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Esophageal cancer (ESCA) is a leading cause of cancer-related mortality, with poor
prognosis worldwide. DNA damage repair is one of the hallmarks of cancer. Loss of
genomic integrity owing to inactivation of DNA repair genes can increase the risk of cancer
progression and lead to poor prognosis. We aimed to identify a novel gene signature
related to DNA repair to predict the prognosis of ESCA patients. Based on gene
expression profiles of ESCA patients from The Cancer Genome Atlas and gene set
enrichment analysis, 102 genes related to DNA repair were identified as candidates. After
stepwise Cox regression analysis, we established a five-gene prognostic model
comprising DGCR8, POM121, TAF9, UPF3B, and BCAP31. Kaplan-Meier survival
analysis confirmed a strong correlation between the prognostic model and survival.
Moreover, we verified the clinical value of the prognostic signature under the influence
of different clinical parameters. We found that small-molecule drugs (trametinib,
selumetinib, and refametinib) could help to improve patient survival. In summary, our
study provides a novel and promising prognostic signature based on DNA-repair-related
genes to predict survival of patients with ESCA. Systematic data mining provides a
theoretical basis for further exploring the molecular pathogenesis of ESCA and
identifying therapeutic targets.
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INTRODUCTION

Esophageal cancer (ESCA) is the sixth leading cause of cancer-related deaths worldwide, and its
mortality has continued to increase [1]. ESCA has a poor prognosis due to early metastasis, and a 5-
years overall survival (OS) rate is around 15% [2, 3]. Even in the same cancer stage of ESCA patients,
patient prognosis may be different. Therefore, it is imperative to construct prognostic biomarkers
that can be used to judge the survival outcomes of patients with ESCA. Clinical oncologists can also
use these markers to determine whether adjuvant treatment is needed. Owing to various genetic and
phenotypic alterations that have been reported in ESCA, gene biomarkers have gradually become a
cost-effective and precise method for predicting the prognosis of ESCA patients [4]. However,
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polymorphisms of genes and tumor heterogeneity mean that
single-gene biomarkers are inadequate [5]. Thus, the search for
prognostic markers in cancer patients has increasingly focused on
multi-gene biomarkers [6].

Gene expression analysis can provide a means of identifying
potential prognostic markers related to survival. In recent years,
many studies have shown that various gene changes precede
deterioration in prognosis in ESCA patients. Importantly, it has
been reported that genomic DNA is highly susceptible to damage
and can be influenced by different types of chemotherapy drugs.
The genomic instability induced by DNA damage can result in
cell apoptosis and tumorigenesis. The DNA repair process is often
blocked or destroyed in cancer cells, enabling them to rapidly
evolve and adapt, which ultimately drives the development of
cancer lesions and metastasis [7]. In addition, defective DNA
repair genes can promote cell aging, apoptosis and proliferation,
make carriers prone to cancer [8], and change the sensitivity of
cancers to chemotherapy. Therefore, DNA damage repair, as one
of the hallmarks of cancer, is indispensable for maintaining the
genomic integrity of the cell. Recent studies have identified single
biomarkers related to DNA repair in ESCA or its subtypes that
could predict patients’ prognosis [9–11]. However, there is
limited evidence regarding combined biomarkers of genes
related to DNA repair in ESCA. Therefore, there is an urgent
need to construct a prognostic gene signature based on DNA
repair pathways for use in patients with ESCA.

The Cancer Genome Atlas (TCGA) is an authoritative, large-
scale collaborative work led by the National Cancer Institute and
the National Human Genome Institute [12]. It can be used to
analyze genomic and epigenetic changes in 33 human cancers at
the DNA, RNA, protein, and epigenetic levels, thus supporting
new discoveries and accelerating research progress to improve
cancer diagnosis, treatment, and prevention [13]. TCGA provides
a valuable resource for the cancer research community. It collects
a large number of human cancer samples and normal tissues,
enabling researchers to identify important genomic changes that
may have key roles in the development of cancer, and facilitates
deeper and broader research of the cancer genome [14]. Here, we
analyzed ESCA data in TCGA to find reliable prognostic markers,
and randomly divided the entire TCGA dataset into two groups
for supplementary verification.

