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Abstract

Background: Pneumonia remains the leading cause of death in young children globally and improved diagnostics are
needed to better identify cases and reduce case fatality. Metabolomics, a rapidly evolving field aimed at characterizing
metabolites in biofluids, has the potential to improve diagnostics in a range of diseases. The objective of this pilot study is
to apply metabolomic analysis to childhood pneumonia to explore its potential to improve pneumonia diagnosis in a high-
burden setting.

Methodology/Principal Findings: Eleven children with World Health Organization (WHO)-defined severe pneumonia of
non-homogeneous aetiology were selected in The Gambia, West Africa, along with community controls. Metabolomic
analysis of matched plasma and urine samples was undertaken using Ultra Performance Liquid Chromatography (UPLC)
coupled to Time-of-Flight Mass Spectrometry (TOFMS). Biomarker extraction was done using SIMCA-P+ and Random Forests
(RF). ‘Unsupervised’ (blinded) data were analyzed by Principal Component Analysis (PCA), while ‘supervised’ (unblinded)
analysis was by Partial Least Squares-Discriminant Analysis (PLS-DA) and Orthogonal Projection to Latent Structures (OPLS).
Potential markers were extracted from S-plots constructed following analysis with OPLS, and markers were chosen based on
their contribution to the variation and correlation within the data set. The dataset was additionally analyzed with the
machine-learning algorithm RF in order to address issues of model overfitting and markers were selected based on their
variable importance ranking. Unsupervised PCA analysis revealed good separation of pneumonia and control groups, with
even clearer separation of the groups with PLS-DA and OPLS analysis. Statistically significant differences (p,0.05) between
groups were seen with the following metabolites: uric acid, hypoxanthine and glutamic acid were higher in plasma from
cases, while L-tryptophan and adenosine-59-diphosphate (ADP) were lower; uric acid and L-histidine were lower in urine
from cases. The key limitation of this study is its small size.

Conclusions/Significance: Metabolomic analysis clearly distinguished severe pneumonia patients from community controls.
The metabolites identified are important for the host response to infection through antioxidant, inflammatory and
antimicrobial pathways, and energy metabolism. Larger studies are needed to determine whether these findings are
pneumonia-specific and to distinguish organism-specific responses. Metabolomics has considerable potential to improve
diagnostics for childhood pneumonia.
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Introduction

Pneumonia is the biggest single cause of death in children,

accounting for around 20% of 10 million deaths under the age of 5

years every year globally, 70% of these occurring in sub-Saharan

Africa [1–8]. In The Gambia acute lower respiratory infection

(ALRI), principally pneumonia, has been documented as the

leading cause of death in young children [9,10]. The global

burden of death from pneumonia will need to be markedly

reduced if there is to be any prospect of achieving the United

Nations’ Millennium Development Goal 4 (MDG-4), that is, the

reduction of under-5 mortality two-thirds by the year 2015

[11,12]. International momentum is building to meet this

challenge [13].

Case management will remain a key strategy in reducing the

mortality of pneumonia, and other infectious diseases, even if

current vaccines fulfill their promise. Better diagnostics will be

needed to improve case management, the more so as the

introduction of conjugate vaccines worldwide changes the

aetiology and epidemiology of pneumonia [14,15]. New labora-

tory approaches have the potential to deliver improvements in

diagnostics and metabolomic analysis is one of these.

Metabolomics is a rapidly evolving field that aims to identify

and quantify the concentration changes of all the metabolites (i.e.,
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the metabolome) in a biofluid (e.g. blood, saliva, urine) or model

system. This approach has been used successfully to identify

biomarkers following exposure to ionizing radiation [16–19],

metastatic prostate cancer [20–23] and assess differences in gut

microbiota [24–27]. Additionally, it has been utilized to identify

biomarkers through Nuclear Magnetic Resonance (NMR) in

primarily adult onset pneumonia with known causative agents

[28–30] and in further elucidation of metabolic pathways of lung

injury in mice [31,32]. Metabolomics has the potential to both

improve the understanding of disease mechanisms and the

diagnostics. It can be applied to easily accessible biofluids and

may offer the eventual possibility of effective non-invasive bedside

testing.

This paper describes the application of metabolomic methods in

a pilot study to characterize children with and without severe

pneumonia. The objective is to obtain preliminary data to assess

whether metabolomic analysis might be able to distinguish these

groups and hence have potential diagnostic application. It is also

hoped that this data might provide pointers for the future

exploration of disease mechanisms in childhood pneumonia.

