etc. We also have SNP genotype data for a
total of J SNPs such that for each SNP j € {1,...,J} and subjecti € {1,...,I}, we measure the number
of minor alleles in the genotype, x;; € {0, 1,2}.

Quantifying the association strength between each SNP and TCR
feature using the ‘simple model’

We first describe what we call the ‘simple model’. We will describe more complex models, as well
as each model with added correction for population-substructure-related effects, in the sections
following.

We began by calculating the average occurrence of the TCR feature of interest, y;, within the
repertoire of each subject, i. By condensing the data in this way, for each subject i € {1,...,1}, we
are left with N; = 1 observations. For example, for the discovery cohort, we can fit the model across
Zle N; = 398 observations. Using this condensed dataset, for each SNP, TCR feature, and produc-
tivity status, we can fit the model:

yi = Xij - Bij+ Bo + € 1

where fy; is the allele effect for SNP j on the TCR feature of interest y;, fy is the intercept, and ¢;; is
the random error for subject i and SNP j such that €; ~ N(0, a2).
To estimate each regression coefficient, we solved the least squares problem:

(Bos Bu) = argming, g Sy (5 — (- By + 50))2 (2)

using the function 1min R. With each estimate of the j-th SNP effect on the TCR feature of interest, Blj,
generated by fitting the least squares problem (Equation 2), we quantified the association strength
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between each SNP and the TCR feature of interest by testing whether Blj = 0. To do this, we calculate
the test statistic

By
se(B1))

T, = (3)

and compare T;to a N(0, 1) distribution to obtain each P-value.

Quantifying the association strength between each SNP and TCR
feature, conditional on TCRB gene type using the ‘gene-conditioned
model’
We noted that the amount of certain TCR features (such as the extent of all types of nucleotide trim-
ming) vary by V(D)J TCRB gene choice. Thus, we can condition on this gene choice to quantify the
direct association between each SNP and the amount of each TCR feature, without confounding gene
choice effects. In this way, we condition on each gene type ¢ € {V-gene, J-gene, D-gene} corresponding
to the TCR feature of interest (i.e. t = V-gene for V-gene trimming, 7 = J-gene for J-gene trimming, etc.).
We will refer to the following model as the ‘gene-conditioned model’ in the main text. Many similar-
ities exist between the ‘simple model’ described in the previous section and this ‘gene-conditioned
model’. Thus, we will focus on the differences between the two models here. We will describe both
models with added correction for population-substructure-related effects, in the sections following.

As in the previous section, we, again, want to reduce the number of data observations. For each
subject i € {1,...,I}, we can calculate the average amount of each TCR feature y;, by each candi-
date TCRB gene allele group m for the given gene type ¢ such that m € {1,...,M;}. In calculating
the average amount of each TCR feature across TCRs with the same candidate TCRB gene allele,
we combined TCRB gene alleles which had identical CDR3 sequences and were of the same candi-
date TCRB gene into TCRB gene allele groups. As such, the number of observations per subject
N; in this condensed dataset will equal M; and, thus, we will need to fit each model across Zle M;
observations. In our data, for TCRp chains, we observe 141 possible TCRB V-gene allele groups, 16
J-gene allele groups, and 3 D-gene allele groups. Thus, using the extent of nucleotide trimming as
an example TCR feature within the discovery cohort, with this condensed formulation, for each SNP
and productivity status, we have ~ 56,000 observations for V-gene trimming, ~ 6,000 observations for
J-gene trimming, and ~ 1,200 observations for both types of D-gene trimming.

Using this condensed dataset, for each SNP, TCR feature, and productivity status, we fit the
following ‘gene-conditioned model":

Yim = Xij - B1j + Bo + Yjm + €ijm (4)

where 7, represents the gene-effect on the amount of the TCR feature of interest for SNP j and
gene-allele-group m, and ¢, is the random error for subject i, SNP j, and gene-allele-group m such
that €, ~ A47(0, o2). The variables xij, B1j» and By are defined as in the ‘simple model’ description
(Equation 1) in the previous section. However, since each subject had a different number of TCRs
measured and varying TCRB gene usage, we calculated the proportion of TCRs from each candidate
TCRB gene allele group, m, to define a weight, W;,,, for each observation:

Winm = =
im = My .
et Nim

With this, we solved the following weighted least squares problem for each SNP, TCR feature, and
productivity status combination:

n M,
AoA . i _ 2
(Bo. B> %y) = argming, 5 >~ 57 Win - (Fim — Bo + jm + Brjxij)) (5)
=1 m=1

using the 1m function in R.

With each estimate of the j-th SNP effect on the amount of the TCR feature of interest, Blj,
generated using the models described above, we quantified the association strength between each
SNP and the amount of the TCR feature by testing whether Blj = 0. To do this, we applied a t-test
(described in the previous section) using the test statistic (Equation 3) to obtain each p-value. However,
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because our condensed dataset contains a total of M; observations from each subject i, these p-values
may be inflated due to intra-subject observations being potentially correlated. Thus, to increase the
accuracy of the p-value calculation, for each association p-value below a certain threshold (we chose
P < 5 x 1077), we recalculated the p-value using a clustered bootstrap (with subjects as the sampling
unit). To do so, for each bootstrap iterate, we resampled subjects from the condensed dataset with
replacement. Using this re-sampled data, we fit the model in Equation 5 to estimate each coefficient.
We repeated this bootstrap process 100 times and used the resulting 100 coefficient estimates to
estimate a standard error for each model coefficient. With this re-calculated standard error of the
estimate of the j-th SNP effect on the amount of the TCR feature of interest, se(ﬁAlj), we wanted to
test whether Blj = 0 by recalculating the test-statistic, Equation 3, and applying a t-test to obtain each
‘corrected’ p-value. As noted in the multiple testing correction methods section, when accounting
for multiple testing via Bonferroni correction, we used the entire number of TCR features and SNPs
considered (not just those that were sufficiently promising to warrant use of the bootstrap to get a
more accurate p-value): This ensures that our correction will not be anti-conservative.
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Figure 9. The top principal components calculated from genotype data reflect ancestry structure among samples. (A) The majority of the ancestry-
informative principal component analysis variance is explained by the first eight principal components. (B) The first eight principal components show
distinct separation by PCA cluster. Each colored line represents one of the 398 samples. The first 32 principal components are shown on the X-axis and

their scaled component values for each subject on the Y-axis.
The online version of this article includes the following source data for figure 9:
Source data 1. Percent variance explained by each principal component.

Source data 2. Scaled principal component values by subject.
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Correcting for population-substructure-related effects
Structure within our SNP genotype data (such as population-substructure-related biases due to
ancestry), if present, may produce false positive associations when quantifying the association strength
between each SNP and our phenotype of interest. To account for this, we implemented principal
component analysis as commonly applied to genome-wide genotype data for population substructure
inference. Specifically, we used the PC-AiR algorithm (Conomos et al., 2015) which identifies principal
components that capture ancestry while accounting for relatedness in the samples. As such, the top
principal components calculated from the genotype data reflect population substructure among the
samples. When plotting the proportion of variance explained by each PC, we find that the majority
of variability appears to be explained by the top eight PCs (Figure 9). This conclusion is supported
when plotting each PC score by ancestral group (Figure 9). With this, we incorporated the top eight
principal components as covariates into our GWAS models described above.