Based on TCGA data mining, we selected five genes (DGCR8,
POM121, TAF9, UPF3B, and BCAP31) associated with DNA
repair to construct a prognostic signature, and showed that this
signature performed well in predicting the prognosis of patients.
The results of the high-throughput data mining showed that our
prognostic model could independently predict ESCA patients’
survival. The results also provide a theoretical basis for further
exploring the molecular pathogenesis of ESCA and identifying
therapeutic targets.

MATERIALS AND METHODS

Data Acquisition and Pre-Processing
TCGA (https://cancergenome.nih.gov/, data release v23.0), a
publicly available database, can be used for genomic analyses

of 33 cancers (tumor samples and normal samples). We
downloaded RNA expression data (fragments per kilobase
million, FPKM) of 171 samples from the TCGA data portal.
FPKM is a normalized estimation based on RNA sequencing data.
The final expression levels of the FPKM data were determined by
quantile normalization and log2 transformation using the
“limma” R package. We also downloaded clinical information
for all samples. We removed one sample owing to incomplete
clinical information, leaving 170 samples (159 tumor samples and
11 normal samples) for further analysis. The clinical information
included patients’ general characteristics (age, gender, and race),
subtype of ESCA, survival status, pathologic stage (TNM),
neoplasm status, tumor location, neoplasm histological grade,
residual tumor status and others (Table 1). We also downloaded
an independent dataset (accession number GSE38129; n � 60, 30
normal and 30 tumor) from the Gene Expression Omnibus
database (https://www.ncbi.nlm.nih.gov/geo/) for external
validation. The platform of this dataset was GPL571. These
data were normalized by robust multi-array average to validate
the results.

Screening DNA-Repair-Related Genes by
Gene Set Enrichment Analysis
The gene set enrichment analysis (GSEA, http://www.
broadinstitute.org/gsea/index.jsp) included 1320 gene sets and
showed its distinction in gene detection by testing gene sets but
not individual gene. It was determined whether a given gene
pathway shows statistically significant differences between a
cancer group and a normal group [15, 16]. Here, we used
GSEA to identify significant differences in DNA repair
pathways between the ESCA group and the normal group,
using gene expression profile data for ESCA. We also obtained
102 DNA-repair-related genes as candidates for further analysis.

For deeper analysis, we constructed a protein-protein
interaction network for these 102 genes using Metascape
(http://metascape.org) [17], which provides biological
pathways obtained through independent and orthogonal
experiments on datasets of more than 40 knowledgebase. p <
0.05 is generally considered to represent significantly enriched
pathways. Using molecular complex detection (MCODE), it can
identify closely related protein groups, with biological function
annotations for each group. We then explored the relationships
between the 102 DNA-repair-related genes and biological
pathways using gene ontology (GO) and Kyoto Encyclopedia
of Genes and Genomes (KEGG) enrichment analysis with
Metascape.

Identification of DNA-Repair-Related Genes
and Construction of Prognostic Model
In order to identify survival-related genes in DNA repair gene
sets, univariate Cox linear proportional hazard regression
(PHR) analysis was performed with the “univariate” R
package. Furthermore, in order to identify independent
prognostic factors and construct a prognostic model, we
performed multivariate Cox linear PHR analysis with the
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“multivariate” R package. Finally, we constructed a prognostic
signature comprising five genes that could predict the
prognosis of ESCA patients. Based on gene expression

values and regression coefficients, we developed a risk
scoring system to predict the survival of patients. The
equation is as follows

TABLE 1 | Summary of clinical characteristics of ESCA patients in three cohorts.

