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This paper presents a method to reconstruct and to calculate geometric invariants on brain tumors. The geometric invariants
considered in the paper are the volume, the area, the discrete Gauss curvature, and the discrete mean curvature. The volume of a
tumor is an important aspect that helps doctors to make a medical diagnosis. And as doctors seek a stable calculation, we propose
to prove the stability of some invariants. Finally, we study the evolution of brain tumor as a function of time in two or three years
depending on patients with MR images every three or six months.
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1. Introduction

Cancer is a disease that starts in our cells. Our bodies are
made up of millions of cells grouped together to form tissues
and organs such as muscles and bones, the lungs, and the
liver. Genes inside each cell order it to grow, work, reproduce,
and die. Normally, our cells obey these orders, and we
remain healthy. But sometimes the instructions get mixed up,
causing the cells to form lumps or tumors, or spread through
the bloodstream and lymphatic system to other parts of
the body. Tumors can be either benign (noncancerous) or
malignant (cancerous). Benign tumor cells stay in one place
in the body and are not usually life-threatening. Malignant
tumor cells are able to invade nearby tissues and spread to
other parts of the body. Cancer cells that spread to other parts
of the body are called metastases.

Brain cancer starts in the cells of the brain. The brain is
a soft mass of nerves (neurons) and supportive tissue (glial
cells), surrounded by membranes (meninges) and protected
by the skull. The brain has 3 main areas (see Figure 1).

(i) The cerebrum is the largest part of the brain and is
made up of the right and left cerebral hemispheres.
It allows us to see, feel, think, speak, and move. The
right side of our brain controls the left side of our
body and vice versa.

(ii) The cerebellum is located in the back of the brain and
controls balance and coordination.

(iii) The brain stem controls our vital bodily functions,
like heartbeat, breathing, and reflexes. It connects the
brain to the spinal cord.

The skull is hard and cannot expand, so as a tumor grows
the pressure can damage or destroy delicate brain cells.
Brain cancer can involve either the neurons or the glial cells.
Most adult cancers start in the glial cells and are called
astrocytomas or gliomas.

Neurological specialists perform several diagnostic tests
for brain tumors. (http://www.medecinenet.com). These
tests include the following.

(i) Electroencephalogram (EEG).

(ii) Lumbar puncture (spinal tap).

(iii) RN (radionuclide).

(iv) Computerized axial tomographer (CT or CAT).

(v) MRI.

(vi) PetScan.

(vii) Biopsy.

Since the development of tomography, computers have
been used extensively in medical diagnosis. Unlike clas-
sical radiology, tomography requires complex mathemat-
ical calculations in order to obtain a two-dimensional
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image. Computers are used for image treatment, visual-
ization, and archiving, and also for 3D reconstruction.
In [1], it is proposed a method to reconstruct a 3D
model of certain organs from a number of 2D cross-
sectional images. This method enables a better understand-
ing of spatial structures, and also open the way to new
applications like radiation therapy planing and surgical
planing.

In [2], it is proposed a new model to simulate the growth
of glioblastomas multiforma (GBM), the most aggressive
glial tumors. This simulation has a different medical appli-
cations, including an optimized dosimetry in radiother-
apy or a better neurosurgical planing in case of tumor
resection.

In [3], it is proposed a high-resolution three-dimensional
(3D) connectivity, surface construction, and display algo-
rithms that detect, extract, and display the surface of a
brain from contiguous magnetic resonance (MR) images.
The algorithms identify the external brain surface and create
a 3D image, showing the fissures and surface convolutions
of the cerebral hemispheres, cerebellum, and brain stem.
For the purposes of the 3D reconstruction, it is shown
that T1-weighted images give better contrast between the
surface of the brain and the cerebral spinal fluid than T2-
weighted images. 3D reconstruction of MR data provides a
noninvasive procedure for examination of the brain surface
and other anatomical features.

In this paper, we reconstruct the tumor from 2D sections,
coming from MRI sequences, for patients having a brain
tumor. The distance between two parallel sections is 5 mm.
The tumor has been segmented semiautomatically by a
software provided to us by (INRIA, Cedex, France). and
based on the gradient method. After the identification of
points on the contours, 50 points were spot on each contour.
The reconstruction method is based on these points. Once
the tumor is reconstructed, we calculate the geometric
invariants (volume, area, and discrete Gauss curvature). The
doctors seek a stable calculation that does not depend on
the number of points or their distributions on the contours.
This is why the distribution and the number of points
are changed, and the calculation of geometric invariants is
redone to show the stability. The discrete mean curvature is
calculated on the edges of the triangulation surface. However,
this invariant is not stable according to the distribution and
the number of points on the contours.