Methods

Study Setting, Design, Patient Selection, Consent and
Ethical Approval

The Gambia is a geographically long and narrow sub-Saharan

African country, extending 400 km inland from the West African

coast along the Gambia River. It has a population of 1.4 million,

over 40% of which is less than 15 years of age (2003 census) [33].

A study of the aetiology of childhood pneumonia is being

undertaken in the coastal area of The Gambia (Fig. 1), in which

cases of pneumonia are being enrolled along with community

controls. The study area comprises Banjul, Kanifing, and Kombo

(North, South, Central and East) municipalities. Written informed

consent from the parent or guardian is required for inclusion in the

study. Specific written informed consent is obtained for percuta-

neous lung aspiration where the procedure is indicated. The study

was approved by the Gambia Government-Medical Research

Council Joint Ethics Committee (L2008.28).

Entry Criteria and Case Definitions
Cases are children aged between 2 and 59 months, originating

from within the study area, presenting to the Medical Research

Council (MRC) hospital in Fajara, the Royal Victoria Teaching

Hospital in Banjul (RVTH), Fajikunda Health Centre, Serekunda

Health Centre, or Brikama Health Centre with severe or very

severe pneumonia defined clinically by modified World Health

Organization (WHO) criteria. Severe pneumonia is defined as

cough or difficulty breathing, plus any of lower chest wall

indrawing, nasal flaring, or an oxygen saturation of ,90% on

pulse oximetry (the latter defining very severe pneumonia).

Children with a cough of two or more weeks, those with severe

anemia (Hb ,6 g/dL) and those with confirmed wheeze at

recruitment are excluded. Community controls without WHO-

defined pneumonia, matched by neighborhood age and sex, are

recruited for cases in a 1:1 ratio.

Sample Collection, Selection, and Microbiology
Blood from cases was collected for culture and a full blood

count, and urine was collected where practicable. Percutaneous

lung aspiration for culture was performed where defined safety

criteria were met and written informed consent was given. Blood

and lung aspirate samples were also subjected to molecular

analysis for pathogen detection using Streptococcus pneumoniae and

Haemophilus influenzae specific primers (lytA and cpsA for S.

pneumoniae, glpQ for H. influenzae) and 16SrRNA primers with

sequencing of the gel electrophoresis bands for identification of

other bacterial species. The culture and molecular methods used

Figure 1. Map of The Gambia, showing hospitals and major health centres and the coastal region in which the study was
conducted.
doi:10.1371/journal.pone.0012655.g001
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have been described elsewhere [34–36]. On 2 September 2008

one hundred fifteen severe cases had been enrolled in the study of

which complete verified data were available for ninety three. Of

these, eleven severe pneumonia cases and matched community

controls were available that had both plasma and urine samples of

sufficient volume for analysis and these were selected for this pilot

study. The samples were stored at 240uC and aliquots were

shipped on dry ice to Georgetown University for metabolomic

analysis.

Sample Analysis
Urine and plasma samples were analyzed using Ultra

Performance Liquid Chromatography (UPLC) coupled to Time-

of-Flight Mass Spectrometry (TOFMS) from Waters (Milford,

MA). In particular, urine samples were deproteinized by 1:5

dilution in 50% acetonitrile with 2 mM debrisoquine sulfate and

30 mM 4-nitrobenzoic acid as internal controls. Plasma samples

were deproteinized by 1:40 dilution in 66% acetonitrile containing

2 mM debrisoquine sulfate and 30 mM 4-nitrobenzoic acid as

internal controls. Following centrifugation at 13,0006 g, 5 mL of

the supernatant were injected into the UPLC-TOFMS. A Waters

Acquity UPLC BEH C18 2.1650 mm column packed with

1.7 mm beads was used to separate the molecules in the biofluids

set at 40uC for the urine and 60uC for plasma. The mobile phase

flow rate was set at 0.5 mL/min. The gradient mobile phase

consisted of water with 0.1% formic acid (A) and acetonitrile

containing 0.1% formic acid (B). A 10 min urine sample run

consisted of 0.5 min of 99% (A), 3.5 min of 20% (B), 4 min of 95%

(B), 1 min of 99% (B), and finally 1 min of 99% (A). A 10 min

plasma sample run consisted of 0.5 min of 100% of (A), 3.5 min of

60% of (B), 5 min of 100% of (B), and finally 1 min of 100% of (A).