Characteristic Patients in entire
TCGA set

(n = 159), n (%)

Patients in subgroup
1 (n = 79),

n (%)

Patients in subgroup
2 (n = 80),

n (%)

Age (years)
≤60 81 (50.94%) 44 (55.70%) 37 (46.25%)
>60 78 (49.06%) 35 (44.30%) 43 (53.75%)

Gender
Female 23 (14.47%) 13 (16.46%) 10 (12.50%)
Male 136 (85.53%) 66 (83.54%) 70 (87.5%)

Histological type
Esophagus adenocarcinoma, NOS 79 (49.69%) 36 (45.57%) 43 (53.75%)
Esophagus squamous cell carcinoma 80 (50.31%) 43 (54.43%) 37 (46.25%)

Vital status
Alive 96 (60.38%) 47 (59.49%) 49 (61.25%)
Dead 63 (39.62%) 32 (40.51%) 31 (38.75%)

Pathologic stage
Stage I-II 87 (54.72%) 46 (58.23%) 41 (51.25%)
Stage III-IV 68 (42.77%) 32 (40.51%) 36 (45.00%)
NA 4 (2.51%) 1 (1.26%) 3 (3.75%)

Race
Asian 38 (23.90%) 22 (27.85%) 16 (20.00%)
Black or african american 5 (3.14%) 2 (2.53%) 3 (3.75%)
White 98 (61.64%) 50 (63.29%) 48 (60.00%)
NA 18 (11.32%) 5 (6.33%) 13 (16.25%)

N Classification
N0-N1 133 (83.65%) 65 (82.28%) 68 (85.00%)
N2-N3 14 (8.80%) 7 (8.86%) 7 (8.75%)
NA 12 (7.55%) 7 (8.86%) 5 (6.25%)

T classification
T1 25 (15.72%) 14 (17.72%) 11 (13.75%)
T2-T4 132 (83.02%) 63 (79.75%) 69 (86.25%)
NA 2 (1.26%) 2 (2.53%) 0 (0.00%)

M classification
M0 126 (79.25%) 59 (74.68%) 67 (83.75%)
M1 15 (9.43%) 7 (8.86%) 8 (10.00%)
NA 18 (11.32%) 13 (16.46%) 5 (6.25%)

Neoplasm cancer status
Tumor free 91 (57.23%) 49 (62.03%) 42 (52.50%)
With tumor 58 (36.48%) 26 (32.91%) 32 (40.00%)
NA 10 (6.29%) 4 (5.06%) 6 (7.5%)

Tumor central location
Distal 111 (69.81%) 54 (68.35%) 57 (71.25%)
Mid 41 (25.79%) 22 (27.85%) 19 (23.75%)
Proximal 6 (3.77%) 3 (3.80%) 3 (3.75%)
NA 1 (0.63%) 0 (0.00%) 1 (1.25%)

Neoplasm histologic grade
G1 16 (10.06%) 6 (7.6%) 10 (12.5%)
G2 65 (40.88%) 33 (41.77%) 32 (40.00%)
G3 43 (27.05%) 23 (29.11%) 20 (25.00%)
NA 35 (22.01%) 17 (21.52%) 18 (22.50%)

Residual tumor
R0 119 (74.84%) 60 (75.95%) 59 (73.75%)
R1+R2 13 (8.18%) 3 (3.80%) 10 (12.50%)
NA 27 (16.98%) 16 (20.25%) 11 (13.75%)

Lymph node metastasis
NO 83 (52.20%) 34 (43.04%) 49 (61.25%)
Yes 43 (27.04%) 27 (34.18%) 16 (20.00%)
NA 33 (20.76%) 18 (22.78%) 15 (18.75%)

Abbreviations: ESCA, esophageal cancer; NA, not available.
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Risk score � ∑
n

i

Expi p βi

where Exp represents the gene expression level, and β is the partial
regression coefficient of independent variables for each gene. We
ranked the patients into two groups (high and low risk) using the
median risk value.

Furthermore, we performed deeper analysis of the five genes
using GeneMANIA (http://www.genemania.org), which can
identify functionally similar genes using a wealth of genomics
and proteomics data and indicate the function of these genes
[18]. We uploaded the selected genes to GeneMANIA to
identify interacting genes and analyze gene functions.
Mutational analysis was carried out, and the drug
sensitivities and biological functions of the five genes were
examined using GSCALite (http://bioinfo.life.hust.edu.cn/
web/GSCALite/) [19], which is widely used for gene set
analysis in various cancers. The structures of potential drug
molecules were visualized using PubChem (https://pubchem.
ncbi.nlm.nih.gov/). Alterations of the five genes in ESCA were
shown with cBioPortal (http://www.cbioportal.org/).

