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ABSTRACT
Hand, Foot and Mouth Disease (HFMD) is usually a self-limiting, mild childhood disease that is caused mainly by Coxsackie
virus A16 (CVA16) and Enterovirus A71 (EV-A71), both members of the Picornaviridae family. However, recurring HFMD
outbreaks and epidemics due to EV-A71 infection in the Western Pacific region, and the propensity of EV-A71 strains to
cause severe neurological complications have made this neurotropic virus a serious public health concern in afflicted
countries. High mutation rate leading to viral quasispecies combined with frequent intra- and inter-typic recombination
events amongst co-circulating EV-A71 strains have contributed to the great diversity and fast evolution of EV-A71
genomes, making impossible any accurate prediction of the next epidemic strain. Comparative genome sequence
analyses and mutagenesis approaches have led to the identification of a number of viral determinants involved in EV-
A71 fitness and virulence. These viral determinants include amino acid residues located in the structural proteins of the
virus, affecting attachment to the host cell surface, receptor binding, and uncoating events. Critical residues in non-
structural proteins have also been identified, including 2C, 3A, 3C proteases and the RNA-dependent RNA polymerase.
Finally, mutations altering key secondary structures in the 5’ untranslated region were also found to influence EV-A71
fitness and virulence. While our current understanding of EV-A71 pathogenesis remains fragmented, these studies may
help in the rational design of effective treatments and broadly protective vaccine candidates.
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1. Introduction to HFMD and Enterovirus-
A71

Enterovirus-A71 (EV-A71) is the second most com-
mon causative agent after Coxsackievirus A16
(CVA16) of Hand, Foot and Mouth Disease (HFMD),
a childhood disease that occurs worldwide but promi-
nently affects countries within the Asia-Pacific region
including China, Taiwan, Vietnam, Thailand, Malaysia,
Singapore, Japan, Korea and Australia [1]. Numerous
outbreaks and cyclical epidemics have been reported
in these countries, with the latest EV-A71 outbreak in
Singapore in 2018 during which 1,249 cases were
reported within a single week [2]. Infections are usually
followed by fever and sore throat before occurrence of
characteristic blisters and lesions on the palms, soles
and oral mucosa [3]. HFMD is highly transmissible
via bodily fluids or contaminated objects and even
asymptomatic adults are able to transmit the virus [3].

While HFMD is usually a self-limiting disease,
serious complications have been reported with involve-
ment of the central nervous system (CNS), including
aseptic meningitis, brainstem encephalitis, acute

flaccid paralysis and cardiopulmonary dysfunction of
neurogenic origin [4]. When not fatal, HFMD-associ-
ated neurological complications may lead to long-
term cognitive and motor disorders [5]. Up to 90% of
HFMD cases with neurological complications have
been attributed to EV-A71 infection [4]. This makes
EV-A71 an important neurotropic virus after the eradi-
cation of its close cousin poliovirus (PV) from most of
the surface of our planet. Three vaccines have made it
to the Chinese market so far [1]. They are inactivated
whole virus vaccines that cover a single genogroup
(C4). These monovalent vaccines however, may not
confer long-term pan-genogroup protection, and may
influence epidemiological dynamics of EV-A71 strains
[6]. Hence, efforts to develop multivalent vaccines
including various EV-A71 genogroups and CVA16
have been pursued [7].

A member of the Picornaviridae family, EV-A71 is
a non-enveloped, positive sense, single-stranded RNA
virus. Its genome is approximately 7.4kb-long and the
coding region, which encompasses sub-regions P1, P2
and P3 is preceded by a short, structured 5’
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untranslated region (UTR), while the 3’UTR ends with
a ploy-A tail (Figure 1). The P1 region codes for four
structural proteins VP1 to VP4, which make up the
protein capsid where the exposed VP1-3 are antigenic.
The P2 and P3 regions code for seven non-structural
proteins that include viral proteases and the RNA-
dependent RNA polymerase (RdRp). The infection
cycle of EV-A71 in its host cell starts with receptor-
mediated entry involving the capsid protein VP1, fol-
lowed by uncoating that allows release of the viral gen-
ome into the cytoplasm. After a first round of
translation to produce structural and non-structural
proteins, the viral genome is replicated followed by
virus assembly and maturation, before the newly
formed virions exit the cells upon apoptosis-induced
cell lysis or via non-lytic exit pathway [8]. The role
of each viral proteins during EV-A71 infection cycle
has been recently reviewed elsewhere [9].