2. Detection and Segmentation of
Brain Tumors

Detection in MR image with brain tumor is an important
image processing technique applied in radiology for 3D
reconstruction. Indeed, contours are rich indexes for any
subsequent interpretation of the image. Contours in image
are due to

(i) discontinuities of the reflectance function,

(ii) discontinuities of depth (boundaries of the object).

The contours are characterized by the discontinuities of
the intensity function. Therefore, the principle of contours
detection is based on the study of the derivatives of the
intensity function in the image. The contours characterize
the boundaries of the objects, and generally they are defined
as a transition zones between two regions of different
characteristics presented simultaneously to within a single
digital image.

Definition 1. Let I(x, y) be the intensity function of an
original image; the gradient of the image is defined by the
vector

∇I(x, y) =
(
∂I(x, y)
∂x

,
∂I(x, y)
∂y

)t

= (I(x + 1, y)− I(x, y); I(x, y + 1)− I(x, y))t .

(1)

This gradient is characterized by a module m and a direction
φ in the image

m =
√

(I(x + 1, y)− I(x, y))2 + (I(x, y + 1)− I(x, y))2,

φ = arctan
(
I(x + 1, y)− I(x, y)
I(x, y + 1)− I(x, y)

)
.

(2)

The direction of the gradient maximizes the directional
derivative. The basic steps of contours detection are thus to
calculate the derivatives of the intensity function, then to
specify the contour points.

The collaboration with Professor François Cotton was a
very important step, especially to locate and to precise the
position of the brain tumor in each 2D sequence for all
patients. In our applications, the boundary of the tumor
was detected by François Cotton, and so the final step
before reconstructing the tumor was to segment it by using
a software provided to us by INRIA [4]. The idea of this
algorithm is to surround the tumor by a circle, to regard
the minimal and maximal intensities on the boundary of the
tumor, and to fix thresholds for them, then a threshold “s”
for the gradient is fixed to determine the tumor’s boundary.
Once these parameters are fixed, we apply an ultra classical
procedure of minimization to obtain the boundary of the
brain tumor by moving the circle.

Once the gradient is evaluated, the points on the contours
which are characterized by local extrema are identified. The
idea is to select the pixels by using the threshold “s” for the
norm of the gradient, that is, all points on contours such that
m > s (see Figure 2).
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Figure 2: Segmentation of the brain tumor and the contour points. Segmentation validated by François Cotton (professor of radiology).

3. Surfaces

A surface is a topological space in which each point has a
neighborhood that is homeomorph to the unit disk {(x, y) ∈
R2/x2 + y2 < 1} or to the half unit disk {(x, y) ∈ R2/x2 +
y2 < 1, x ≥ 0}. The boundary of a surface S, denoted by
∂S, is the set of points of this surface that do not have a
neighborhood homeomorph to the unit disk. The interior of
S is complementary to its boundary. A surface is therefore
abstract; the only thing we know is the neighborhoods of
each point.

3.1. Triangulations. We will now give some definitions of
discrete surfaces, that is, surfaces defined by a finite number
of points. Indeed, in computer science we work often on
such surfaces, which in generally are approximations of real
or ideal surfaces, for example, the rabbit in Figure 3—the
famous bunny of stanford—is a mesh surface, created by
scanning a real model in a clay (the scanner detects the
geometric position of some number of points of the model,
and then these points are related three by three to form
triangles, using an adequate algorithm).

Definition 2. Let e0, . . . , en be a set of n + 1 linearly indepen-
dent vectors in the Euclidean spaceRm, m ≥ n ≥ 0. One calls
n-simplex of n vertices e0, . . . , en the convex hull σ of these
points. n is the dimension of σ .

Example 1. In R3, a 0-simplex is a vertex, a 1-simplex is
an edge, a 2-simplex is a triangle, and a 3-simplex is a
tetrahedron (see Figure 4).

Definition 3. Let S be a set of linearly independent vectors
and σ its convex hull. Then, the convex hull τ of all subset T
of S is a simplex subset of σ . One says that τ is a face of σ , and
one obtains τ ≤ σ .