As such, to quantify the association strength between each SNP and TCR feature without condi-
tioning on gene usage as in Equation 1, while incorporating principal component terms to correct for
population-substructure-related bias due to ancestry, we fit the model:

yi = xj- Bij+ Bo + Zﬁzl Bojp - Pip + € (6)

where y, x;;, 81, Bo and ¢;; are defined as in Equation 1, /3y, is the population-substructure-related bias
correction term for SNP j and the p-th principal component, and Py, is the p-th principal component
for subject i as calculated above. To estimate each regression coefficient, we solved the following least
squares problem for each SNP, TCR feature, and productivity status combination:

~ ~ e . _ 2
(Bo» B1j» B2y) = argming 5 5 Sy (5 — (i - B + Bo + Zﬁ:l Bajp - Pip))”-

Furthermore, to quantify the association strength between each SNP and TCR feature, condi-
tional on gene usage as in Equation 4, while incorporating principal component terms to correct for
population-substructure-related bias due to ancestry, we fit the model:

_ 8
Yim = Xij + Bij + Bo + Yjm + 25zt Bojp * Pip + €ijm )

where ¥, xij, B1j, Bo, Yjm and €;; are defined as in Equation 4 and Blj and P, are defined as in Equation
6. Again, to estimate each regression coefficient, we solved the following weighted least squares
problem for each SNP, TCR feature, and productivity status combination:

PN e . n M B 8 2
(Bos Brj» 3j» Baj) = argmin 5 By S Wim - (Bim — Bo + Yjm + Buxij + X Bojp - Pip)) ™
T =1 m=1 p=1
With these estimates for the population-substructure-corrected j-th SNP effect on the amount of
the TCR feature of interest, ();, we calculated a P-value using the methods described in the methods
section for each model type.

Correcting for TRBD2 allele genotype, SNP genotype linkage when
quantifying SNP, TCR feature associations within the TCRB locus

Within the TCRB locus, we noted that SNP genotypes were associated with TRBDZ2 allele genotype
(Figure 3—figure supplement 1). Associations between gene-alleles and TCRB locus SNP geno-
types, if present, may produce false positive associations when implementing the ‘gene-conditioned
model’ to infer associations between SNPs and TCR repertoire features, conditional on gene usage.
To explore this phenomenon further, we zoomed in to the TCRB locus and incorporated a TRBD2
allele genotype correction procedure into our model formulation. As such, to quantify the association
strength between each TCRB locus SNP and TCR feature, conditional on gene usage and correcting
for population-substructure-related effects as in Equation 7, while incorporating TRBDZ2 allele geno-
type correction terms, we fit the model:

8
Yim =2i - & +xij - B1j + Bo + Yim + 2 Bojp - Pip + €ijm
p=1
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where z represents the qualitative TRBDZ2 allele genotype status for subject i such that z; €
{*TRBD2*01 homozygous”, “heterozygous”, "TRBD2*02 homozygous”}, «; is the TRBD2 allele genotype
effect for SNP j, and the remaining variables are defined as in Equation 7. With this model formu-
lation, we can estimate each regression coefficient by solving the following weighted least squares
problem for each TCRB SNP, TCR feature, and productivity status combination:

- n M,
~ A D ~ A : v 8
(@, Pos Brjs js o) = argming, 5 o 5 ZZ >° Wi - (Bim — (jzi + Bo +Yjm + B1j%ij + 2 =y Bajp - Pip))

=1 m=1

2

With these estimates for the TRBDZ2 allele genotype and population-substructure-corrected j-th
SNP effect on the amount of the TCR feature of interest, 8y;, we calculated a p-value using the
methods described in the Materials and methods section for the ‘gene-conditioned model’.

Multiple testing correction for associations

For each TCR feature (i.e. extent of trimming, number of N-insertions, etc.), we considered the
significance of associations using a Bonferroni-corrected threshold. To establish each threshold, we
corrected for each TCR feature subtype (i.e. V-gene trimming, J-gene trimming, etc. for the TCR
trimming feature), the two TCR productivity types (productive and non-productive), and the total
number of SNPs tested. When considering associations in the whole-genome context, we corrected
for the approximately 6.5 million SNPs (remaining after filtering). When considering associations in a
gene-level context, we corrected for the number of SNPs within 200 kb of the gene of interest. For the
validation analysis, we considered associations in a SNP-level context and did not correct for multiple
SNPs. However, for the validation analysis, we considered the significance of associations within both
TCRa and TCRP chains and, thus, corrected the significance threshold accordingly.

Genomic inflation factor calculations

We defined the genomic inflation factor A to be the ratio of the median of the empirically observed
squared test statistic to the expected median (Devlin and Roeder, 1999; Freedman et al., 2004,
Price et al., 2010). For each GWAS analysis implemented using the ‘simple model’, we used the test
statistic 7; given by Equation 3 for each SNP j = {1...J} tested genome-wide. For each GWAS anal-
ysis implemented using the ‘gene-conditioned model’, it was not computational feasible to calculate
a test statistic 7; for all SNPs tested genome-wide using the bootstrapping protocol described in
the ‘gene-conditioned model’ Materials and methods section. Thus, instead, we randomly sampled
10,000 SNPs and calculated the test statistic 7; for each SNP in the random subset. Let § = {T%, . T%}
be the set of all squared test statistics. As such,

__ median(S)
A= 0.456

where 0.456 is the median of a chi-squared distribution with one degree of freedom. If the GWAS
analysis results follow the chi-squared distribution, the expected value of X is 1. Thus, when X < 1.03,
we concluded that there was no evidence of systemic population-substructure-related bias in the anal-
ysis (Price et al., 2010; Conomos et al., 2016).

Conditional analysis to test for multiple independent association signals
Within the DNTT and DCLRE1C loci, we performed a stepwise series of nested regression analyses
to test for independent SNP associations within each locus for N-insertion and nucleotide trimming,
respectively. We used the same models and covariates as the primary analyses (‘simple model’ for
associations between N-insertion and DNTT variation and the ‘gene-conditioned model’ for associ-
ations between nucleotide trimming and DCLRE1C variation) and included the most significant SNP
within each locus as an additional covariate. We inferred the association between each SNP within
each locus and the TCR feature of interest using this new conditional model and considered significant
associations at a gene-level Bonferroni-corrected significance threshold for each locus. From here, we
repeated this analysis (if necessary), identifying and adding additional SNPs one-by-one as a covariate
to each successive model. Once the p-value of top SNP within the locus was no longer significant,
we concluded the analysis. SNPs which were added as as additional covariates in the final conditional
model were considered to be independent signals.
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Ancestry-informative PCA cluster classification

In order to correct for population-substructure-related biases due to ancestry in our GWAS analyses,
we used ancestry-informative principal component analysis. The original genotyping dataset (Martin
et al., 2020) contained self-reported ancestry. However, a number of subjects did not self-report
ancestry in the original data collection. Further, for some subjects, their self-reported ancestry was
discordant with clusters observed in a principal component analysis. Therefore, for analysis purposes,
we used the minimum covariance determinant method (Rousseeuw and Driessen, 1999; Conomos
et al., 2016) with the original self-identified labels to group the subjects into six ancestry-informative
PCA clusters: ‘African’-associated (8), ‘Asian’-associated (23), ‘Caucasian’-associated (322), ‘Hispan-
ic’-associated (30), ‘Middle Eastern’-associated (5), and ‘Native American’-associated (10).

Quantifying associations between TRBD2 allele genotype and SNP
genotype within the TCRB locus

For each significantly associated SNP within the TCRB locus as shown in Figure 3, we compared SNP
genotype to TRBDZ2 allele genotype across all subjects. We used Pearson correlation to measure the
correlation between the two genotypes.