Infection outcome typically results from the interplay
between the intrinsic virulence of the pathogen, and the
genetic make-up and immune status of the host. This
review focuses on the viral determinants that play a
critical role in EV-A71 fitness and virulence. An earlier
study on the circulation of EV-A71 lineages in different
countries and geographical areas since 1960 indicated
that no association could be drawn between a particular
genogroup or subgenogroup and the increased risk of
neurological complications [10]. More recently how-
ever, complete genome analyses of EV-A71 strains
have been conducted to identify genetic determinants
responsible for different clinical patterns. Nucleotide
differences in the 5’-UTR of the viral genome, and
amino acid changes in viral proteins have been pro-
posed to play a role in virulence. Additionally, mutagen-
esis studies have allowed explore the role of a number of
nucleotides or amino acids in EV-A71 fitness and viru-
lence, both in vitro and in animal models. We provide
here an overview of these latest findings and the gaps
in our knowledge that remain to be addressed.

2. Mechanisms driving EV-A71 strains
diversity

2.1. EV-A71 strains classification and circulation

EV-A71 strains have been isolated in various countries
all over the world, and have been classified into gen-
ogroups (A-G) and subgenogroups, based on their

VP1 gene sequence similarity. A Bayesian tree was
generated that traced the time of origin and evolution-
ary history of these strains [11]. Furthermore, reports
of EV-A71 outbreaks worldwide have allowed monitor
the circulation and evolution of EV-A71 strains over
time [12]. Extensive and rapid shifts in genogroup
and subgenogroup dominance have been noted.
Intra-genogroup dominance shifts have also been
reported over time in a single country. Furthermore,
it is important to note that within a single outbreak,
co-circulation of several genogroups and subge-
nogroups is common [12]. China, however, has seen
persistent predominance of subgenogroup C4 over
the past 15 years, and represents more the exception
than the rule. The introduction of three monovalent
C4 vaccines in China may however drive strain repla-
cement and lead to a shift in EV-A71 genogroup or
subgenogroup dominance, as seen with other infec-
tious diseases [13].

Observation of rapid shifts in EVA-71 genogroup
or subgenogroup dominance in the same country or
geographical location is likely facilitated by the fact
that several lineages co-circulate at any one point of
time and take turn to become predominant. Herd
immunity may represent an important factor that
drives the shift in genogroup prevalence. Additionally,
evidence of sequence recombination between EV-A71
strains, as well as spontaneous mutations in the viral
genome contribute to the genetic diversity and drive
evolution of EV-A71 strains.

2.2. Recombination

Studies employing recombination analysis techniques
found evidence that strongly supported horizontal
acquirement of sequences for almost every tested
EV-A71 strains [14,15]. Sequence analysis of a single
subgenogroup revealed that a group of isolates with
similar sequences sampled from a single location
were interspersed with sequences from strains found
in geographically distant areas [15].

Recombination events in EV-A71 can be intra- or
intertypic and occur non-randomly in both structural
and non-structural protein gene sequences, or at the 5’
UTR, and with the highest frequency found in the 3D
region that encodes for the RdRp [14,16]. Recombina-
tion events appear to drive the fitness and virulence of

Figure 1. Schematic illustration of EV-A71 genome organization.
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EV-A71 strains, and lead to the emergence of new
EVA-71 strains responsible for major outbreaks. An
EV-A71 C4 strain that had undergone recombination
with CVA16 in the 3D region was responsible for fatal
outbreaks in China where neurological complications
were reported [17]. A similar observation was made
upon the analysis of HFMD cases in China between
2011 and 2012, where viruses resulting from recombi-
nation between EV-A71 and CVA16 were isolated in
severe cases [18]. In addition, a double recombination
event between EV-A71 genogroups B and C, and a
CVA16 strain was suspected to be the cause of an epi-
demic in China [19]. Intertypic recombination events
in EV-A71 are not limited to its close relative CVA16,
as recombination with other Human Enterovirus-A
(HEA) strains has also been reported [20]. Copy-
choice recombination, also known as template switch-
ing, can also occur when RdRp switches templates
during synthesis, resulting in a mosaic-like genome
[21]. This has been reported in PV, and could poten-
tially occur in EV-A71 as well [22].

