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Phosphatidylglycerol (PG) and cardiolipin (CL) are two essential classes of phospholipid
in plants and algae. Phosphatidylglycerophosphate synthase (PGPS) and cardiolipin
synthase (CLS) involved in the biosynthesis of PG and CL belong to CDP-alcohol
phosphotransferase and share overall amino acid sequence homology. However, it
remains elusive whether PGPS and CLS are functionally distinct in vivo. Here, we report
identification of a gene encoding CLS in Chlamydomonas reinhardtii, CrCLS1, and its
functional compatibility. Whereas CrCLS1 did not complement the growth phenotype
of a PGPS mutant of Synechocystis sp. PCC 6803, it rescued the temperature-
sensitive growth phenotype, growth profile with different carbon sources, phospholipid
composition and enzyme activity of �crd1, a CLS mutant of Saccharomyces cerevisiae.
These results suggest that CrCLS1 encodes a functional CLS of C. reinhardtii as the
first identified algal CLS, whose enzyme function is distinct from that of PGPSs from
C. reinhardtii. Comparison of CDP-alcohol phosphotransferase motif between PGPS
and CLS among different species revealed a possible additional motif that might define
the substrate specificity of these closely related enzymes.

Keywords: CDP-alcohol phosphotransferase, cardiolipin, cardiolipin synthase, phosphatidylglycerol, PGPS,
Chlamydomonas reinhardtii, Synechocystis sp. PCC 6803, Saccharomyces cerevisiae

INTRODUCTION

Functional specificity of an enzyme is crucial in keeping metabolic reactions in order. This
largely relies on the substrate specificity defined by the catalytic motif. Thus, enzymes are
often categorized into groups according to the existence of common catalytic motif(s). In
phospholipid metabolism, a number of important reaction steps are catalyzed by CDP-
alcohol phosphotransferases (Li-Beisson et al., 2013, 2015). These include CLS, PGPS,
phosphatidylinositol (PI) synthase, phosphatidylserine (PS) synthase, phosphatidylcholine (PC)

Abbreviations: CDP, cytidine 5′-diphosphate; CL, cardiolipin; CLS, cardiolipin synthase; PA, phosphatidic acid; PC,
phosphatidylcholine; PE, phosphatidylethanolamine; PG, phosphatidylglycerol; PGP, phosphatidylglycerol phosphate; PGPP,
phosphatidylglycerophosphate phosphatase; PGPS, phosphatidylglycerophosphate synthase; PI, phosphatidylinositol; PS,
phosphatidylserine.
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synthase, and aminoalcohol phosphotransferase for the
biosynthesis of CL, PG, PI, PS, PC, and PE, respectively.
Because these are the major phospholipid classes found in
diverse organisms from bacteria to mammals and seed plants, it
can be stated that CDP-alcohol phosphotransferases are crucial
in the entire phospholipid metabolism.

In plants and algae, PG is an indispensable phospholipid
class in photosynthetic function (Hagio et al., 2000, 2002;
Sato et al., 2000; Babiychuk et al., 2003; Yu and Benning,
2003). Moreover, CL, which is an anionic phospholipid class
widely distributed in different kingdom and found exclusively
at the inner membrane of mitochondria (Lewis and McElhaney,
2009), has an essential role in mitochondrial function and
thus plant growth (Katayama et al., 2004; Pineau et al.,
2013). The biosynthesis of these lipid classes begins with the
conversion of phosphatidic acid (PA) into CDP-diacylglycerol
(CDP-DAG) by CDP-DAG synthase (CDS; Sato et al., 2000;
Haselier et al., 2010; Zhou et al., 2013). Next, PGPS coverts
CDP-DAG to phosphatidylglycerol phosphate (PGP), which
is dephosphorylated by PGP phosphatase (PGPP) to produce
PG (Muller and Frentzen, 2001; Hagio et al., 2000, 2002;
Wu et al., 2006; Osman et al., 2010; Hung et al., 2015b).
Furthermore, PG is converted to CL by CLS in mitochondria
(Kadenbach et al., 1982; Jiang et al., 1997, 1999). Initially, 3
PGPSs were proposed in Arabidopsis thaliana (PGP1, PGP2,
and PGP3) based on the amino acid sequence similarity
(Xu et al., 2002). However, the third isoform (PGP3) was
later shown not to be a functional PGPS but instead
functions as CLS (Katayama et al., 2004). Subsequent gene
knockout studies defined distinct in vivo function of CLS
associated with mitochondrial function (Pineau et al., 2013).
Thus, PGPS and CLS are functionally independent, although
they are homologous and belong to the same CDP-alcohol
phosphotransferase family in A. thaliana. Recently, we identified
and characterized genes for PGPS of Chlamydomonas reinhardtii
(Hung et al., 2015a). We demonstrated two functional PGPS
isoforms; however, genome-wide search identified an additional
PGPS homolog, which is more homologous with CLS. This
reminded us of the case in A. thaliana described above.
Because reciprocal genetic complementation was not performed
yet in A. thaliana or any other model organisms, it remains
elusive whether PGPS and CLS are functionally distinct
in vivo.