Quantifying TCR repertoire feature and SNP minor allele frequency
variations by ancestry-informative PCA cluster
To quantify PCA cluster variation of TCR repertoire features (such as total N-insertions [V-D N-insertion
and D-J N-insertion]), we first calculated an average of each TCR repertoire feature by subject and
productivity status. We also calculated a population mean of each TCR repertoire feature by produc-
tivity status. Each subject was classified into one of six PCA clusters. Thus, we compared the mean
of the TCR repertoire features within each PCA cluster to the population mean using a one-sample
t-test to compute each P-value. We used Bonferroni multiple testing correction to adjust each p-value.
We also calculated SNP minor allele frequencies for the whole population and for each PCA cluster
individually such that

I =
MAF;, = S/ 8)

Here, MAF;j, is the minor allele frequency for SNP marker j and PCA cluster r, I- is the number of
individuals in the PCA cluster r, and x;; is the number of alleles in the genotype of SNP marker j
for subject i € {1,...,1;}. For each SNP j, the minor allele was defined as the allele with the lowest
frequency in the total population. To quantify minor allele frequency differences by PCA cluster for
select SNPs within various loci of interest (i.e. DNTT gene), we compared the minor allele frequen-
cies calculated within PCA-clusters to the minor allele frequencies calculated for the entire popula-
tion using a one-sample t-test to compute each P-value. Again, we used Bonferroni multiple testing
correction to adjust each p-value.
For both of these analyses, we used the t _test function from the rstatix package in R.

Implementation and Code

R code implementing the genome-wide association inferences described here is available at https://
github.com/phbradley/tcr-gwas, (copy archived at swh:1:rev:fd4f43562a63d45721d61f54d99d4bcd
93cb4066; Russell, 2022). The following tools were especially helpful:

e data.table (Dowle and Srinivasan, 2021)

o tidyverse (Wickham et al., 2019)

» doParallel (Corporation and Weston, 2020)
e SNPRelate (Zheng et al., 2012)

* GWASTools (Gogarten et al., 2012)

* GENESIS (Gogarten et al., 2019)

o cowplot (Wilke, 2020)

Acknowledgements

Russell et al. eLife 2022;11:€73475. DOI: https://doi.org/10.7554/eLife.73475 24 of 30


https://doi.org/10.7554/eLife.73475
https://github.com/phbradley/tcr-gwas
https://github.com/phbradley/tcr-gwas
https://archive.softwareheritage.org/swh:1:dir:169b18f339d34c7f85507729eb08d414902adbce;origin=https://github.com/phbradley/tcr-gwas;visit=swh:1:snp:6e0facc93e89e6fb6de8a899f0b79e3f0dd77288;anchor=swh:1:rev:fd4f43562a63d45721d61f54d99d4bc493cb4066
https://archive.softwareheritage.org/swh:1:dir:169b18f339d34c7f85507729eb08d414902adbce;origin=https://github.com/phbradley/tcr-gwas;visit=swh:1:snp:6e0facc93e89e6fb6de8a899f0b79e3f0dd77288;anchor=swh:1:rev:fd4f43562a63d45721d61f54d99d4bc493cb4066

e Llfe Research article

Immunology and Inflammation

The authors thank Christopher Carlson, William DeWitt, and Michael Lieber for helpful discussions
regarding this paper. The authors would also like to thank Fred Hutch scientific computing (National
Institutes of Health, ORIP S100D028685). Dr. Matsen is an Investigator of the Howard Hughes Medical
Institute.

Additional information

Competing interests

Aubree Gordon: serves on a scientific advisory board for Janssen. Paul G Thomas: consults for Johnson
and Johnson, Immunoscape, Cytoagents, and PACT Pharma. He has received travel reimbursement
from 10X Genomics and Illumina. He is an inventor on two pending US patent applications related to
T cell receptor biology (US: 15/780,938 titled "Cloning and Expression System for T-Cell Receptors'
and US: 17/616,279 titled "Kit and Method for Analyzing Singlet Cells'). The other authors declare
that no competing interests exist.

Funding
Funder Grant reference number Author
National Institutes of RO1T Al146028 Magdalena L Russell
Health Noah Simon
Frederick A Matsen IV
Philip Bradley
National Institutes of RO1 Al136514 Aisha Souquette
Health Stefan A Schattgen
E Kaitlynn Allen
Paul G Thomas
Philip Bradley
National Institutes of RO1 Al120997 Guillermina Kuan
Health Angel Balmaseda
Aubree Gordon
National Institutes of RO1 AI107625 Aisha Souquette
Health Stefan A Schattgen

E Kaitlynn Allen
Paul G Thomas

National Institute of Allergy HHSN272201 400006C Aisha Souquette

and Infectious Diseases Stefan A Schattgen
E Kaitlynn Allen
Guillermina Kuan
Angel Balmaseda
Aubree Gordon
Paul G Thomas

National Institute of Allergy 75N93021C00016 Aisha Souquette

and Infectious Diseases Stefan A Schattgen
E Kaitlynn Allen
Guillermina Kuan
Angel Balmaseda
Aubree Gordon
Paul G Thomas

National Institute of Allergy Al33484 David M Levine
and Infectious Diseases
National Institute of Allergy Al149213 David M Levine
and Infectious Diseases
National Cancer Institute ~ CAQ015704 David M Levine
National Heart, Lung, and  HL087690 David M Levine

Blood Institute

National Heart, Lung, and  HL088201 David M Levine
Blood Institute

Russell et al. eLife 2022;11:€73475. DOI: https://doi.org/10.7554/eLife.73475 25 of 30


https://doi.org/10.7554/eLife.73475

e Llfe Research article

Immunology and Inflammation

Funder Grant reference number Author
National Heart, Lung, and  HL094260 David M Levine
Blood Institute

National Heart, Lung, and HL105914 David M Levine

Blood Institute

National Heart, Lung, and  K23HL69860 David M Levine

Blood Institute

The Simons Foundation 55108544 Frederick A Matsen IV
and Howard Hughes

Medical Institute

Howard Hughes Medical Frederick A Matsen IV

Institute

Investigator

The funders had no role in study design, data collection and interpretation, or the
decision to submit the work for publication.

Author contributions

Magdalena L Russell, Formal analysis, Methodology, Software, Visualization, Writing — original draft,
Writing — review and editing; Aisha Souquette, Data curation, Investigation, Writing — review and
editing; David M Levine, Methodology, Writing — review and editing; Stefan A Schattgen, Data
curation, Investigation; E Kaitlynn Allen, Data curation, Investigation, Resources; Guillermina Kuan,
Noah Simon, Data curation, Investigation, Methodology, Resources, Writing — review and editing;
Angel Balmaseda, Data curation, Funding acquisition, Investigation, Resources, Supervision; Aubree
Gordon, Data curation, Funding acquisition, Resources, Supervision, Writing — review and editing;
Paul G Thomas, Frederick A Matsen, Philip Bradley, Conceptualization, Data curation, Formal analysis,
Funding acquisition, Methodology, Resources, Software, Supervision, Writing — original draft, Writing
- review and editing

Author ORCIDs

Magdalena L Russell @ http://orcid.org/0000-0002-1068-1968
Frederick A Matsen IV, @ http://orcid.org/0000-0003-0607-6025
Philip Bradley @ http://orcid.org/0000-0002-0224-6464

Ethics

For the validation cohort, participants provided written informed consent and parental permission was
obtained from parents or legal guardians of children, in addition to verbal assent from children aged
six years and older. This study was approved by the Institutional Review Boards at the University of
Michigan (HUM 00091392) and the Centro Nacional de Diagndstico y Referencia (Ministry of Health,
Nicaragua; CIRE 06/07/10-025).