Mass spectrometry and accurate mass acquisition was performed

with a Waters QTOF PremierH (Milford, MA) operating at either

positive-ion (ESI+) or negative-ion (ESI-) electrospray ionization

mode. The capillary voltage was set to 3200 V and the sampling

cone voltage to 45 V. The desolvation gas flow was set to 800 L/h

and the temperature was set to 350uC. The cone gas flow was set

to 25 L/h for plasma and 15 L/h for urine and the temperature

was set to 130uC. Intermittent injections of sulfadimethoxine as a

lock mass ([M+H]+ = 311.0814 m/z and [M2H]2 = 309.0658

m/z) at a concentration of 300 pg/mL in 50% acetonitrile at a

rate of 40 mL/min, were used for accurate mass measurements.

Data Processing and Multivariate Data Analysis
Mass chromatograms and spectra were acquired with the

software MassLynx (Waters) in centroid format and markers were

extracted with the software MarkerLynx (Waters). Urine samples

were normalized to their respective creatinine relative peak area of

[M+H]+ = 114.0667 m/z with retention time of 0.32 min before

further analysis of the data. Two separate multivariate statistical

methods were utilized for biomarker extraction, SIMCA-P+ vs

12.0 (Umetrics, Sweden) and the machine-learning algorithm

Random Forests (RF). For SIMCA-P+ analysis, all centroid data

were Pareto scaled, which increases the importance of low

abundance ions without giving importance to noise. ‘Unsuper-

vised’ (i.e. blinded, identity of the samples was not known by the

Georgetown group) data were analyzed by Principal Component

Analysis (PCA), while ‘supervised’ (i.e. unblinded, identity of the

samples was later revealed) analysis was by Partial Least Squares-

Discriminant Analysis (PLS-DA) and Orthogonal Projection to

Latent Structures (OPLS). Potential markers were extracted from

S-plots constructed following analysis with OPLS, and markers

were chosen based on their contribution to the variation and

correlation within the data set.

In order to address issues concerning overfitting of the data,

which is common with large datasets containing relatively small

numbers of samples, Random Forests analysis was performed

through R, a programming language that allows for statistical

processing [37]. Random Forests is a machine-learning algorithm

that has been used successfully in identifying metabolic biomarkers

in biofluids [16,19,38]. The samples were assigned to control

versus pneumonia groups and ten thousand trees were constructed

with variable importances averaged over twenty five independent

random forests. Multidimensional scaling plots were constructed

with analysis of either the whole sample set or the top one hundred

metabolites and percentages of classification accuracy were

calculated. Bootstrapping of the results from the twenty five

independent random trees was applied to determine the 95%

confidence intervals of the variable importance ranks. Addition-

ally, heatmaps were designed of the top fifty ions generated

through RF. The samples were grouped by treatment and the

metabolites were hierarchically clustered by complete linkage

using the euclidian distance. To aid in visualization, each

metabolite was scaled by the maximum intensity value of that

metabolite in the data set (i.e. each row was divided by the

maximum value in the row before color assignment).

Molecular Ion Identification
Selected ions that showed variable differences between the

Control and Pneumonia groups were chosen for further analysis

and identification. Fifteen ions from either urine or plasma samples

were chosen based on the S-plot and RF significance ranking and

exhibited statistically significant p-values (p,0.05) based on analysis

of the means of the data through two-tailed t-test. Searches for the

identity of the metabolites were conducted through the publicly

available online database ‘‘Madison Metabolomics Consortium

Database’’ (MMCD) with tol (ppm) equal to twenty and ions were

validated through tandem mass spectrometry (MS/MS) against

pure chemicals (Sigma Aldrich, St. Louis, MO). Chemicals of the

highest available purity were either diluted in 50% acetonitrile for

urine samples or 66% acetonitrile for plasma samples and

fragmented with ramping collision energy of 5–30 eV. MS/MS

spectra of the pure chemicals were compared to the biological

sample MS/MS spectra for the masses in question.

Results

Among the eleven children with clinically defined severe

pneumonia (the cases), five were female and six were male, and

six of the eleven were under two years old while five were two years

or older. Ten had radiographic changes of pneumonia, while the

other had a normal radiograph. The length of illness at presentation

ranged from 1–7 days (median 3 days) and four children had

reportedly received antibiotics before presentation. The total white

blood count of cases ranged from 7.8 to 67.76103/mm3 (median

13.4) compared to 3.9–11.0 (median 7.2) in community controls.

Culture of blood (n = 11) or lung aspirate (n = 3) identified a

pathogen in just one case (S. pneumoniae) and blood cultures were

negative in all controls. Molecular analyses of plasma and lung

aspirate identified an organism in seven out of eleven cases: S.

pneumoniae in five, H. influenzae in one and S. pneumoniae and H.

influenzae in the other. Five of the eleven asymptomatic community

controls also had organisms identified (S. pneumoniae in one, H.

influenzae in three, S. pneumoniae and H. influenzae in one).