In this report, we identified the additional homolog of
PGPS in C. reinhardtii, designated CrCLS1 (Cre13.g604700),
and performed reciprocal functional complementation assay
using pgsA, a PGPS mutant of Synechocystis sp. PCC 6803
and �crd1, a CLS mutant of Saccharomyces cerevisiae. The
result of functional complementation in these mutants, along
with phenotype observation, lipid analysis and enzyme activity
assay, demonstrated that CrCLS1 encodes a functional CLS but
not PGPS. We compared sequence similarity in detail between
PGPS and CLS and noted some difference adjacent to the
defined CDP-OH-P motif. Our results suggest non-overlapping
function of PGPS and CLS, through the identification and
characterization of CLS in C. reinhardtii as the first report of CLS
in algae.

MATERIALS AND METHODS

Strains
The strains produced in this work are listed in Supplementary
Table S1.

Protein Sequence Analysis
The multiple alignment of protein sequences was performed
by use of CLUSTALW1. The mitochondrial targeting sequence
was predicted by use of the subcellular localization program
MitoProtII2 (Claros and Vincens, 1996).

Cloning of Plasmid Vectors
CrCLS1 (Cre13.g604700): To construct pCH069, a 1,060-bp
fragment was amplified from the cDNA template of C. reinhardtii
strain CC-503 (cw92 mt+) with the primers CH227 and CH228,
and cloned into pENTR/D-TOPO. Then, to construct pCH178,
the open reading frame (ORF) of CrCLS1 was amplified from
pCH069 with the primers CH831 and CH832, and inserted into
XbaI and EcoRI sites of pCH078 (Hung et al., 2013). To construct
pCH158, the ORF of CrCLS1 was amplified from pCH069 with
the primers CH776 and CH777 and inserted into NdeI and
HpaI sites of pTCP2031V (Satoh et al., 2001). The primers and
plasmids used in this study are described in Supplementary Tables
S2 and 3, respectively.

Complementation Assay of the
Synechocystis sp. PCC 6803 pgsA
Mutant by CrCLS1
Complementation assay of the Synechocystis sp. PCC 6803
pgsA mutant by CrCLS1 (pCH158) was performed as described
previously (Hung et al., 2015a).

Complementation Assay of the
S. cerevisiae �crd1 Mutant by CrCLS1
Complementation assay of the S. cerevisiae �crd1 mutant by
CrCLS1 (pCH178) was performed as described previously (Hung
et al., 2015a).

Lipid Extraction and Analysis
Lipid extraction and analysis were performed as previously
described (Hung et al., 2013) except that 2D thin-layer
chromatography (TLC) was used to separate phospholipid
classes with the solvent system of chloroform/methanol/7
N ammonia 120:80:8 (by vol) for the first dimension and
chloroform/methanol/acetic acid/water 170:20:15:3 (by vol) for
the second dimension (Nakamura et al., 2003).

Radiolabeling Assay of CLS Activity
Logarithmically growing cells were resuspended in 5 ml SC-
Ura medium at the cell density (OD600 of 5) with 30 µCi
KH2

32PO4 (PerkinElmer). After shaking incubation for 8 h at
room temperature, lipids were extracted from cells by the method

1http://www.genome.jp/tools/clustalw/
2http://ihg.gsf.de/ihg/mitoprot.html
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FIGURE 1 | Multiple amino acid sequence alignment of Chlamydomonas reinhardtii CLS1 (CrCLS1) with other known CLSs, Saccharomyces
cerevisiae CRD1 (ScCRD1), Homo sapiens CLS1 (HsCLS1), Arabidopsis thaliana CLS (AtCLS), and Drosophila melanogaster CLS (DmCLS). The region
conserved among proteins containing a CDP-OH-P motif (PF01066.9) is underlined. Asterisks indicate the amino acid residues conserved in all sequences of
proteins with the CDP-OH-P motif. Square frames indicate the terminal amino acid residues of the predicted cleavage site of putative N-terminal mitochondrial
targeting sequence.

of Bligh andDyer (1959). Lipids spotted on a TLCplate (Silica gel
60G, Merck) were developed with chloroform/methanol/acetic
acid (65:25:8, v/v/v) (Haselier et al., 2010) along with PG and
CL (Sigma–Aldrich) as standards and radioactive spots were
visualized by Imaging Plate (Fuji Film) and BAS-2500 (GE
Healthcare). Unlabeled PG and CL were stained with 0.01%
primuline in 80% (v/v) acetone and detected under UV light.