Decision letter and Author response
Decision letter https://doi.org/10.7554/elife.73475.sa
Author response https://doi.org/10.7554/elife.73475.sa2

Additional files

Supplementary files
¢ Transparent reporting form

Data availability

Validation cohort TCRA- and TCRB-immunosequencing data have been deposited into The BioProject
database under accession code PRINA762269. Validation cohort SNP data have been deposited into
the Zenodo database (DOI:10.5281/zenodo.5719516). Discovery cohort SNP array data are previ-
ously published and are available in The database of Genotypes and Phenotypes under accession
code phs001918. Discovery cohort TCRB-immunosequencing data are also previously published and
are available in the ImmuneAccess database (DOI:10.21417/B7001Z). All data generated or anal-
ysed during this study are included in the manuscript and supporting files; Source Data files have

Russell et al. eLife 2022;11:€73475. DOI: https://doi.org/10.7554/eLife.73475

26 of 30


https://doi.org/10.7554/eLife.73475
http://orcid.org/0000-0002-1068-1968
http://orcid.org/0000-0003-0607-6025
http://orcid.org/0000-0002-0224-6464
https://doi.org/10.7554/eLife.73475.sa1
https://doi.org/10.7554/eLife.73475.sa2
https://doi.org/10.5281/zenodo.5719516
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001918.v1.p1
https://doi.org/10.21417/B7001Z

e Llfe Research article

Immunology and Inflammation

been provided for Figures 1, 2, 3, 4, 5, 6, 7, 8, and 9. All data processed during this study have been
deposited in the Zenodo database (discovery cohort data available at DOI:10.5281/zenodo.5719520
and validation cohort data available at DOI:10.5281/zenodo.5719516). Code implemented in this
study has been made available on GitHub:https://github.com/phbradley/tcr-gwas, (copy archived at
swh:1:rev:fd4f43562a63d45721d61f54d99d4bc493cb4066).

The following datasets were generated:

Author(s) Year Dataset title Dataset URL Database and Identifier

Souquette A, 2021
Schattgen SA, Kuan

G, Balmaseda A,

Gordon A, Thomas

PG

Souquette A, 2021
Schattgen SA,

Allen EK, Kuan G,
Balmaseda A, Gordon

A, Thomas PG

The Nicaraguan Influenza  https://www.ncbi.nlm. NCBI BioProject,
Cohort Study nih.gov/bioproject/  PRINA762269
PRINA762269

https://doi.org/10. Zenodo, 10.5281/
5281/zenodo.5719516 zenodo.5719516

Combining genotypes

and T cell receptor
distributions to infer
genetic loci determining
V(D)J recombination
probabilities: validation
cohort meta data and
parsed TCR repertoire data

Levine DM, Bradley P 2021 Combining genotypes
and T cell receptor
distributions to infer
genetic loci determining
V(D)J recombination
probabilities: discovery
cohort meta data and

parsed TCR repertoire data

https://doi.org/10. Zenodo, 10.5281/
5281/zenodo.5719520 zenodo.5719520

The following previously published datasets were used:

Author(s) Year Dataset title Dataset URL Database and Identifier

Emerson RO, DeWitt 2017
WS, Vignali M,

Gravley J, Osborne

EJ, Desmarais C,

Klinger M, Carlson

CS, Hansen JA,

Rieder M, Robins HS

Immunosequencing
identifies signatures of
cytomegalovirus exposure
history and HLA-mediated
effects on the T-cell
repertoire

https://doi.org/10. ImmuneACCESS, 10.21417/
21417/B7001Z B7001Z

Martin PJ, Levine DM, 2020
Storer BE, Nelson SC,
Dong X, Hansen JA

STAMPEED: Whole https://www.ncbi.nlm. NCBI dbGaP, phs001918.
Genome Association nih.gov/projects/gap/ v1.p1

Analysis of Hematopoietic  cgi-bin/study.cgi?

Cell Transplant (HCT) study_id=phs001918.

Outcomes vipl

References

Bradley P, Crawford JC, Fiore-GartlandA, Perry A, Diez D. 2017. TCRdist pipeline. 0.0.2. GitHub. https://github.
com/phbradley/tcr-dist

Conomos MP, Miller MB, Thornton TA. 2015. Robust inference of population structure for ancestry prediction
and correction of stratification in the presence of relatedness. Genetic Epidemiology 39:276-293. DOI: https://
doi.org/10.1002/gepi.21896, PMID: 25810074

Conomos MP, Laurie CA, Stilp AM, Gogarten SM, McHugh CP, Nelson SC, Sofer T, Fernandez-Rhodes L,
Justice AE, Graff M, Young KL, Seyerle AA, Avery CL, Taylor KD, Rotter JI, Talavera GA, Daviglus ML,
Wassertheil-Smoller S, Schneiderman N, Heiss G, et al. 2016. Genetic Diversity and Association Studies in US
Hispanic/Latino Populations: Applications in the Hispanic Community Health Study/Study of Latinos. American
Journal of Human Genetics 98:165-184. DOI: https://doi.org/10.1016/j.ajhg.2015.12.001, PMID: 26748518

Corporation M, Weston S. 2020. doParallel: Foreach Parallel Adaptor for the ‘parallel’ Package. R package
version 1.0.16. R Package.

Dash P, Fiore-Gartland AJ, Hertz T, Wang GC, Sharma S, Souquette A, Crawford JC, Clemens EB, Nguyen THO,
Kedzierska K, La Gruta NL, Bradley P, Thomas PG. 2017. Quantifiable predictive features define epitope-

Russell et al. eLife 2022;11:€73475. DOI: https://doi.org/10.7554/eLife.73475 27 of 30


https://doi.org/10.7554/eLife.73475
https://doi.org/10.5281/zenodo.5719520
https://doi.org/10.5281/zenodo.5719516
https://github.com/phbradley/tcr-gwas
https://archive.softwareheritage.org/swh:1:dir:169b18f339d34c7f85507729eb08d414902adbce;origin=https://github.com/phbradley/tcr-gwas;visit=swh:1:snp:6e0facc93e89e6fb6de8a899f0b79e3f0dd77288;anchor=swh:1:rev:fd4f43562a63d45721d61f54d99d4bc493cb4066
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA762269
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA762269
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA762269
https://doi.org/10.5281/zenodo.5719516
https://doi.org/10.5281/zenodo.5719516
https://doi.org/10.5281/zenodo.5719520
https://doi.org/10.5281/zenodo.5719520
https:%20//doi.org/10.%2021417/B7001Z
https:%20//doi.org/10.%2021417/B7001Z
https:%20//www.ncbi.%20nlm.nih.gov/%20projects/gap/%20cgi-%20bin/study.%20cgi?study_id=%20phs001918.v1.%20p1
https:%20//www.ncbi.%20nlm.nih.gov/%20projects/gap/%20cgi-%20bin/study.%20cgi?study_id=%20phs001918.v1.%20p1
https:%20//www.ncbi.%20nlm.nih.gov/%20projects/gap/%20cgi-%20bin/study.%20cgi?study_id=%20phs001918.v1.%20p1
https:%20//www.ncbi.%20nlm.nih.gov/%20projects/gap/%20cgi-%20bin/study.%20cgi?study_id=%20phs001918.v1.%20p1
https:%20//www.ncbi.%20nlm.nih.gov/%20projects/gap/%20cgi-%20bin/study.%20cgi?study_id=%20phs001918.v1.%20p1
https://github.com/phbradley/tcr-dist
https://github.com/phbradley/tcr-dist
https://doi.org/10.1002/gepi.21896
https://doi.org/10.1002/gepi.21896
http://www.ncbi.nlm.nih.gov/pubmed/25810074
https://doi.org/10.1016/j.ajhg.2015.12.001
http://www.ncbi.nlm.nih.gov/pubmed/26748518

e Llfe Research article

Immunology and Inflammation

specific T cell receptor repertoires. Nature 547:89-93. DOI: https://doi.org/10.1038/nature22383, PMID:
28636592