Definition 4. A simplicial complex is a finite set of simplices
K = {σ0, . . . , σr} such that

(i) if σi ∈ K , then all its faces are in K ;

(ii) let σi, σj ∈ K , then σi ∩ σj = ∅ or σi ∩ σj ∈ K (the
two simplices have a common face) (see Figure 5).

The dimension of a simplicial complex is the dimension
of its greatest simplex. We will now establish a link between
the topology of a set of points and combinatorial topology,
more precisely between the notions of topological space and
the simplicial complex.

Definition 5. Let K be a simplicial complex inRm. The union
|K| of all the simplices in K with the topology of the subsets
of Rm is called the polyhedron of K .

Definition 6. The triangulation of a topologic space X is
a simplicial complex K such that its polyhedron |K| is
homeomorph to X . If such simplicial complex exists, one
said that X is triangulated.

4. Reconstruction Method

The method presented in this paragraph is a combination
of the 2D Delaunay triangulation of contours and the
maximizing volume method.

4.1. Voronoi Diagram and Delaunay Triangulation

Definition 7. Given a set S of N sites, S = {pi ∈ R2/i =
(1, . . . ,N)} such that no four sites lie on a common circle.
One defines V(i) as the set of points closer to site pi than to
any other site in S:

V(i) = {x ∈ R2 : ∀pj ∈ S, ‖x − pi‖ ≤ ‖x − pj‖
}
. (3)
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(a) (b)

Figure 3: (a) Bunny of stanford. (b) Zoom on the ears of the bunny.

(a) (b) (c) (d)

Figure 4: (a) 0-simplex, (b) 1-simplex, (c) 2-simplex, and (d) 3-simplex of R3.

S

Figure 5: Example of simplicial complex having six vertices, ten
edges, and five triangles.

V(i) is called the Voronoi cell associated to pi. The union
over all the V(i) is called the Voronoi diagram of S (see
Figure 6).

The boundaries of the regions are referred to as Voronoi
edges, the joints of three Voronoi edges are called Voronoi
vertices. Each Voronoi edge is associated with two adjacent
Voronoi cells, a Voronoi vertex is equidistant to three sites
(see [5]).

If we draw a line segment between each pair of sites
whose Voronoi cells share an edge, we obtain a triangulation
of the points in S called the Delaunay triangulation (see
Figure 7).

A Voronoi vertex represents a Delaunay triangle; more
precisely, it is the center of its circumcircle. Each Voronoi
edge corresponds to an edge in the Delaunay triangulation
despite the fact that they may not even intersect. This geo-
metric difference between Voronoi diagram and Delaunay

(a) (b)

Figure 6: (a) A Voronoi cell and (b) the Voronoi diagram of a
number of sites.

Figure 7: A Voronoi diagram (dashed) and its straight line dual, the
Delaunay triangulation.

triangulation becomes important in the reconstruction issue.
Some further properties of the Delaunay triangulation are
the following.
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(i) The boundary of the Delaunay triangulation is the
convex hull of its sites.

(ii) The Delaunay triangulation is unique.

(iii) The number of triangles in the Delaunay triangula-
tion is at most 2N − 5, where N is the number of
vertices in the triangulation.

(iv) A Delaunay triangle does not contain any other site
in its circumcircle (empty circle property).

In our application, the object contours are given as a set
of straight line segments, forming one simple closed polygon.
However, just triangulating the polygons vertices—or calcu-
lating the Voronoi diagram of point sites—may result in a
triangulation where contour segments are not guaranteed to
be edges of the triangulation. Since our goal is to get a 3D
polyhedron whose intersection with the given cross-sections
yields the original contours, our triangulation has to satisfy
the following requirement:

All contour segments have to appear as Delaunay
edges in the Delaunay triangulation (contour
containment condition).

To obtain a triangulation that satisfies this condition,
we simply calculate the Delaunay triangulation of the
polygons vertices. Then, we check each contour segment to
be contained in the Delaunay triangulation. Segments that
do not appear as Delaunay edges are split into two parts
by adding a new vertex in the middle. We add the new
vertex to the Delaunay triangulation and verify the contour
containment condition one more.

It can be shown that such a procedure terminates and
yields a Delaunay triangulation that satisfies the containment
condition. The contour shape is not changed, since we add
vertices onto contour segments (see [6]).