RNA Extraction and cDNA Synthesis
RNA extraction and cDNA synthesis were performed as
previously described (Hung et al., 2013).

Quantitative RT-PCR
Quantitative RT-PCR analysis involved the ABI 7500 Real
Time PCR System (Applied Biosystems) with the specific

oligonucleotide primer sets, CH955 and CH956, CH957 and
CH958, and CH531 and CH532, for CrCLS1, CRD1, and ACT1,
respectively. Gene expression was normalized to that of ACT1.
Data were averaged by three technical replicates in the same
run and three biological replicates in separate runs. The primer
sequences are described in Supplementary Table S2.

RESULTS

Sequence Analysis of CrCLS1
To compare the amino acid sequence similarity of the putative
CrCLS1 with other known CLSs in different organisms, the
deduced amino acid sequence of CrCLS1 was compared
with those of S. cerevisiae CRD1, Homo sapiens CLS1,
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FIGURE 2 | Heterologous complementation of Synechocystis sp. PCC
6803 pgsA mutant by CrPGP1, CrPGP2 and CrCLS1. Growth of the wild
type, pgsA, pgsA CrPGP1, pgsA CrPGP2, and pgsA CrCLS1 were compared
on solid BG-11 media with or without PG supplementation. Spotting involved
serial 10-fold dilution from left to right starting at OD730 of 0.05, with 5 µl each
spotted onto a BG-11 agar plate with or without 20 µM PG and incubated
under 50∼60 µmol photons m−2 s−1 for 5 days at 30◦C. Images are
representative of three biological replicates.

FIGURE 3 | Heterologous complementation of temperature-sensitive
growth defect in the S. cerevisiae �crd1 mutant with C. reinhardtii
CLS1. (A) Culture of wild type, �crd1 mutant and �crd1 mutant harboring
CrCLS1 involved serial 10-fold dilution from left to right starting at OD600 of
0.1; 5 µL each was spotted onto YPD media and incubated for 2 days at
30◦C or 37◦C. Images are representative of 3 replicates. (B) Relative
expression of CRD1 and CrCLS1 in wild type, �crd1 and �crd1 CrCLS1.
Levels are normalized to that of ACT1. Data are mean ± SD from three
biological replicates. n.d., not detected.

A. thaliana CLS, and Drosophila melanogaster CLS, which
are functionally characterized CLS (Figure 1) (Tuller et al.,
1998; Katayama et al., 2004; Chen et al., 2006; Acehan et al.,
2011). In Figure 1, the region containing the CDP-OH-P
motif D(X)2DG(X)2AR(X)8−9G(X)3D(X)3D is underlined and

FIGURE 4 | Growth of wild type, �crd1 and �crd1 CrCLS1 with
different carbon sources. Cells were grown in synthetic complete medium
supplemented with 2% glucose (A) or 2% ethanol (B). Cell growth was
started at OD600 of 0.01 at 30◦C. Data are mean ± SD from three biological
replicates.

asterisks indicate the conserved eight amino acid residues.
All eight amino acids were conserved in CrCLS1, which
suggests that CrCLS1 encodes a functional CLS. In addition,
CrCLS1 contained a putative N-terminal mitochondrial targeting
sequence predicted by the subcellular localization program
MitoProtII, suggesting a possible localization of CrCLS1 in
mitochondria, where CL is exclusively localized.

Complementation of pgsA by CrCLS1
To examine whether CrCLS1 functions as PGPS, we transformed
CrCLS1 into the pgsA mutant of Synechocystis sp. PCC 6803,
which abolishes PGPS activity and thus requires exogenous
supplementation of PG for growth (Hagio et al., 2000). As
shown in Figure 2, whereas the CrPGP1 and CrPGP2 functionally
complemented the lethal phenotype of the pgsA mutant as
reported previously (Hung et al., 2015a), CrCLS1 failed to
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FIGURE 5 | Phospholipid content (A) and fatty acid composition (B) of wild type, �crd1 and �crd1 CrCLS1. Total lipids were extracted from cells grown to
stationary phase and separated by 2D thin-layer chromatography; content of phospholipids was quantified by gas chromatography. Data are mean ± SD from three
biological replicates. Asterisks indicate statistical significance by Student’s t-test (∗P < 0.05, ∗∗P < 0.001). PC, phosphatidylcholine; PE, phosphatidylethanolamine;
PI, phosphatidylinositol; PS, phosphatidylserine.

complement the growth phenotype, showing the rescued growth
only in the presence of PG. Therefore, CrCLS1 does not function
as a PGPS in vivo in Synechocystis sp. PCC 6803.