Dean J, Emerson RO, Vignali M, Sherwood AM, Rieder MJ, Carlson CS, Robins HS. 2015. Annotation of
pseudogenic gene segments by massively parallel sequencing of rearranged lymphocyte receptor loci.
Genome Medicine 7:123. DOI: https://doi.org/10.1186/s13073-015-0238-z, PMID: 26596423

Devlin B, Roeder K. 1999. Genomic control for association studies. Biometrics 55:997-1004. DOI: https://doi.
org/10.1111/j.0006-341x.1999.00997 .x, PMID: 11315092

DeWitt WS, Smith A, Schoch G, Hansen JA, Matsen FA, Bradley P. 2018. Human T cell receptor occurrence
patterns encode immune history, genetic background, and receptor specificity. eLife 7:€38358. DOI: https://
doi.org/10.7554/elife.38358, PMID: 30152754

Dowle M, Srinivasan A. 2021. data.table: Extension of ‘data.frame’. R package version 1.14.0. R Package.

Egorov ES, Merzlyak EM, Shelenkov AA, Britanova OV, Sharonov GV, Staroverov DB, Bolotin DA, Davydov AN,
Barsova E, Lebedev YB, Shugay M, Chudakov DM. 2015. Quantitative profiling of immune repertoires for minor
lymphocyte counts using unique molecular identifiers. Journal of Immunology 194:6155-6163. DOI: https://
doi.org/10.4049/jimmunol.1500215, PMID: 25957172

Emerson RO, DeWitt WS, Vignali M, Gravley J, Hu JK, Osborne EJ, Desmarais C, Klinger M, Carlson CS,
Hansen JA, Rieder M, Robins HS. 2017. Immunosequencing identifies signatures of cytomegalovirus exposure
history and HLA-mediated effects on the T cell repertoire. Nature Genetics 49:659-665. DOI: https://doi.org/
10.1038/ng.3822, PMID: 28369038

Feeney AJ, Victor KD, Vu K, Nadel B, Chukwuocha RU. 1994. Influence of the V(D)J recombination mechanism
on the formation of the primary T and B cell repertoires. Seminars in Immunology 6:155-163. DOI: https://doi.
org/10.1006/smim.1994.1021, PMID: 7948955

Fischer S, Stanke F, Tummler B. 2021. VJ Segment Usage of TCR-Beta Repertoire in Monozygotic Cystic Fibrosis
Twins. Frontiers in Immunology 12:599133. DOI: https://doi.org/10.3389/fimmu.2021.599133, PMID: 33708199

Freedman ML, Reich D, Penney KL, McDonald GJ, Mignault AA, Patterson N, Gabriel SB, Topol EJ, Smoller JW,
Pato CN, Pato MT, Petryshen TL, Kolonel LN, Lander ES, Sklar P, Henderson B, Hirschhorn JN, Altshuler D.
2004. Assessing the impact of population stratification on genetic association studies. Nature Genetics
36:388-393. DOI: https://doi.org/10.1038/ng1333, PMID: 15052270

Fugmann SD, Lee Al, Shockett PE, Villey IJ, Schatz DG. 2000. The RAG proteins and V(D)J recombination:
complexes, ends, and transposition. Annual Review of Inmunology 18:495-527. DOI: https://doi.org/10.1146/
annurev.immunol.18.1.495, PMID: 10837067

Gao K, Chen L, Zhang Y, Zhao Y, Wan Z, Wu J, Lin L, Kuang Y, Lu J, Zhang X, Tian L, Liu X, Qiu X. 2019.
Germline-Encoded TCR-MHC Contacts Promote TCR V Gene Bias in Umbilical Cord Blood T Cell
Repertoire. Frontiers in Immunology 10:2064. DOI: https://doi.org/10.3389/fimmu.2019.02064, PMID:
31543879

Gauss GH, Lieber MR. 1996. Mechanistic constraints on diversity in human V(D)J recombination. Molecular and
Cellular Biology 16:258-269. DOI: https://doi.org/10.1128/MCB.16.1.258, PMID: 8524303

Gellert M. 1994. DNA double-strand breaks and hairpins in V(D)J recombination. Seminars in Immunology
6:125-130. DOI: https://doi.org/10.1006/smim.1994.1018, PMID: 7948952

Gilfillan S, Dierich A, Lemeur M, Benoist C, Mathis D. 1993. Mice lacking TdT: mature animals with an immature
lymphocyte repertoire. Science 261:1175-1178. DOI: https://doi.org/10.1126/science.8356452, PMID:
8356452

Giudicelli V, Chaume D, Lefranc MP. 2005. IMGT/GENE-DB: a comprehensive database for human and mouse
immunoglobulin and T cell receptor genes. Nucleic Acids Research 33:D256-D261. DOI: https://doi.org/10.
1093/nar/gki010, PMID: 15608191

Gogarten SM, Bhangale T, Conomos MP, Laurie CA, McHugh CP, Painter |, Zheng X, Crosslin DR, Levine D,
Lumley T, Nelson SC, Rice K, Shen J, Swarnkar R, Weir BS, Laurie CC. 2012. GWASTools: an R/Bioconductor
package for quality control and analysis of genome-wide association studies. Bioinformatics 28:3329-3331.
DOI: https://doi.org/10.1093/bioinformatics/bts610, PMID: 23052040

Gogarten SM, Sofer T, Chen H, Yu C, Brody JA, Thornton TA, Rice KM, Conomos MP. 2019. Genetic association
testing using the GENESIS R/Bioconductor package. Bioinformatics 35:5346-5348. DOI: https://doi.org/10.
1093/bioinformatics/btz567, PMID: 31329242

Goldrath AW, Bevan MJ. 1999. Selecting and maintaining a diverse T-cell repertoire. Nature 402:255-262. DOI:
https://doi.org/10.1038/46218, PMID: 10580495

Gu J, Li S, Zhang X, Wang LC, Niewolik D, Schwarz K, Legerski RJ, Zandi E, Lieber MR. 2010. DNA-PKcs
regulates a single-stranded DNA endonuclease activity of Artemis. DNA Repair 9:429-437. DOI: https://doi.
org/10.1016/j.dnarep.2010.01.001, PMID: 20117966

Jackson KJL, Gaeta B, Sewell W, Collins AM. 2004. Exonuclease activity and P nucleotide addition in the
generation of the expressed immunoglobulin repertoire. BMC Immunology 5:19. DOI: https://doi.org/10.1186/
1471-2172-5-19, PMID: 15345030

Kallenbach S, Doyen N, Fanton d’Andon M, Rougeon F. 1992. Three lymphoid-specific factors account for all
junctional diversity characteristic of somatic assembly of T-cell receptor and immunoglobulin genes. PNAS
89:2799-2803. DOI: https://doi.org/10.1073/pnas.89.7.2799, PMID: 1557386

Komori T, Okada A, Stewart V, Alt FW. 1993. Lack of N regions in antigen receptor variable region genes of
TdT-deficient lymphocytes. Science 261:1171-1175. DOI: https://doi.org/10.1126/science.8356451, PMID:
8356451