Once all contour segments are in the triangulation,
we eliminate the edges which are outside the contour, the
vertices added to the contour, and the edges related to
these vertices without touching the original segments of the
contour (see Figure 8).

4.2. Triangulation of Two Parallel Sections. Let us consider
two parallel sections (contours) C1,C2, with the same
number of points on each one. On C1, we have the
sequence of points A0,A1, . . . ,Am, and on C2 the points
Bm+1,Bm+2, . . . ,Bn. In other words, if m = 49, then we have
50 points on C1, as a result n = 99, and we have 50 points on
C2. Note that the pointsA0,A1, . . . ,Am, Bm+1,Bm+2, . . . ,Bn on
each contour are distributed in the clockwise direction (see
Figure 9).

(i) First step. Let A0 be the starting point in our
triangulation, the idea of this method is based on
finding the nearest point toA0 in the adjacent section.
In other words, we calculate the distance

d(A0,Bj), j = m + 1, . . . ,n. (4)

(ii) Second step. We choose the point Bk,m + 1 ≤ k ≤ n
such that

d(A0,Bk) = min
j=m+1,...,n

d(A0,Bj), (5)

where d is the Euclidean distance between two points.

(iii) Third step. We connect by a segment the point A0 to
the nearest point in the adjacent section C2 which is
the point Bk. The first segment of the triangulation
will be [A0Bk], then on the section C1 we take the
neighborhood point of A0 in the clockwise direction,
let A1 be this point, by a segment, we connect A1 to
the point Bk in the adjacent section to form with A0

the first triangle in the triangulation which has the
vertices A0A1Bk (see Figure 10).

(iv) Fourth step. We take the point A1, and we determine
the nearest point to A1 in the adjacent section
without regarding the point Bk. As the sections are
parallel, the nearest point will be Bk+1. By repeating
the same procedure in the third step, we find the
second triangle which has the vertices A1A2Bk+1.
Automatically, the triangle which has the vertices
BkBk+1A1 will form between the two triangles:
A0A1Bk and A1A2Bk+1 (see Figures 11, 12).

By repeating these steps m times, we obtain the trian-
gulation T0 and the volume V0 delimited between the two
sections C1,C2.

4.3. Changing the Starting Point. Let us initialize the trian-
gulation and change the starting point, it means instead of
A0 as a starting point, we take the point A1 and apply steps
1, 2, 3, 4, . . . to get the triangulation T1 and the volume V1

between C1,C2.
The change of the starting point is donem times to recon-

struct m triangulations (T0,T1, . . . ,Tm), and m volumes
(V0,V1, . . . ,Vm) delimited between C1,C2 (see Figure 13).

4.4. Selection of the Best Triangulation. The triangula-
tion which maximizes the volume of the polyhedron
A0,A1, . . . ,Am, Bm+1,Bm+2, . . . ,Bn gives the optimal approx-
imation of the surface provided by a pair of closed contour
segments (see [7]).

Remark 1. This algorithm is true for convex contours and
concave contours (see Figure 14).

5. Surface Area

In our applications, we calculate an area approximation of a
smooth surface by the sum of triangles area. To compute the
area of a piecewise linear 2-dimensional space, one divides it
in a partition of triangles, computes the area of each triangle
with the familiar formula—half the product of the basis by
the heigh—and then adds all these areas (see Figure 16). The
only point to check is that the result is independent of the
triangulation. In Figure 15, with 50 points on the contours,
the area is equal to 149.084, with 100 points, it is equal to
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Figure 8: (a) A contour. It is evident that triangle e, f , g cannot be a part of a Delaunay triangulation, since its circumcircle would contain
another site. (b) shows the Delaunay triangulation of the contour points. (c) Contour edge e, f is contained after addition of a vertex to. (d)
Elimination of exterior edges, added vertex, and the edges related to this vertex.

A49A0A1

B51 B50
B99

Figure 9: Two parallel contours and 50 points on each one.

A0A1

B50

B99

Figure 10: Starting point A0, the nearest point in the adjacent
contour B50, the nearest neighborhood of A0 in the clockwise
direction A1, and the triangle A0A1B50.

A0A1A2

B50B51

Figure 11: Triangle A0A1B50, triangle A1A2B51, and the triangle
B50B51A1 that forms between them.

(a)

(b)

Figure 12: Triangulation T0 between two contours (sections).