Validation of Five-Gene Prognostic
Signature in ESCA Patients
The entire dataset of TCGA patients with ESCA (n � 159)
were randomly separated into two subgroups, denoted TCGA
subgroup 1 (n � 79; Table 1) and TCGA subgroup 2 (n � 80;
Table 1). The prognostic signature was identified in the entire
TCGA dataset and validated in all three groups (the TCGA
entire group and the two subgroups). Using the risk score
formula, we calculated the risk value for each patient, and
divided patients into two (high and low) groups by the
median value. In order to validate the predictive capability
of the prognostic signature, Kaplan-Meier (K-M) survival
analysis (using the “survival” R package) was performed to
compare differences in OS. Time-dependent receiver
operating characteristic (ROC) curves were also
constructed to evaluate the prognostic accuracy of the
model. Likewise, we used stepwise Cox linear regression
analysis to investigate the influence of clinical parameters
on the prognostic signature with the survival package in R.
Next, we used stepwise Cox linear PHR analysis to select
clinical factors with prognostic characteristics using R
programs.

Statistical Analysis
For all data in our study, prognostic indicators to predict
patient survival were filtered out using the corresponding R
packages (R version 3.5.2). K–M survival curves with two-
sided log-rank test were used to estimate the probability of
survival. Differential expression of genes was plotted using
GraphPad Prism (version 8.0). Statistical analysis was
performed using IBM SPSS 25.0. An independent t-test
was used to compare differences, with p value <0.05 was
represented significance.

RESULTS

Selection of DNA-Repair-Related Genes in
ESCA Patients
The detailed workflow of this study is shown in Figure 1. To
obtain DNA-repair-related genes, we uploaded 57,072 genes for
TCGA-ESCA patients (n � 159) to GSEA. Next, we collected 102
genes with p < 0.001 that made the greatest contributions to the
DNA repair pathway (ESM1: Supplementary Table 1) according
to GSEA. The enrichment plot showed that there were statistically
significant differences in the identified gene set between the ESCA
group and the normal group (Figure 2A). In addition, we
analyzed the protein interactions of these genes (Figure 2B,
ESM1: Supplementary Table 2). According to the MCODE
algorithm, there are three main modes that provide potential
value for protein analysis. Biological process enrichment analyses
for GO categories and KEGG pathways (Figure 2C) were carried
out using the Metascape website. We found that these 102 genes
were related to aspects of the DNA repair pathway, including
nucleotide-excision repair, DNA-template transcription and
termination, damaged DNA binding, base excision repair,
nucleotide biosynthetic process, nucleoside metabolic process,
and mitotic cell cycle phase transition.

Furthermore, we analyzed the correlation of gene expression
with OS based on univariate Cox PHR analysis. As some genes
may not have been independent indicators, we applied
multivariable Cox PHR analysis to identify the most effective
genes. Finally, a five-gene prognostic model comprising DGCR8,
POM121, TAF9, UPF3B, and BCAP31 was screened as an
independent prognostic biomarker for ESCA patients. We also
obtained the hazard ratio (HR, instant probability of reaching
alignment) of each gene, as shown in Table 2. For further
analysis, we classified these five genes as risk type (HR > 1) or
protective type (HR < 1). Therefore, BCAP31, TAF9, and UPF3B
were risk-related genes, as their high expression was associated
with shorter survival time, whereas DGCR8 and POM121 were
protective genes whose high expression meant longer
survival time.

In addition, we used GeneMANIA to predict interacting genes
and their functions. The results showed that DGCR8 and Drosha
(an rnase enzyme) had the strongest correlation (Figure 2D).
Notably, both DGCR8 and Drosha have been shown to play
important and irreplaceable parts in ultraviolet (UV)-induced
DNA damage repair [20]. This also confirmed that the genes we
had selected were suitable to construct a robust prognostic model.
Besides, pie chart (Figure 2E) was performed to assess the
possible mechanisms involving these genes. The results
showed that all five genes were related to the cell cycle and
DNA damage and could regulate the PI3K/AKT pathway,
indicating that they have critical roles in cancer.