2.3. Spontaneous mutations and quasispecies

The P2 and P3 regions coding for non-structural pro-
teins in enteroviruses are expected to be sites where
recombination occurs most frequently due to their
higher degree of sequence homology. In contrast, the
more variable P1 region, coding for the viral capsid
proteins is believed to undergo mutations more fre-
quently, particularly at the VP1 region as interactions
with antibodies and host cell receptors require the
virus to evolve quickly in order to evade the host
immune system while maintaining its ability to bind
to its host receptors [19]. Mutations occur at high
rates in RNA viruses due to the lack of proofreading
activity in the RdRp, which leads to approximately 1
× 10−4 substitutions per nucleotide copied [23]. Such
high mutation rate allows EV-A71 to adapt rapidly
to selection pressures, which select for beneficial
mutations [24]. A study on the potential antiviral
activity of two capsid-binding compounds showed
that EV-A71 acquired resistance mutations in VP1
upon successive passages in the presence of the com-
pounds [25]. The resistance mutations acquired how-
ever, had a fitness cost and they were quickly lost upon
removal of the selection pressure, highlighting the
high plasticity of EV-A71 genome. The ability of
EV-A71 to rapidly acquire mutations in response to
specific culture conditions has also been documented
in another study where EV-A71 acquired four
mutations in VP1 sequence at position 104, 145, 146,
and 241 that facilitated its replication after only
three sub-passages in Rhabdomyosarcoma (RD) cells
[26]. Mutations in the P1 region can also improve
viral fitness by promoting interaction with attachment
receptors such as heparan sulfate (HS) or conferring

resistance to capsid-targeting drugs [27–29].
Mutations driven by selection pressure are not strictly
limited to the P1 region. A point mutation in the RdRp
from EV-A71 was reported to confer resistance to
Ribavirin, a broad range antiviral compound effective
against a variety of RNA viruses [30]. Ribavirin is a
nucleoside analogue that is mistakenly incorporated
into the nascent RNA strand and stops RNA synthesis
[35]. The point mutation in RdRp was found to
increase fidelity of the enzyme, hence avoiding incor-
poration of the nucleoside analogue [31].

In addition, the error-prone RdRp of enteroviruses
resulting in high mutation rates enables the formation
of quasispecies, where the viral progeny consists of a
spectrum of closely related genome variants [32].
The existence of quasispecies in enteroviruses has
been well documented and is evidenced by the for-
mation of plaques of different sizes from a single
viral culture suspension [33]. Importantly, the genetic
diversity arising from quasispecies dynamics was
found to play a critical role in the virus fitness and
virulence [24,31]. Consistently, higher-fidelity RdRp
EV-A71 and PV mutants, which limited the gener-
ation of quasispecies, were found to be attenuated in
vivo [31,34]. The genetic diversity resulting from qua-
sispecies dynamics was recently proposed to have dri-
ven the development of neurovirulent EV-A71 isolates
in humans [35]. Similarly, genetic diversity in PV was
demonstrated to be critical for neuroinvasion in order
to overcome the host antiviral activities triggered upon
entry of the first few viral particles into the CNS [34].
This was further supported by findings that high
fidelity PV mutants were less neurovirulent and
pathogenic, or elicited higher titres of neutralizing
antibodies [36].

3. Molecular determinants that influence
EVA-71 fitness and virulence

The dynamic changes occurring in the genome of
EVA-71 resulting from recombination events and
mutations have led to the emergence of strains with
distinct fitness and virulence, and a distinct ability to
cause neurological disease in their host. Earlier studies
have reported that EV-A71 isolates that caused neuro-
logical complications displayed greater resistance to
high temperature and enhanced replication capacity
compared to milder strains [37–39]. These features
were proposed to help the virus survive in its host
during the febrile stage and ensure successful neuroin-
vasion and replication in the CNS. Temperature-
adapted strains were obtained in in vitro culture sys-
tems, supporting that the temperature-resistant phe-
notype could be acquired through mutation [40].

More recently, comparative genome sequence ana-
lyses and mutagenesis approaches have allowed the
identification of mutations in both structural and
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non-structural proteins, as well as in the UTRs that
significantly influenced EV-A71 fitness and virulence
(Table 1). In our literature survey, we have employed
the following keywords: Enterovirus 71 virulence;
molecular determinant; EV-A71 mutation affecting
virulence; comparative studies on EV-A71.