A0

V = 12.824

Figure 13: A0: starting point.

A24

V = 12.874

Figure 14: A24: starting point—selection of the best triangulation.

(a) (b) (c)

Figure 15: Reconstruction of brain tumor: 50 points, 100 points,
and 200 points on the contours.
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Figure 16: The area of T is the sum of the areas t1, t2, and t3.
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Figure 17: The angle at p.
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Figure 18: Dihedral angle of the edge.

149.114 and with 200 points, it is equal to 149.170 (the unit
is cm2); see [8].

6. Volume of a Domain Limited by a Surface

Let D be a domain in R3 limited by the surface S.

Definition 8. The volume of D is given by

vol(D) =
∫∫∫

D
dx dy dz =

∫ +c

−c
dz
∫∫

Dz

dx dy, (6)

where Dz is the intersection of D with the plane z = const.

Finally, the Green-Ostrogradsky theorem reduces the
calculus of the volume to an integral surface:

vol(D) =
∫∫∫

D
dV = 1

3

∫∫
∂D

(x, y, z) · �n dS, (7)

where ∂D is the boundary of D, and �n is the unit normal
vector at dS oriented to the exterior of D.

7. Discrete Gauss Curvature

We will give the definition of the Gauss curvature at a vertex
in a triangulation (see [9]).

Let T be a triangulation, p is a vertex of T , TT(p) is the
set of triangles of T that having p as a vertex. We denote by

30/03/2006 Vo lume Area Gaus s 
cu rv atur e 

Me an 
cu rv atur e 

50 points 108.937 cm 3 149.084 cm 2 12.566 1126.889 

100 points 108.869 cm 3 149.114 cm 2 12.566 1817.111 

200 points 108.767 cm 3 149.170 cm 2 12.566 3029.92 

400 points 108.828 cm 3 149.503 cm 2 12.566 5264. 2 

(a) (b)

(c) (d)

Figure 19: Patient 1. (a) 50 points on the contours, (b) 100 points
on the contours, (c) 200 points on the contours, and (d) 400 points
on the contours.

S◦T the set of all interior vertices of T and by S∂T the set of all
boundary vertices of ∂T . The angle at a vertex p is the real
number defined by

αT(p) =
∑

σ∈TT (p)

ασ(p), (8)

where ασ(p) is an angle at p of the triangle σ (see Figure 17).
The characteristic Euler of a triangulation T is given by

X(T) = Ns −Na +Nf , (9)

where NS is the number of vertices of T , Na is the number of
edges, and Nf is the number of faces. A simple calculus gives
the following formula of Gauss-Bonnet:

∑
p∈S◦TT

(2π − αT(p)) +
∑
p∈S∂T

(π − αT(p)) = 2πX(T). (10)

This formula will motivate the following definitions.

(i) The discrete Gauss curvature at a vertex p ∈ S◦T is

GT(p) = 2π − αT(p). (11)

(ii) The total Gauss curvature of T is

Gint(T) =
∑

p∈S◦TT
GT(p) =

∑
p∈S◦TT

(2π − αT(p)). (12)
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05/10/2006 Vo lume Area Gaus s 
cu rv atur e 

Me an 
cu rv atur e 

50 points 119.431 cm 3 157.970 cm 2 12.566 1357.775 

100 points 119.569 cm 3 157.780 cm 2 12.566 2015.977 

200 points 119.454 cm 3 158.077 cm 2 12.566 3656.891 

(a) (b) (c)

Figure 20: Patient 1. (a) 50 points on the contours, (b) 100 points
on the contours, and (c) 200 points on the contours.

05/04/2007 Vo lume Area Gaus s 
cu rv atur e 

Me an 
cu rv atur e 

50 points 129.192 cm 3 163.529 cm 2 12.566 1248.297 

100 points 129.258 cm 3 163.228 cm 2 12.566 1717.164 

200 points 129.326 cm 3 162.653 cm 2 12.566 2710.691 

400 points 129.126 cm 3 163.037 cm 2 12.566 6647.535 

(a) (b)

(c) (d)

Figure 21: Patient 1. (a) 50 points on the contours, (b) 100 points
on the contours, (c) 200 points on the contours, and (d) 400 points
on the contours.