Mutation and Differential Expression
Analysis of Five Genes in Signature
First, we analyzed the alterations of the five genes in different
cancers using Metascape. We found that mutations of these genes
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occurred in various cancers, including ESCA (Figure 3A). Then,
we analyzed the changes in the five genes in ESCA samples using
the cBioPortal database. For the protective-type genes (DGCR8
and POM121), 11 and 15% of patients showed alterations. For the
risk-type genes (UPF3B, BCAP31, and TAF9), 13, 11, and 14% of
patients, respectively, showed changes (Figure 3B). These results
suggest gene changes may be one research object.

Subsequently, we evaluated the gene alterations in two
subtypes including esophageal squamous cell carcinoma
(ESCC) and esophageal adenocarcinoma (EAD). Gene
alterations in these two subtypes included mutation,
amplification, deep deletion, up-regulation, down-regulation
and multiple alterations (Figure 3C). The results suggest no
significant difference between ESCC and EAD in this regard.

We also compared the expression of the selected five genes in
the tumor group (n � 159) and the normal group (n � 11), and
showed that they were significantly up-regulated in tumor tissues
(p < 0.05, Figure 3D). In addition, in order to further verify that
there was significant differential expression of the five genes in the
prognostic signature between normal and tumor samples, we

performed validation in a independent dataset-GSE38129. As
shown in ESM2: Supplementary Figure 1, all five genes were
differentially expressed in GSE38129, and the differences were
statistically significant (p < 0.05).

Construction of Five-Gene Prognostic
Signature
Based on the results of the multivariable Cox PHR analyses, the five
genes were used to establish a risk scoring system. We used the risk
score formula to calculate a risk score for each patient, and ranked the
patients into low- and high-risk groups in the three cohorts according
to the median risk score value (Figures 4A–C). We also constructed
scatter plots of patient survival time to visualize the survival status of
ESCA patients in the three cohorts (Figures 4D–F). Comparison of
the two (low and high) risk groups showed that patients with higher
risk scores had highermortality and lower survival rates. In addition, a
heatmap (Figures 4G–I) was used to illustrate the expression profile of
the five-gene signature. Overall, the results indicate that the risk score
had good potential to predict patients’ prognosis.

FIGURE 1 | Flow diagram of data and analyses in this work.
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Next, we analyzed the clinicopathological parameters by
stepwise Cox PHR analysis to determine whether the five-gene
risk model functioned as an independent prognostic signature
when adjusted for cancer stage, stage-M and residual tumor
(Table 3). As shown in results, univariate Cox PHR analysis
pointed out that five-gene prognostic signature and these
clinical pathological factors indeed have prognostic value at
the aspect of predicting survival of patients with ESCA.
Importantly, five-gene signature, cancer stage and stage M
were also independent prognostic indicators with significant

FIGURE 2 | Screening of genes related to DNA repair in ESCA. (A) Enrichment plots showing differential expression of DNA-repair-related genes in normal tissues
(n � 11) and tumor tissues (n � 159) according to GSEA. (B) Protein–protein interaction network (n � 102). (C) Functional enrichment (GO and KEGG) analyses of DNA
repair genes (n � 102). (D) Interaction of five genes by GeneMANIA. (E) Biological function analysis of the individual five genes in ESCA. Abbreviation: ESCA, esophageal
carcinoma; GSEA, gene set enrichment analysis; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.

TABLE 2 | The detailed information of selected five genes related to overall survival
in patients with ESCA.

Gene Ensemble ID B (cox) HR p-value

BCAP31 ENSG00000185825.14 0.440 1.938 0.0046
TAF9 ENSG00000273841.3 0.397 1.683 0.0243
UPF3B ENSG00000125351.9 0.383 1.657 0.0048
POM121 ENSG00000196313.10 −0.373 0.603 0.0338
DGCR8 ENSG00000128191.12 −0.864 0.408 0.0070

Abbreviations: ESCA, esophageal cancer; HR, hazard ratio.
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differences (p < 0.05) both in univariate and multivariate Cox
analysis. In particular, risk score had the strongest predictive
ability among these indicators (HR 3.388; 95% confidence
interval (CI) 1.664–6.899, p � 0.001). These results
demonstrate that the five-gene signature can effectively
predict the prognosis of patients with ESCA and prognostic
independent of other clinical factors.