3.1. Mutagenesis approaches

3.1.1. Structural proteins VP1-4
Mutations that influence EV-A71 binding and entry
through interaction with cellular receptors have been
found to play an important role in EV-A71 infectivity
and virulence. EV-A71 entry into human cells is pri-
marily mediated by SCARB2 and PSGL-1 while
other surface molecules such as Annexin2 and HS
function as attachment receptors [41]. Specifically,
HS has garnered a lot of interest with recent studies
highlighting the important role of this surface attach-
ment receptor in EV-A71 virulence and pathogenesis
[29], and the potential antiviral activity of HS mimetic
compounds [42].

The receptor binding domain lies within the VP1
capsid protein, and numerous mutations in this region
have been found to affect receptor binding [41], with
consequences on cell/tissue tropism and replication
efficacy both in vitro and/or in vivo (Table 1).
Mutations in VP1 alter capsid-receptor interactions
either directly by changing the charge of the critical
residues, or indirectly by changing the orientation of
the critical residues when the neighbouring residues
are mutated [28]. Other VP1 mutations were found
to destabilize the capsid, impair VP1-VP2 interactions
and affect virus uncoating [43].

One notable residue is VP1 145, which resides
within the DE loop and is surrounded by positively
charged residues. A glycine (G) residue at that pos-
ition increased significantly EV-A71 binding affinity
to HS due to the highly positive charge of the five-
fold pentamer, which facilitates electrostatic inter-
actions with HS [43,44]. In contrast, presence of the
negatively charged glutamate (E) at position 145 in
VP1 led to decreased binding affinity to HS, resulting
in lower viral titres in the culture supernatant [28, 44–
46]. However, VP1 145E mutant surprisingly per-
formed better in vivo compared to VP1 145G virus
as evidenced by higher viral loads and increased neu-
roinvasion in neonatal mice and cynomolgous mon-
keys [44,47]. The seemingly contradictory in vitro
and in vivo observations led the authors to propose
that the increased adherence property of VP1 145G
virus to HS-expressing cells limited its ability to disse-
minate and invade the CNS [43,44]. In addition,
Huang et al reported increased virulence with a VP1
145E / VP2 149M double mutant, supporting coopera-
tive interaction between VP2 and VP1 during the
entry step [48].

Other VP1 mutations have also been reported to
alter binding efficacy to surface receptors. In silico
simulation models predicted that replacement of
lysine (K) residues with alanine (A) at VP1 162, 242
or 244 would lead to reduced strength of the electro-
static interactions with HS, and this was experimen-
tally confirmed in RD cells [28]. Furthermore,
although a number of key residues in VP1 have been
found to play a critical role in the viral entry step
including attachment and uncoating [49–51], the mol-
ecular and structural insights are lacking to explain
their role.

It is important to note that EV-A71 displays weak
binding affinity to murine SCARB2 (mSCARB2) and
PSGL-1 (mPSGL-1), and it is likely that the virus
uses different surface entry receptors in mice [48,51].
Therefore, whether the findings on the role of various
VP1/VP2 mutations in EV-A71 virulence in mouse
models hold true in human settings remains to be
demonstrated. Some of these findings however were
generated in hSCARB2 transgenic mice [44] or in
NHP models [47], the latter share high homology
with hSCARB2 and are thus expected to be more
predictive.

3.1.2. Non-structural proteins and UTRs
While capsid proteins primarily drive virulence by
influencing interactions with the host receptors,
mutations within non-structural proteins are expected
to affect virulence by altering intracellular steps of the
infection cycle such as genome replication, protein
translation, and virus assembly and maturation.
Mutations in proteins 2C, 3A, 3C, and in 3D polymer-
ase have been reported to influence the in vitro fitness
of EV-A71 strains (Table 1). Mutations within UTRs
of the viral genome could also affect EV-A71 fitness
and virulence (Table 1). For example, nucleotide
changes that affect the stem loop structure in the
5’UTR were associated with reduced IRES-dependent
translational activity [52]. A single point mutation at
position 158 (C158U) in domain V of the stem loop
structure led to reduced virulence of an EV-A71 strain
from genogroup B1 in three-day-old ICR mice [53].
Interestingly, the same C158U substitution was associ-
ated with a fatal case, highlighting the lack of direct
correlation between virulence in a mouse model and
clinical outcome in patients [54]. In PV, C158U sub-
stitution was predicted to cause a change in the sec-
ondary structure of the upper stem loop II, which
altered binding affinity to host factors, and sub-
sequently attenuated viral genome replication
[55,56]. Similar results were obtained with B4 gen-
ogroup strains where A158T mutants caused minimal
CPE and led to reduced viral RNA copy number, pla-
que forming units (pfu) and VP1 production in RD
cells [57].
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In addition, polymorphism at the 79th amino acid
in EV-A71 3C protease was associated with varying
levels of clinical severity [58]. Mechanistically, the
study found that T79V substitution in 3C led to higher
viral replication while reducing interaction with
TRIM21, a component of antibody-dependent intra-
cellular neutralization.