8. Discrete Mean Curvature

Let T be an oriented triangulation, a is an interior edge of
T , �n1 and �n2 are the unit oriented normal vectors of the two
triangles adjacent to a (see Figure 18).

09/08/2005 Vo lume Area Gaus s 
cu rv atur e 

Me an 
cu rv atur e 

50 points 29.807 cm 3 58.769 cm 2 12.566 420.554 

100 points 29.838 cm 3 58.690 cm 2 12.566 644.516 

200 points 29.834 cm 3 58.676 cm 2 12.566 956.872 

400 points 29.828 cm 3 58.687 cm 2 12.566 1808.346 

(a) (b)

(c) (d)

Figure 22: Patient 2. (a) 50 points on the contours, (b) 100 points
on the contours, (c) 200 points on the contours, and (d) 400 points
on the contours.

03/16/2006 Vo lume Area Gaus s 
cu rv atur e 

Me an 
cu rv atur e 

50 points 36.387 cm 3 66.347 cm 2 12.566 485.363 

100 points 36.400 cm 3 66.512 cm 2 12.566 892.792 

200 points 36.452 cm 3 66.060 cm 2 12.566 1136.069 

(a) (b) (c)

Figure 23: Patient 2. (a) 50 points on the contours, (b) 100 points
on the contours, and (c) 200 points on the contours.

(i) We call dihedral angle of T at a the angle

β(α) = ̂
(
�n1, �n2

) ∈ [0,π[. (13)

(ii) We define the index convexity of a the integer i(a) ∈
{0, 1} by

−i(a) = 0 si 〈 −→
p0p1, �n2〉 ≤ 0, 〈 −→

p0p2, �n1〉 ≤ 0,

−i(a) = 1 si 〈 −→
p0p1, �n2〉 ≥ 0, 〈 −→

p0p2, �n1〉 ≥ 0.
(14)
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09/14/2006 Vo lume Area Gaus s 
cu rv atur e 

Me an 
cu rv atur e 

50 points 42.821 cm 3 70.802 cm 2 12.566 412.875 

100 points 42.794 cm 3 70.830 cm 2 12.566 582.358 

200 points 42.747 cm 3 70.910 cm 2 12.566 976.292 

(a) (b) (c)

Figure 24: Patient 2. (a) 50 points on the contours, (b) 100 points
on the contours, and (c) 200 points on the contours.

01/11/2007 Vo lume Area Gaus s 
cu rv atur e 

Me an 
cu rv atur e 

50 points 54.447 cm 3 82.840 cm 2 12.566 669.369 

100 points 54.454 cm 3 82.713 cm 2 12.566 960.657 

200 points 54.225 cm 3 83.263 cm 2 12.566 853.697 

(a) (b) (c)

Figure 25: Patient 2. (a) 50 points on the contours, (b) 100 points
on the contours, and (c) 200 points on the contours.

(iii) The mean curvature of the edge a is

HT(a) = 1
2

(−1)i(a)l(a)β(a). (15)

(iv) The total mean curvature of T is

H(T) =
∑

an interior edge of T

HT(a)

=
∑

an edge of T

1
2

(−1)i(a)l(a)β(a),
(16)

where l(a) is the length of a.

9. Patients and Images Modality

The following description precises the different parameters
of the images modality, and they are given by the second
author.

All patients had partial seizures and a first MRI compat-
ible with brain tumors. Low-grade gliomas were confirmed
with neurosurgical biopsy, and patients were then followed
with serial MRI every 6 months. MR imaging was performed
on Philips Intera 1.5 Tesla MRI system (Philips Medical

05/24/2007 Vo lume Area Gaus s 
cu rv atur e 

Me an 
cu rv atur e 

50 points 39.118 cm 3 75.795 cm 2 12.566 513.273 

100 points 39.010 cm 3 76.128 cm 2 12.566 988.550 

200 points 39.082 cm 3 75.733 cm 2 12.566 1352.238 

(a) (b) (c)

Figure 26: Patient 2. (a) 50 points on the contours, (b) 100 points
on the contours, and (c) 200 points on the contours.

11/22/2007 Vo lume Area Gaus s 
cu rv atur e 

Me an 
cu rv atur e 

50 points 31.851 cm 3 62.696 cm 2 12.566 624.399 

100 points 31.816 cm 3 62.760 cm 2 12.566 1011.719 

200 points 31.822 cm 3 62.816 cm 2 12.566 1517.027 

(a) (b) (c)

Figure 27: Patient 2. (a) 50 points on the contours, (b) 100 points
on the contours, and (c) 200 points on the contours.