Validation of the Prognostic Efficiency of
the Five-Gene Signature in Three Cohorts
We randomly divided all the TCGA-ESCA tumor samples
into two subgroups. As well as validation in the entire TCGA
group, we validated the prognostic signature using survival
curves in these two subgroups. K–M survival curves plotted in
the entire TCGA dataset (n � 159) showed that the prognostic

model stratified patients by OS with significant differences,
and the survival rate of high-risk patients was lower than that
of low-risk patients (p < 0.0001; Figure 5A). The area under
the curve (AUC) of the ROC curves showed that the five-gene
signature had good predictive performance for ESCA patients
(AUC � 0.759; Figure 5B). In the TCGA subgroup 1 (n � 79),
the K-M survival curve (p � 0.0021, Figure 5C) and ROC
curve (AUC � 0.733; Figure 5D) also demonstrated that the
five-gene model was able to predict the prognosis of ESCA
patients. In TCGA subgroup 2 (n � 80), the K-M survival
curve (p � 0.0017, Figure 5E) and ROC curve (AUC � 0.711;
Figure 5F) again validated the model. Compared with any of
the individual genes (ESM2: Supplementary Figure 2), the
five-gene model had better predictive performance as a
prognostic indicator in the entire TCGA dataset, with the
lowest p value (p < 0.0001).

FIGURE 3 | Alterations and differential expression of the five genes. (A) Alterations of the five genes in different cancers. (B) Alterations of the five genes in ESCA
patients. (C) Genomic alterations of the five genes in patients with ESCA subtypes. (D) Differential expression of the selected five genes in normal group (n � 11) and
tumor group (n � 159). Two-sided log-rank and Wilcoxon p < 0.05 were considered significant. Abbreviation: ESCA, esophageal carcinoma; ESCC, esophageal
squamous carcinoma; EAD, esophageal adenocarcinoma.
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Validation of Independent Prognostic
Indicator Under the Influence of Clinical
Pathological Factors in Entire TCGA Cohort
We carried out further stratified analyses of clinical factors to
investigate the clinical value of the prognostic model in the
entire TCGA dataset. The results showed that the five-gene
signature related to DNA repair was an independent
prognostic indicator for patients with ESCA, compared with
cancer stage (stage I–II or stage III–IV, Figure 6A), residual
tumor status (R0 or R1+R2, Figure 6B), cancer status (tumor
free or with tumor, Figure 6C) and lymph node metastasis (no
or yes, Figure 6D). But there were no reference values of K–M
curves for stage M because of the uneven case numbers of
patients. As shown in results, the five-gene signature, as well as
having good prognostic value, could serve as an independent
prognostic indicator in ESCA patients.

In order to explore molecules that could serve as targeted drugs,
we analyzed the drug sensitivity of the five genes in the prognostic
signature. As shown in Figure 7A, UPF3B and BCAP31 are more
sensitive to drugs. Potential targeted drugs were identified, including
trametinib, selumetinib, and refametinib, which could be used to
improve patient survival. Based on Spearman correlation analysis,
we determined the top three drugs (Figure 7B) with potential for
further clinical research.

DISCUSSION

ESCA is one of the most aggressive cancers, with overall mortality as
high as 88% [21]. Although advances in therapeutics have improved
clinical outcomes to some extent, the survival rate remains poor.
Many biomarkers have been found to be related to survival, and
accumulating evidence indicates that gene biomarkers are the

FIGURE 4 | Construction of prognostic risk score system and identification of five-gene prognostic model. Risk score distribution of five genes in three cohorts:
entire TCGA group (n � 159), TCGA subgroup 1 (n � 79), and TCGA subgroup 2 (n � 80). Top (A)–(C) and middle (D)–(F) plots show patient survival time and status
based on risk score system (G)–(I) Heatmap of expression of the five genes; color from blue to red illustrates a trend from low expression to high expression.