Russell et al. eLife 2022;11:€73475. DOI: https://doi.org/10.7554/eLife.73475 28 of 30


https://doi.org/10.7554/eLife.73475
https://doi.org/10.1038/nature22383
http://www.ncbi.nlm.nih.gov/pubmed/28636592
https://doi.org/10.1186/s13073-015-0238-z
http://www.ncbi.nlm.nih.gov/pubmed/26596423
https://doi.org/10.1111/j.0006-341x.1999.00997.x
https://doi.org/10.1111/j.0006-341x.1999.00997.x
http://www.ncbi.nlm.nih.gov/pubmed/11315092
https://doi.org/10.7554/eLife.38358
https://doi.org/10.7554/eLife.38358
http://www.ncbi.nlm.nih.gov/pubmed/30152754
https://doi.org/10.4049/jimmunol.1500215
https://doi.org/10.4049/jimmunol.1500215
http://www.ncbi.nlm.nih.gov/pubmed/25957172
https://doi.org/10.1038/ng.3822
https://doi.org/10.1038/ng.3822
http://www.ncbi.nlm.nih.gov/pubmed/28369038
https://doi.org/10.1006/smim.1994.1021
https://doi.org/10.1006/smim.1994.1021
http://www.ncbi.nlm.nih.gov/pubmed/7948955
https://doi.org/10.3389/fimmu.2021.599133
http://www.ncbi.nlm.nih.gov/pubmed/33708199
https://doi.org/10.1038/ng1333
http://www.ncbi.nlm.nih.gov/pubmed/15052270
https://doi.org/10.1146/annurev.immunol.18.1.495
https://doi.org/10.1146/annurev.immunol.18.1.495
http://www.ncbi.nlm.nih.gov/pubmed/10837067
https://doi.org/10.3389/fimmu.2019.02064
http://www.ncbi.nlm.nih.gov/pubmed/31543879
https://doi.org/10.1128/MCB.16.1.258
http://www.ncbi.nlm.nih.gov/pubmed/8524303
https://doi.org/10.1006/smim.1994.1018
http://www.ncbi.nlm.nih.gov/pubmed/7948952
https://doi.org/10.1126/science.8356452
http://www.ncbi.nlm.nih.gov/pubmed/8356452
https://doi.org/10.1093/nar/gki010
https://doi.org/10.1093/nar/gki010
http://www.ncbi.nlm.nih.gov/pubmed/15608191
https://doi.org/10.1093/bioinformatics/bts610
http://www.ncbi.nlm.nih.gov/pubmed/23052040
https://doi.org/10.1093/bioinformatics/btz567
https://doi.org/10.1093/bioinformatics/btz567
http://www.ncbi.nlm.nih.gov/pubmed/31329242
https://doi.org/10.1038/46218
http://www.ncbi.nlm.nih.gov/pubmed/10580495
https://doi.org/10.1016/j.dnarep.2010.01.001
https://doi.org/10.1016/j.dnarep.2010.01.001
http://www.ncbi.nlm.nih.gov/pubmed/20117966
https://doi.org/10.1186/1471-2172-5-19
https://doi.org/10.1186/1471-2172-5-19
http://www.ncbi.nlm.nih.gov/pubmed/15345030
https://doi.org/10.1073/pnas.89.7.2799
http://www.ncbi.nlm.nih.gov/pubmed/1557386
https://doi.org/10.1126/science.8356451
http://www.ncbi.nlm.nih.gov/pubmed/8356451

ELlfe Research article

Immunology and Inflammation

Krishna C, Chowell D, Génen M, Elhanati Y, Chan TA. 2020. Genetic and environmental determinants of human
TCR repertoire diversity. Immunity & Ageing 17:26. DOI: https://doi.org/10.1186/512979-020-00195-9, PMID:
32944053

Li S, Chang HH, Niewolik D, Hedrick MP, Pinkerton AB, Hassig CA, Schwarz K, Lieber MR. 2014. Evidence that
the DNA endonuclease ARTEMIS also has intrinsic 5’-exonuclease activity. The Journal of Biological Chemistry
289:7825-7834. DOI: https://doi.org/10.1074/jbc.M113.544874, PMID: 24500713

Lu H, Schwarz K, Lieber MR. 2007. Extent to which hairpin opening by the Artemis:DNA-PKcs complex can
contribute to junctional diversity in V(D)J recombination. Nucleic Acids Research 35:6917-6923. DOI: https://
doi.org/10.1093/nar/gkm823, PMID: 17932067

Ma Y, Pannicke U, Schwarz K, Lieber MR. 2002. Hairpin opening and overhang processing by an Artemis/
DNA-dependent protein kinase complex in nonhomologous end joining and V(D)J recombination. Cell
108:781-794. DOI: https://doi.org/10.1016/s0092-8674(02)00671-2, PMID: 11955432

Martin PJ, Levine DM, Storer BE, Nelson SC, Dong X, Hansen JA. 2020. Recipient and donor genetic variants
associated with mortality after allogeneic hematopoietic cell transplantation. Blood Advances 4:3224-3233.
DOI: https://doi.org/10.1182/bloodadvances.2020001927, PMID: 32687560

Mikocziova I, Greiff V, Sollid LM. 2021. Immunoglobulin germline gene variation and its impact on human
disease. Genes and Immunity 22:205-217. DOI: https://doi.org/10.1038/s41435-021-00145-5, PMID: 34175903

Moshous D, Callebaut |, de Chasseval R, Corneo B, Cavazzana-Calvo M, Le Deist F, Tezcan |, Sanal O, Bertrand Y,
Philippe N, Fischer A, de Villartay JP. 2001. Artemis, a novel DNA double-strand break repair/V(D)J
recombination protein, is mutated in human severe combined immune deficiency. Cell 105:177-186. DOI:
https://doi.org/10.1016/s0092-8674(01)00309-9, PMID: 11336668

Murphy K, Weaver C. 2016. Janeway's Imnmunobiology. New York, United States: Garland Science. DOI: https://
doi.org/10.1201/9781315533247

Murugan A, Mora T, Walczak AM, Callan CG. 2012. Statistical inference of the generation probability of T-cell
receptors from sequence repertoires. PNAS 109:16161-16166. DOI: https://doi.org/10.1073/pnas.
1212755109, PMID: 22988065

Nadel B, Feeney AJ. 1995. Influence of coding-end sequence on coding-end processing in V(D)J recombination.
Journal of Inmunology 155:4322-4329 PMID: 7594591.,

Nadel B, Feeney AJ. 1997. Nucleotide deletion and P addition in V(D)J recombination: a determinant role of the
coding-end sequence. Molecular and Cellular Biology 17:3768-3778. DOI: https://doi.org/10.1128/MCB.17.7.
3768, PMID: 9199310

Ng S, Lopez R, Kuan G, Gresh L, Balmaseda A, Harris E, Gordon A. 2016. The Timeline of Influenza Virus
Shedding in Children and Adults in a Household Transmission Study of Influenza in Managua, Nicaragua. The
Pediatric Infectious Disease Journal 35:583-586. DOI: https://doi.org/10.1097/INF.0000000000001083, PMID:
26910589

Oltz EM. 2001. Regulation of antigen receptor gene assembly in lymphocytes. Immunologic Research 23:121-
133. DOI: https://doi.org/10.1385/IR:23:2-3:121, PMID: 11444378

Omer A, Peres A, Rodriguez OL, Watson CT, Lees W, Polak P, Collins AM, Yaari G. 2022. T cell receptor beta
germline variability is revealed by inference from repertoire data. Genome Medicine 14:2. DOI: https://doi.org/
10.1186/s13073-021-01008-4, PMID: 34991709