Recovery of Growth Defect in the �crd1
Mutant Complemented by CrCLS1
To investigate whether CrCLS1 encodes a functional CLS, we
performed a heterologous complementation assay with the

S. cerevisiae �crd1 mutant, because Synechocystis sp. PCC 6803
does not contain CL and no other CLS mutant is known in
algae. As previously reported, Crd1p has CLS activity and �crd1
mutant cells show a temperature-sensitive growth defect, severe
at 37◦C but not at 30◦C (Jiang et al., 1999). The temperature-
sensitive phenotype of �crd1 mutant cells was rescued by
heterologous complementation of HsCLS1 (Houtkooper et al.,
2006), so we used this approach to investigate the function of
CrCLS1. We cloned the ORF of CrCLS1 into a yeast shuttle
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FIGURE 6 | CrCLS complemented cardiolipin synthesis in �crd1 cells.
Wild type (WT), �crd1 or �crd1 CrCLS cells were grown in the presence of
[32P]-phosphate for 8 h at room temperature. Radioactivity incorporated into
phospholipids was determined by TLC analysis and autoradiography, with
unlabeled PG and CL visualized by primuline staining as standards. Two
biologically independent experiments (Experiments 1 and 2) were shown. PE,
phosphatidylethanolamine; PC, phosphatidylcholine; PI, phosphatidylinositol;
PS, phosphatidylserine; PA, phosphatidic acid.

vector and transformed it into �crd1 mutant cells. The �crd1
mutant harboring CrCLS1 fully recovered cell growth at 37◦C,
whereas the �crd1 mutant alone showed a growth defect at this
temperature (Figure 3A). Therefore, CrCLS1 complemented the

temperature-sensitive phenotype of �crd1, which suggests that
CrCLS1 encodes a functional CLS of C. reinhardtii.

Expression of CrCLS1
To investigate whether CrCLS1 is appropriately expressed in the
�crd1mutant, we analyzed the gene expression of CrCLS1 in the
�crd1 mutant harboring CrCLS1. The relative gene expression
of CrCLS1 was 12.6-fold higher in the �crd1 mutant harboring
CrCLS1 than CRD1 in the wild type (Figure 3B). Thus, CrCLS1 is
sufficiently expressed in �crd1 mutant cells, which supports the
functional complementation shown in Figure 3A.

Effect of Different Carbon Sources on
the Growth of �crd1 Mutant
Complemented by CrCLS1
A previous study showed that the growth of the �crd1 mutant
under aerobic conditions was affected with ethanol used as the
sole carbon source (Tuller et al., 1998). To investigate whether
the �crd1 mutant harboring CrCLS1 rescued the growth defect
under this condition, cells were grown in synthetic complete
medium supplemented with 2% glucose or 2% ethanol as
the sole carbon source. The growth rates of both the �crd1
mutant and �crd1 harboring CrCLS1 were indistinguishable
from that of wild type in 2% glucose medium (Figure 4A).
However, with 2% ethanol medium, the �crd1mutant harboring
CrCLS1 fully restored the growth phenotype to that of the wild
type, whereas the �crd1 mutant showed growth retardation, as
reported (Tuller et al., 1998) (Figure 4B). Therefore, CrCLS1
could complement the growth defect of the �crd1 mutant with
ethanol supplementation as the carbon source.

Lipid Contents of the �crd1 Mutant
Complemented by CrCLS1
The phospholipid profiles of the �crd1 mutant were
previously analyzed by radiolabeling (Tuller et al., 1998)

FIGURE 7 | Multiple amino acid sequence alignment of the core motif of CDP-OH-P between CLSs and the PGPSs. Asterisks indicate the amino acid
residues conserved among proteins with the CDP-OH-P motif, and dots indicate those conserved only among PGPSs. The amino acid residues present among
PGPS but not among CLS are underlined. CrCLS1, C. reinhardtii CLS1; ScCRD1, S. cerevisiae CRD1; AtCLS, A. thaliana CLS; CrPGP1, C. reinhardtii PGP1;
CrPGP2, C. reinhardtii PGP2; AtPGP1, A. thaliana PGP1; AtPGP2, A. thaliana PGP2; SynPgsA, Synechocystis sp. PCC 6803 PgsA.
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or mass spectrometry (Zhang et al., 2003). However, whether
the �crd1 mutant alters the composition of major membrane
phospholipid classes remained unclear. To investigate whether
the complementation of the growth defect observed in Figures 3
and 4 is associated with lipid compositional change, we analyzed
the major phospholipid composition of these strains. The �crd1
mutant showed an increase in PC content and decrease in PS
and PI contents as compared with the wild type (Figure 5A). In
the �crd1mutant harboring CrCLS1, phospholipid composition
was restored to a level similar to that of the wild type. The fatty
acid composition of PE, PC, and PI was similar among the three
strains (Figure 5B). Thus, CrCLS1 encodes a functional CLS that
complements lipid compositional changes in the �crd1mutant.