Systems, Erlangen, The Netherlands) with a standard head
coil. Localizing sagital T1-weighted images of the brain was
obtained initially, followed by axial FLAIR and T2-weighted
images. Thereafter, diffusion- and perfusion-weighted MR
images were obtained (diffusion-weighted image comprised
an echo-planar spin-echo sequence, with the following
parameters, TR = 4247, TE = 95, EPI factor = 77, field of
view (FOV) = 230 mm, slice thickness = 5 mm, slice gap =
1 mm, number of excitations = 1, matrix = 77× 256, number
of slices = 22, acquisition time = 30 seconds). The images
in diffusion-weighted image (DWI) were acquired for values
of b (diffusion gradient factor) equal to 0 and 1000 s/mm2.
An isotropic image was constructed in real time, pixel by
pixel, as an average of the signal intensities of three orthog-
onal directions. Apparent diffusion coefficient (ADC) maps
were then calculated from the diffusion-weighted images.
Dynamic susceptibility contrast enhanced MRI (DSC-MRI)
using the PRESTO sequence with the following parameters
was employed: TR = 17, TE = 8, flip angle = 7, EPI factor
= 17, FOV) = 220 mm, slice thickness = 3.5 mm, slice gap
= 0 mm, number of excitations = 1, matrix = 64 × 64,
number of slices = 60 series of 22 slices, acquisition time
= 77 seconds. The PRESTO technique is highly sensitive to
T2∗ changes due to its very long TE. Image acquisition began
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01/05/2006 Vo lume Area Gaus s 
cu rv atur e 

Me an 
cu rv atur e 

50 points 104.818 cm 3 125.090 cm 2 12.566 719.794 

100 points 104.721 cm 3 125.130 cm 2 12.566 1428.844 

200 points 104.528 cm 3 125.757 cm 2 12.566 2238.342 

(a) (b) (c)

Figure 28: Patient 3. (a) 50 points on the contours, (b) 100 points
on the contours, and (c) 200 points on the contours.

05/11/2006 Vo lume Area Gaus s 
cu rv atur e 

Me an 
cu rv atur e 

50 points 109.831 cm 3 128.198 cm 2 12.566 679.496 

100 points 109.734 cm 3 127.835 cm 2 12.566 697.212 

200 points 109.677 cm 3 127.910 cm 2 12.566 1076.226 

(a) (b) (c)

Figure 29: Patient 3. (a) 50 points on the contours, (b) 100 points
on the contours, and (c) 200 points on the contours.

simultaneously with contrast agent injection. For all patients,
a standard dose (0.2 mL/kg = 0.1 mmol/kg) of gadobenate
dimeglumine (multihance; Bracco Imaging, Milan, Italy) was
injected using an automated power injector, at a flow rate
6 mL/sec followed by a 40 mL saline flush at the same rate.
Contrast agent administrations were in all cases performed
using a 20-gauge intravenous catheter. Finally, postcontrast
3D T1-weighted images, with an isotropic voxel of 0.9 mm,
were obtained.

10. Results

The collaboration with professor François Cotton (IRM,
Hospices Civils de Lyon, Lyon, France) consists of the three
following steps.

(i) First step. Series of 3 typical biopsy-proved low-grade
gliomas followed with serial MRI every 6 months
were first selected for the purpose of the study. FLAIR
sequence was used for the segmentation because it
has high sensitivity for the tumor detection, which
typically appears on hypersignal compared to the
normal brain parenchyma. DICOM images including
FLAIR sequence were then burned on a CD.

09/07/2006 Vo lume Area Gaus s 
cu rv atur e 

Me an 
cu rv atur e 

50 points 117.652 cm 3 133.131 cm 2 12.566 741.226 

100 points 117.585 cm 3 133.240 cm 2 12.566 989.424 

200 points 117.752 cm 3 132.941 cm 2 12.566 1185.997 

(a) (b) (c)

Figure 30: Patient 3. (a) 50 points on the contours, (b) 100 points
on the contours, and (c) 200 points on the contours.