TABLE 3 | Univariable and multivariable Cox linear regression analysis for risk score and different clinical pathological parameters.

Univariable analysis Multivariable analysis

Clinical feature Number HR 95%CI of HR p value HR 95%CI of HR p value

Risk score (low/high) 79/80 3.819 2.161–6.748 <0.0001 3.388 1.664–6.899 0.001
Cancer stage (stage I-II/III-IV) 87/68 3.182 1.774–5.710 <0.0001 2.732 1.328–5.623 0.006
Stage-M (M0/M1) 126/15 4.92 2.243–10.794 <0.0001 2.535 1.024–6.276 0.044
Residual tumor (R0/R1+ R2) 119/13 2.324 1.143–4.724 0.020 1.199 0.539–2.668 0.657

Abbreviations: HR, hazard ratio; CI, confidence interval.
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preferred way to predict prognosis. Therefore, there is an urgent
need to investigate the gene expression profile of ESCA, in order to
be able to better assess the prognosis of ESCA patients. Establishing
and validating prognostic gene biomarkers may improve clinical
outcomes for these patients in the near future.

Recent studies have identified various single genes as biomarkers
to reveal the relationship of patients’ survival and cancer progression.
For example, DLEU2 [22], FAM60A [23] and CENPE [24] were
demonstrated to be independent biomarkers of unfavorable OS in
ESCA patients. However, compared with combined markers, single
biomarkers are insufficient to independently predict patient
prognosis, which can be affected by various factors. Therefore,
the application of combined markers in cancer has been reported
in succession. For example, a signature of seven long non-coding
RNAs (lncRNAs) could indicate survival in ESCC [25]. Integrated
analysis led to identification of a three-gene model as a potential
biomarker for ESCC [26]. Men and colleagues constructed an 11-
gene signature based on the TCGA database that could predict the
OS of patients with ovarian cancer [27]. In breast cancer, a five-
lncRNA signature has been identified as a prognostic biomarker
[28]. Moreover, a prognostic signature including nine genes was
shown to have good performance in predicting OS of colorectal
cancer patients [29]. Therefore, multi-gene prognostic signatures are
necessary for determining cancer prognosis.

DNA damage readily occurs during the cell cycle; it can disturb
the cell’s steady state and lead to mutations, cell death, and cancer
[30]. In about half of cases, doxorubicin, cisplatin [31] and other

chemotherapy drugs will cause huge damage to the DNA of normal
cells as well as that of tumor cells during treatment, leading to a
limited curative effect and poor prognosis. Notably, DNA repair,
DNA damage detection point, transcription reaction and apoptosis
are four ways to resume DNA damage. Defects in any of these
pathways can lead to genomic instability and cancer. Therefore,
DNA damage repair pathways must be considered in future cancer
research. Gene markers related to these pathways may play an
important part in prediction of patient survival and formulation of
cancer treatment strategies. The single genes CD59 [9], RAP80 [10]
and SOX17 [11] have been reported to serve as DNA-repair-related
biomarkers to predict patients’ prognosis in ESCA or subtypes of this
cancer. However, such single-gene signatures are insufficient to
predict prognosis. Therefore, we aimed to discover a multi-gene
signature related to DNA repair for predicting the survival of ESCA
patients.

In this study, through a comprehensive analysis, we developed a
DNA-repair-related gene marker to predict the prognosis of patients
with ESCA. The vast datasets of TCGA provide an opportunity to
systematically analyzemRNAexpression profiles in cancer. Therefore,
we downloaded mRNA expression profiles for the TCGA-ESCA
dataset to find markers that could predict patients’ prognosis. We
applied GSEA to identify DNA-repair-related mRNAs, which were
subjected to univariate and multivariate Cox PHR analysis. In this
way, we obtained a five-gene signature (DGCR8, POM121, TAF9,
UPF3B, and BCAP31) as a novel prognostic model. Afterward,
according to the Cox coefficient and gene expression values for