3.2. Comparative genome sequences analyses

In addition to experimental mutagenesis
approaches, numerous genome comparative studies
have been conducted over the years. While these
studies failed to correlate a particular genogroup
with disease severity [59], they have allowed identify
viral determinants of EV-A71 virulence in its human
host. Upon comparing clinical isolates that led to
mild versus more severe disease outcome in patients,
differences were observed in virtually all parts of
EV-A71 genome, including coding and non-coding
regions. In some cases, follow up experiments have
been conducted to verify the potential role of the
viral determinants identified (Table 2). For example,
a single nucleotide difference located in the 5’ UTR
stem loop structure at position 115 between two EV-
A71 strains of different clinical severity was associ-
ated with a differential virulence phenotype in
BALB/c mouse neonates [60]. In another study, Li
et al [38] replaced the protease 2A region from a
severe EV-A71 strain with that of a milder strain.
The recombinant virus displayed slower replication
rate compared to the severe strain at two different
temperatures (37 and 39.5 °C) and in three different
cell lines. One-day-old ICR mice infected with this
mutant also showed less severe pathological features
and lower viral loads compared to mice infected
with the severe strain [38]. Three amino acid differ-
ences at positions 64, 68 and 85 were mapped
between both protease 2A sequences. However, the
study did not investigate further the mechanisms
involved in the differential virulence phenotype
observed, and the relative contribution of each of
these residues.

4. Concluding remarks and future
perspectives

This review provided an update on the main viral
determinants that have been found to influence EV-
A71 fitness and virulence. Unsurprisingly, majority
of the residues identified mapped in the main capsid
protein VP1, affecting attachment or receptor binding.
A number of mutations in non-structural proteins
have also been described to influence in vitro replica-
tion of the virus but their in vivo phenotype has yet to
be reported. Nevertheless, this incomplete picture stillPo
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provides useful information and helps improve our
understanding of EV-A71 virulence mechanisms.

Despite its public health significance and
economic impact on afflicted societies, HFMD has
remained under-studied. Great majority of the
research efforts have been led by academic institutions
supported by governmental funding, as HFMD is not
part of pharmaceutical companies’ R&D portfolio. As
a result, patchy knowledge and limited understanding
of the virulence mechanisms have hampered the
development of effective treatments and the
rational design of vaccine candidates. The limited
availability of relevant animal models [61] has also
contributed to the difficulty in translating pre-clinical
findings.

Furthermore, while the ability to invade the CNS
represents the cornerstone of EV-A71 neurovirulence,
an increasing body of evidence has underscored the
importance of the host immune response in EV-A71
pathogenesis. Indeed, severe HFMD cases have been
associated with heightened production of pro-inflam-
matory mediators in EV-A71 patients with CNS com-
plications [62]. EV-A71 immunopathogenesis has not
been fully elucidated yet, although a number of viral
proteins have been identified to interact with, and
manipulate the host immune system [63]. Thus, it
appears that the ability of EV-A71 to manipulate its
host immune system represents an integral part of
its virulence strategy, and influences the clinical out-
come. However, while some recent evidence support
that EV-A71 strains associated with severe clinical
outcome manipulate differently their host immune
signalling pathways [64], the viral determinants
involved have yet to be reported.

Beyond whole inactivated virus formulations, the
identification of key viral determinants involved in
EV-A71 neurovirulence and immunopathogenesis
represents an opportunity to develop live attenuated
vaccine candidates [65] that may offer complete and
strong protection upon a single immunization,
which would improve the vaccine take up rate and
control more effectively HFMD epidemics.
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