03/01/2007 Vo lume Area Gaus s 
cu rv atur e 

Me an 
cu rv atur e 

50 points 125.798 cm 3 138.297 cm 2 12.566 778.125 

100 points 125.723 cm 3 138.267 cm 2 12.566 1036.001 

200 points 125.075 cm 3 138.075 cm 2 12.566 1508.679 

(a) (b) (c)

Figure 31: Patient 3. (a) 50 points on the contours, (b) 100 points
on the contours, and (c) 200 points on the contours.

(ii) Second step. The validation of the segmentation was
done firstly by comparing the medical data with
the slope of the tumor growth obtained by linear
measurement—secondly according to neuroexperi-
ence of the tumor growth. In medical experience and
literature, the mean tumor diameters of untreated
low-grade gliomas (linear measurements) showed a
linear and constant growth before anaplastic trans-
formation with an average slope of 4 mm per year (2
to 8 mm/year) (see [10–12]).

(iii) Third step. The exchange between mathematicians
and specialists in medical imaging was based on
knowledge of MRI sequences, tumor growth, macro-
scopic and microscopic structure, microvascularity
and angiogenesis, density and contour of brain
tumors, and mathematical model that could be used
to analyze these parameters.

Our goal is to provide some tools to help the doctor to
make his diagnosis, then to show that some geometric invari-
ants (like the volume, the area, and the Gauss curvature)
are relatively stable by adding points at the segmentation.
Others, like the mean curvature, are sensitive to the number
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05/24/2007 Vo lume Area Gaus s 
cu rv atur e 

Me an 
cu rv atur e 

50 points 132.796 cm 3 143.029 cm 2 12.566 707.790 

100 points 132.528 cm 3 143.365 cm 2 12.566 1038.230 

200 points 132.515 cm 3 143.380 cm 2 12.566 1756.171 

(a) (b) (c)

Figure 32: Patient 3. (a) 50 points on the contours, (b) 100 points
on the contours, and (c) 200 points on the contours.

11/29/2007 Vo lume Area Gaus s 
cu rv atur e 

Me an 
cu rv atur e 

50 points 134.050 cm 3 144.679 cm 2 12.566 805.851 

100 points 134.248 cm 3 144.302 cm 2 12.566 863.056 

200 points 134.045 cm 3 144.598 cm 2 12.566 1835.860 

(a) (b) (c)

Figure 33: Patient 3. (a) 50 points on the contours, (b) 100 points
on the contours, and (c) 200 points on the contours.

of used points. Finally, we would like to sensitize the
community of the medical imaging in the importance of
calculating geometric invariants in order to verify that the
segmentation and the 3D reconstruction of the tumor are
good from this point of view.

We present the results established on some patients in
Figures 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32,
and 33.

10.1. Evolution Curves. We present the evolution curves of
the brain tumor as a function of time in Figures 34, 35, and
36.

10.2. Interpretation and Conclusion. In this section, we give
an interpretation of the results previously shown. Patients
1 and 3 have curves tumor growth which agree with the
expectations of doctors and the standard models of growth
tumor. The curve of the second patient is characterized by
the volume evolution of the tumor after a surgical operation.
After a phase of growth, the two last dates show that the
tumor has been partially removed and that a remission phase
appears.
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Figure 34: Patient 1. Evolution of the tumor with respect to time.
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Figure 35: Patient 2. Evolution of the tumor with respect to time.

Results are consistent with the clinical history and natural
course of low-grade gliomas. 3D segmentation is more
sensitive and consistent than linear measurement. A fully
automatic method of volume and contour segmentation will
be of great interest for the clinician and patient management.
It is now recognizing that all low-grade gliomas (except type
1 such as pilocytic astrocytoma) will present an anaplastic
transformation which highly correlates with tumor growth.

After this study, we remark that some geometric invari-
ants are stable if we increase the number of points, or if we
change the distribution of points. The Gauss curvature is
always equal to 4π, which is normal, because the triangulated
surface is a deformable sphere without holes. However, the
mean curvature depends heavily on the number of points.
Once we increase the number of points, the surface becomes
increasingly disturbed.

Our study helps to precise the importance of the geomet-
ric invariants during the reconstruction of brain tumors in
medical imaging. It should be noted that another algorithm
was tested to reconstruct the tumor but topological problems
were found, especially for the Gauss curvature for some 3D
objects. It seems essential to verify the stability and the values
of geometric invariants in order to give valid estimations to
the doctors.
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Figure 36: Patient 3. Evolution of the tumor with respect to time.
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