FIGURE 5 | Validation of prognostic signature for patients with ESCA. K–M survival curves for prognostic model and time-dependent ROC curve for (A, B) entire
TCGA group (n � 159), (C, D) TCGA subgroup 1 (n � 79), and (E, F) TCGA subgroup 2 (n � 80). Two-sided log-rank andWilcoxon p < 0.05 were considered significant.
Abbreviation: MST, median survival time.
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each patient, a risk scoring systemwas established in the entire TCGA
dataset. Then, we validated the prognostic model using K-M survival
curves. The results showed that high-risk patients had a poorer
survival rate compared with low-risk patients in the entire TCGA
group and in the two subgroups. The AUC of the ROC curve for the
five-gene signature was greater than 0.7 in these three cohorts,
indicating the strong prognostic value of the signature.
Subsequently, validation using clinical factors further indicated that
the five-gene signature is an independent indicator in ESCA.

Notably, among the five genes, DGCR8 has been reported to have
a critical role in DNA damage response and DNA repair. Studies
have shown that DGCR8 together with Drosha (an rnase enzyme)
can mediate the repair of UV-induced DNA lesions. Moreover,
Swahari and colleagues found that deletion of DGCR8 resulted in
DNA damage in the developing mouse brain [32]. DGCR8 is also
associated with susceptibility to various cancers [33], including
prostate cancer, Wilms tumor, and ovarian cancer. POM121 has
been reported to be a key contributor to prostate cancer
aggressiveness [34]. In addition, Guo et al [35] found that HIV-1
replication was significantly decreased by small interfering RNA-
mediated POM121 knockdown. TAF9 (TATA-binding protein) is
one of several histone folding TAFs that maintain the structural

integrity [36]. The p53 tumor suppressor genemodulates the activity
of the GLI1 oncogene through interactions with the shared activator
TAF9 [37]. UPF3B is part of amulti-protein complex that is involved
in mRNA nuclear export and the initiation of nonsense-mediated
mRNAdecay (NMD). About 11% of human genetic diseases are due
to NMD, which produces premature translation termination codons
in mRNAs. UPF3B has been identified as a potential treatment for
NMD-induced diseases, including cancers [38]. BCAP31 (a member
of the Bcl-2 protein family) has a potential function in cancer
apoptosis, with a role in the proliferation and apoptosis of
keratinocytes in cancers. BCAP31 has been reported to be up-
regulated in hepatocellular carcinoma [39]; similarly, in our
study, BCAP31 was up-regulated in ESCA patients. Another
study found that BCAP31 was related to patient survival in
breast cancer [40]. However, the role of genes in ESCA patients
should be further evaluated.

The advantages of our prognostic predictor are obvious. First, by
multistepCoxPHRanalysis, we identified afive-gene signature related
to DNA repair and the risk coefficient of each patient, so as to build a
risk score equation for ESCA patients to be recruited. Next, patients
were assigned into two groups by the median risk value according to
the equation. Based on the validation results for the clinical

FIGURE 6 | Stratified analysis for further data mining. Validation of the five-gene prognostic signature in patients with ESCA for (A) cancer stage, (B) residual tumor,
(C) cancer status and (D) lymph node metastasis in entire TCGA dataset (n � 159). Two-sided log-rank and Wilcoxon p < 0.05 were considered significant.
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pathological parameters, we confirmed that the five-gene signature
could effectively predict the prognosis of patients under the influence
of different clinical characteristics. This suggests it could predict
patients’ prognosis without considering other pathological
parameters. The drug sensitivity analysis indicated that small-
molecule drugs have potential clinical value for improving patients’
survival outcomes. Although further investigation and
experimentation are needed to elucidate the biological mechanisms
of the five-gene signature in ESCA development and progression, the
prognostic value of the gene signature is promising.

CONCLUSION

In conclusion, we identified a novel five-gene predictive model
comprising DGCR8, POM121, TAF9, UPF3B, and BCAP31 to
indicate prognosis of patients based on integrated bioinformatics
analysis. Our study explored the potential clinical significance of

this biomarker. The results of the high-throughput data mining
show that our prognostic model could independently predict
ESCA patients’ survival. These results also provide a theoretical
basis for further exploring the molecular pathogenesis of ESCA
and identifying therapeutic targets.
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