Enzyme Activity of CrCLS1 Expressed in
the �crd1
To investigate whether CrCLS1 encodes a functional CLS to
restore the CL synthesis defect in the �crd1, we performed
radiolabeling assay to analyze CLS activity. As shown in Figure 6,
the �crd1 mutant harboring CrCLS1 recovered radiolabeled
spot that co-migrates with the commercial standard of CL,
which is present in wild type but absent in the �crd1
mutant, demonstrating that the activity of CLS was recovered
in the mutant harboring CrCLS1. Thus, CrCLS1 encodes a
functional CLS that complements CL synthesis defect of �crd1
mutant.

DISCUSSION

Present study reported identification of a CLS gene in
C. reinhardtii, CrCLS1, and examined its in vivo function
by heterologous complementation of pgsA, a PGPS mutant
of Synechocystis sp. PCC 6803, and �crd1, a CLS mutant
of S. cerevisiae. Whereas CrCLS1 did not complement the
growth phenotype of pgsA, it rescued the temperature-sensitive
growth phenotype, growth profile with different carbon sources,
phospholipid composition and enzyme activity of �crd1 of
S. cerevisiae. These results suggest that CrCLS1 is a functional
gene for CLS of C. reinhardtii as the first identified algal CLS,
which is functionally incompatible with PGPS despite their
sequence homology.

Physiological roles of CrCLS1 in C. reinhardtii are not
reported yet; however, several transcriptomic studies have shown
gene expression profiles in response to environmental stresses.
For example, expression ofCrCLS1 is down-regulated in response
to the deprivation of iron (Urzica et al., 2013) and nitrogen
(Goodenough et al., 2014). Conversely, an upregulation is seen
by copper deficiency (Castruita et al., 2011) and singlet oxygen
stress (Wakao et al., 2014). These data suggest possible roles of
CrCLS1 in adaptation to circumvent environmental stresses.

Given that both PGPS and CLS belong to the CDP-alcohol
phosphotransferase family and the relevant CDP-OH-P motifs
are closely related (Katayama et al., 2004), what defines substrate
specificity of these enzymes?

Recently, structural basis for catalysis in a CDP-alcohol
phosphotransferase was revealed by crystallographic analysis
(Sciara et al., 2014). According to this structure, conserved
amino acid residues in the CDP-OH-P motif are associated
with CDP-DAG. Since CDP-DAG is the common substrate
between CLS and PGPS, this study suggests that an additional
motif recognizes the other substrate (PG for CLS; glycerol 3-
phosphate for PGPS). We aligned the amino acid sequences
of core CDP-OH-P motif among three CLSs (C. reinhardtii
cardiolipin synthase 1, CrCLS1; S. cerevisiae CRD1, ScCRD1;
A. thaliana CLS, AtCLS) and five PGPSs (C. reinhardtii
PGP1, CrPGP1; C. reinhardtii PGP2, CrPGP2; A. thaliana
PGP1, AtPGP1; A. thaliana PGP2, AtPGP2; Synechocystis
sp. PCC 6803 PgsA, SynPgsA) (Figure 7). While the
eight amino acid residues of the core CDP-OH-P motif
D(X)2DG(X)2AR(X)8−9G(X)3D(X)3D indicated by asterisks
in Figure 7 were conserved between the PGPS and CLS, we
noted that seven amino acids (FxxAxxT) immediately before
the core CDP-OH-P motif were highly conserved among
PGPSs but not CLSs (underlined in Figure 7). In addition,
we found additional four amino acid residues that were
conserved among PGPS but not in CLS (indicated by dots
in Figure 7). It is possible that these additional residues may
define the substrate specificity between PGPS and CLS. Detailed
structural analysis as well as enzymatic characterization of
these residues are anticipated to experimentally validate this
proposal.

CONCLUSION

We suggest functional specificity of CLS by the identification and
characterization of a CLS, CrCLS1, in C. reinhardtii.
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