Pogorelyy MV, Minervina AA, Touzel MP, Sycheva AL, Komech EA, Kovalenko El, Karganova GG, Egorov ES,
Komkov AY, Chudakov DM, Mamedov IZ, Mora T, Walczak AM, Lebedev YB. 2018. Precise tracking of
vaccine-responding T cell clones reveals convergent and personalized response in identical twins. PNAS
115:12704-12709. DOI: https://doi.org/10.1073/pnas.1809642115, PMID: 30459272

Price AL, Zaitlen NA, Reich D, Patterson N. 2010. New approaches to population stratification in genome-wide
association studies. Nature Reviews. Genetics 11:459-463. DOI: https://doi.org/10.1038/nrg2813, PMID:
20548291

Qi Q, Cavanagh MM, Le Saux S, NamKoong H, Kim C, Turgano E, Liu Y, Wang C, Mackey S, Swan GE,

Dekker CL, Olshen RA, Boyd SD, Weyand CM, Tian L, Goronzy JJ. 2016. Diversification of the antigen-specific
T cell receptor repertoire after varicella zoster vaccination. Science Translational Medicine 8:332. DOI: https://
doi.org/10.1126/scitranslmed.aaf1725, PMID: 27030598

Robins HS, Srivastava SK, Campregher PV, Turtle CJ, Andriesen J, Riddell SR, Carlson CS, Warren EH. 2010.
Overlap and effective size of the human CD8+ T cell receptor repertoire. Science Translational Medicine 2:47.
DOI: https://doi.org/10.1126/scitranslmed.3001442, PMID: 20811043

Rousseeuw PJ, Driessen KV. 1999. A Fast Algorithm for the Minimum Covariance Determinant Estimator.
Technometrics 41:212-223. DOI: https://doi.org/10.1080/00401706.1999.10485670

Rubelt F, Bolen CR, McGuire HM, Vander Heiden JA, Gadala-Maria D, Levin M, Euskirchen GM, Mamedov MR,
Swan GE, Dekker CL, Cowell LG, Kleinstein SH, Davis MM. 2016. Individual heritable differences result in
unique cell lymphocyte receptor repertoires of naive and antigen-experienced cells. Nature Communications
7:11112. DOI: https://doi.org/10.1038/ncomms11112, PMID: 27005435

Russell ML. 2022. TCR-GWAS. swh:1:rev:fd4f43562a63d45721d61f54d99d4bc493cb4066. Software Heritage.
https://archive.softwareheritage.org/swh:1:dir:169b18f339d34c7f85507729eb08d414902adbce;origin=https://
github.com/phbradley/tcr-gwas;visit=swh:1:snp:6e0facc?3e89e6fb6de8a899f0b79e3f0dd77288;anchor=swh:1:
rev:fd4f43562a63d45721d61f54d99d4bcd93cb4066

Schatz DG, Swanson PC. 2011. V(D)J recombination: mechanisms of initiation. Annual Review of Genetics
45:167-202. DOI: https://doi.org/10.1146/annurev-genet-110410-132552, PMID: 21854230

Russell et al. eLife 2022;11:€73475. DOI: https://doi.org/10.7554/eLife.73475 29 of 30


https://doi.org/10.7554/eLife.73475
https://doi.org/10.1186/s12979-020-00195-9
http://www.ncbi.nlm.nih.gov/pubmed/32944053
https://doi.org/10.1074/jbc.M113.544874
http://www.ncbi.nlm.nih.gov/pubmed/24500713
https://doi.org/10.1093/nar/gkm823
https://doi.org/10.1093/nar/gkm823
http://www.ncbi.nlm.nih.gov/pubmed/17932067
https://doi.org/10.1016/s0092-8674(02)00671-2
http://www.ncbi.nlm.nih.gov/pubmed/11955432
https://doi.org/10.1182/bloodadvances.2020001927
http://www.ncbi.nlm.nih.gov/pubmed/32687560
https://doi.org/10.1038/s41435-021-00145-5
http://www.ncbi.nlm.nih.gov/pubmed/34175903
https://doi.org/10.1016/s0092-8674(01)00309-9
http://www.ncbi.nlm.nih.gov/pubmed/11336668
https://doi.org/10.1201/9781315533247
https://doi.org/10.1201/9781315533247
https://doi.org/10.1073/pnas.1212755109
https://doi.org/10.1073/pnas.1212755109
http://www.ncbi.nlm.nih.gov/pubmed/22988065
http://www.ncbi.nlm.nih.gov/pubmed/7594591
https://doi.org/10.1128/MCB.17.7.3768
https://doi.org/10.1128/MCB.17.7.3768
http://www.ncbi.nlm.nih.gov/pubmed/9199310
https://doi.org/10.1097/INF.0000000000001083
http://www.ncbi.nlm.nih.gov/pubmed/26910589
https://doi.org/10.1385/IR:23:2-3:121
http://www.ncbi.nlm.nih.gov/pubmed/11444378
https://doi.org/10.1186/s13073-021-01008-4
https://doi.org/10.1186/s13073-021-01008-4
http://www.ncbi.nlm.nih.gov/pubmed/34991709
https://doi.org/10.1073/pnas.1809642115
http://www.ncbi.nlm.nih.gov/pubmed/30459272
https://doi.org/10.1038/nrg2813
http://www.ncbi.nlm.nih.gov/pubmed/20548291
https://doi.org/10.1126/scitranslmed.aaf1725
https://doi.org/10.1126/scitranslmed.aaf1725
http://www.ncbi.nlm.nih.gov/pubmed/27030598
https://doi.org/10.1126/scitranslmed.3001442
http://www.ncbi.nlm.nih.gov/pubmed/20811043
https://doi.org/10.1080/00401706.1999.10485670
https://doi.org/10.1038/ncomms11112
http://www.ncbi.nlm.nih.gov/pubmed/27005435
https://archive.softwareheritage.org/swh:1:dir:169b18f339d34c7f85507729eb08d414902adbce;origin=https://github.com/phbradley/tcr-gwas;visit=swh:1:snp:6e0facc93e89e6fb6de8a899f0b79e3f0dd77288;anchor=swh:1:rev:fd4f43562a63d45721d61f54d99d4bc493cb4066
https://archive.softwareheritage.org/swh:1:dir:169b18f339d34c7f85507729eb08d414902adbce;origin=https://github.com/phbradley/tcr-gwas;visit=swh:1:snp:6e0facc93e89e6fb6de8a899f0b79e3f0dd77288;anchor=swh:1:rev:fd4f43562a63d45721d61f54d99d4bc493cb4066
https://archive.softwareheritage.org/swh:1:dir:169b18f339d34c7f85507729eb08d414902adbce;origin=https://github.com/phbradley/tcr-gwas;visit=swh:1:snp:6e0facc93e89e6fb6de8a899f0b79e3f0dd77288;anchor=swh:1:rev:fd4f43562a63d45721d61f54d99d4bc493cb4066
https://doi.org/10.1146/annurev-genet-110410-132552
http://www.ncbi.nlm.nih.gov/pubmed/21854230

e Llfe Research article

Immunology and Inflammation

Sharon E, Sibener LV, Battle A, Fraser HB, Garcia KC, Pritchard JK. 2016. Genetic variation in MHC proteins is
associated with T cell receptor expression biases. Nature Genetics 48:995-1002. DOI: https://doi.org/10.1038/
ng.3625, PMID: 27479906

Shugay M, Britanova OV, Merzlyak EM, Turchaninova MA, Mamedov IZ, Tuganbaev TR, Bolotin DA,

Staroverov DB, Putintseva EV, Plevova K, Linnemann C, Shagin D, Pospisilova S, Lukyanov S, Schumacher TN,
Chudakov DM. 2014. Towards error-free profiling of immune repertoires. Nature Methods 11:653-655. DOI:
https://doi.org/10.1038/nmeth.2960, PMID: 24793455

Srivastava SK, Robins HS. 2012. Palindromic nucleotide analysis in human T cell receptor rearrangements. PLOS
ONE 7:e52250. DOI: https://doi.org/10.1371/journal.pone.0052250, PMID: 23284955

Tanno H, Gould TM, McDaniel JR, Cao W, Tanno Y, Durrett RE, Park D, Cate SJ, Hildebrand WH, Dekker CL,
Tian L, Weyand CM, Georgiou G, Goronzy JJ. 2020. Determinants governing T cell receptor o/B-chain pairing
in repertoire formation of identical twins. PNAS 117:532-540. DOI: https://doi.org/10.1073/pnas. 1915008117,
PMID: 31879353

Thomas PG, Crawford JC. 2019. Selected before selection: A case for inherent antigen bias in the T cell receptor
repertoire. Current Opinion in Systems Biology 18:36-43. DOI: https://doi.org/10.1016/j.coisb.2019.10.007,
PMID: 32601606

Watson CT, Breden F. 2012. The immunoglobulin heavy chain locus: genetic variation, missing data, and
implications for human disease. Genes and Immunity 13:363-373. DOI: https://doi.org/10.1038/gene.2012.12,
PMID: 22551722

Weigert M, Gatmaitan L, Loh E, Schilling J, Hood L. 1978. Rearrangement of genetic information may produce
immunoglobulin diversity. Nature 276:785-790. DOI: https://doi.org/10.1038/276785a0, PMID: 103003

Wickham H, Averick M, Bryan J, Chang W, McGowan LD, Francois R, Grolemund G, Hayes A, Henry L, Hester J,
Kuhn M, Pedersen TL, Miller E, Bache SM, Miiller K, Ooms J, Robinson D, Seidel DP, Spinu V, Takahashi K, et al.
2019. Welcome to the Tidyverse. Journal of Open Source Software 4:1686. DOI: https://doi.org/10.21105/joss.
01686

Wilke CO. 2020. cowplot: Streamlined Plot Theme and Plot Annotations for ‘ggplot2’. R package version 1.1.1.
R Package. https://CRAN.R-project.org/package=cowplot

Witzgall R, O'Leary E, Leaf A, Onaldi D, Bonventre JV. 1994. The Krippel-associated box-A (KRAB-A) domain of
zinc finger proteins mediates transcriptional repression. PNAS 91:4514-4518. DOI: https://doi.org/10.1073/
pnas.91.10.4514, PMID: 8183940

Woodsworth DJ, Castellarin M, Holt RA. 2013. Sequence analysis of T-cell repertoires in health and disease.
Genome Medicine 5:10. DOI: https://doi.org/10.1186/gm502, PMID: 24172704

Zhao B, Rothenberg E, Ramsden DA, Lieber MR. 2020. The molecular basis and disease relevance of non-
homologous DNA end joining. Nature Reviews. Molecular Cell Biology 21:765-781. DOI: https://doi.org/10.
1038/s41580-020-00297-8, PMID: 33077885

Zheng X, Levine D, Shen J, Gogarten SM, Laurie C, Weir BS. 2012. A high-performance computing toolset for
relatedness and principal component analysis of SNP data. Bioinformatics 28:3326-3328. DOI: https://doi.org/
10.1093/bioinformatics/bts606, PMID: 23060615

Zvyagin IV, Pogorelyy MV, lvanova ME, Komech EA, Shugay M, Bolotin DA, Shelenkov AA, Kurnosov AA,
Staroverov DB, Chudakov DM, Lebedev YB, Mamedov IZ. 2014. Distinctive properties of identical twins’ TCR
repertoires revealed by high-throughput sequencing. PNAS 111:5980-5985. DOI: https://doi.org/10.1073/
pnas.1319389111, PMID: 24711416

Russell et al. eLife 2022;11:€73475. DOI: https://doi.org/10.7554/eLife.73475 30 of 30


https://doi.org/10.7554/eLife.73475
https://doi.org/10.1038/ng.3625
https://doi.org/10.1038/ng.3625
http://www.ncbi.nlm.nih.gov/pubmed/27479906
https://doi.org/10.1038/nmeth.2960
http://www.ncbi.nlm.nih.gov/pubmed/24793455
https://doi.org/10.1371/journal.pone.0052250
http://www.ncbi.nlm.nih.gov/pubmed/23284955
https://doi.org/10.1073/pnas.1915008117
http://www.ncbi.nlm.nih.gov/pubmed/31879353
https://doi.org/10.1016/j.coisb.2019.10.007
http://www.ncbi.nlm.nih.gov/pubmed/32601606
https://doi.org/10.1038/gene.2012.12
http://www.ncbi.nlm.nih.gov/pubmed/22551722
https://doi.org/10.1038/276785a0
http://www.ncbi.nlm.nih.gov/pubmed/103003
https://doi.org/10.21105/joss.01686
https://doi.org/10.21105/joss.01686
https://CRAN.R-project.org/package=cowplot
https://doi.org/10.1073/pnas.91.10.4514
https://doi.org/10.1073/pnas.91.10.4514
http://www.ncbi.nlm.nih.gov/pubmed/8183940
https://doi.org/10.1186/gm502
http://www.ncbi.nlm.nih.gov/pubmed/24172704
https://doi.org/10.1038/s41580-020-00297-8
https://doi.org/10.1038/s41580-020-00297-8
http://www.ncbi.nlm.nih.gov/pubmed/33077885
https://doi.org/10.1093/bioinformatics/bts606
https://doi.org/10.1093/bioinformatics/bts606
http://www.ncbi.nlm.nih.gov/pubmed/23060615
https://doi.org/10.1073/pnas.1319389111
https://doi.org/10.1073/pnas.1319389111
http://www.ncbi.nlm.nih.gov/pubmed/24711416

	Combining genotypes and T cell receptor distributions to infer genetic loci determining V(D)J recombination probabilities
	Editor's evaluation
	Introduction
	Results
	Discovery cohort data description
	﻿TCRB﻿ and MHC locus variation is associated with V-, D-, and J-gene usage frequency
	﻿DCLRE1C﻿ locus variation is associated with the extent of V-, D-, and J-gene trimming
	﻿DNTT﻿ locus variation is associated with the number of V-D and D-J N-insertions
	Validation analysis

	Discussion
	Materials and methods
	Discovery cohort dataset
	Validation cohort dataset
	Data preparation
	Notation
	Quantifying the association strength between each SNP and TCR feature using the ‘simple model’
	Quantifying the association strength between each SNP and TCR feature, conditional on ﻿TCRB﻿ gene type using the ‘gene-conditioned model’
	Correcting for population-substructure-related effects
	Correcting for ﻿TRBD2﻿ allele genotype, SNP genotype linkage when quantifying SNP, TCR feature associations within the ﻿TCRB﻿ locus
	Multiple testing correction for associations
	Genomic inflation factor calculations
	Conditional analysis to test for multiple independent association signals
	Ancestry-informative PCA cluster classification
	Quantifying associations between ﻿TRBD2﻿ allele genotype and SNP genotype within the ﻿TCRB﻿ locus
	Quantifying TCR repertoire feature and SNP minor allele frequency variations by ancestry-informative PCA cluster
	Implementation and Code

	Acknowledgements
	Additional information
	﻿Competing interests
	﻿Funding
	Author contributions
	Author ORCIDs
	Ethics
	Decision letter and Author response

	Additional files
	Supplementary files

	References