Multivariate Data Analysis of Urine Samples
The urine samples were analyzed in both positive and

negative ionization modes with the UPLS-TOFMS. Unsuper-
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vised PCA analysis revealed a good separation of the two groups

when investigating the first two principal components for the

results of positive ionization mode (Fig. 2A). However, a clearer

separation of the groups for the negative mode data was seen

when the samples were analyzed with PLS-DA (Fig. S1).

Additionally, OPLS showed good clustering of the control and

pneumonia groups, with larger variation in the pneumonia

group (Fig. S1). The S-plots that were constructed from the

OPLS analysis showed a significant number of ions up-regulated

in the pneumonia group. Additionally, the supervised PLS-DA

analysis with assignment of the groups based on disease status

and sex revealed a sex dependent clustering of the pneumonia

group, which was not present in the controls (Fig. S3). Similar

analysis based on age or antibiotic usage within seven days of

sample collection did not reveal any clear clustering (data not

shown).

RF analysis, utilizing the whole sample set of ions, showed

distinct clustering of the two groups in positive mode; however,

three of the pneumonia samples were misclassified as belonging in

the control group. The overall classification accuracy of the sample

set was 86.4%. The negative mode data had an overall

classification accuracy of 95.5%, with only one sample of the

pneumonia group misclassified as belonging in the controls. A

heatmap was additionally constructed based on the top fifty

ranked metabolites of the positive mode data, revealing patterns of

differential levels of urinary metabolites between controls and

pneumonia samples (Fig. 2E).

Ion selection for verification was based either on the abundance

and correlation coordinates of the ions on the S-plot or the

importance ranking from RF. Specifically, seven urinary ions were

picked based on these criteria for further analysis. Of those, the

identity of two ions was verified through MS/MS. Ion 1 from

Table 1 with [M+H]+ = 169.0352 m/z and retention time of

0.3281 min was identified as uric acid, which is involved in the

metabolism of purines (Fig. 3A, p = 0.026). Ion 2 with

[M+Na]+ = 178.0586 m/z and retention time of 0.2729 min was

verified as L-histidine (Fig. 3B, p = 0.004). Additional search for

the protonated form of L-histidine revealed an ion at

[M+H]+ = 156.078 m/z and retention time of 0.2864 min

(Fig. 3C, p = 0.00196).

Five additional urinary ions were further evaluated with MS/

MS, though the identities were not verified against the pure

chemicals that were tested. In particular ion number 8

([M2H]2 = 145.0606 m/z, retention time of 2.764 min), ion

number 9 ([M+H]+ = 101.0356 m/z, retention time of

0.2948 min), ion number 10 ([M+H]+ = 335.0676 m/z, retention

time of 2.3983 min), ion number 11 ([M+H]+ = 241.0326 m/z,

retention time of 3.9999 min), and ion number 12

([M+H]+ = 243.0986 m/z, retention time of 0.3166 min) were

tested against L-glutamine, alanyl-glycine (Ala-Gly), adipic acid,

and D-glutamine for ion 8, hydantoin for ion 9, b-nicotinamide

mononucleotide for ion 10, L-cystine for ion 11, and b-thymidine

for ion 12. Ions 3–7 and 15 (Table 1) have been clearly marked on

Fig. 2D and 2F.

Multivariate Data Analysis of Plasma Samples
The plasma samples were also analyzed in both positive and

negative ionization modes. No normalization was applied to the

samples, unlike the urines, since the levels of the plasma that were

obtained were tightly controlled. Analysis of the positive ionization

mode data with the multivariate statistical software SIMCA-P+

demonstrated a good separation between the two groups at the

PCA scores plot (Fig. S2). Only one sample of the control group

was misclassified as belonging in the pneumonia group, meaning

that its overall metabolite profile resembled closely that of the

pneumonia group. The separation became clearer when super-

vised PLS-DA analysis was applied, demonstrating the variable

differences between the two groups (Fig. S2). On the negative

ionization mode, the PCA analysis also revealed a clear separation

between the two experimental groups, with only one pneumonia

sample being misclassified as belonging in the control group

(Fig. 2B). Furthermore, the PLS-DA and OPLS scores plots

revealed a distinct separation of controls from pneumonia samples

(Fig. S2). For further analysis of ions, the negative mode S-plot was

chosen for extraction of markers (Fig. 2D). RF analysis showed an

overall classification accuracy of 86.4%, which increased to 90.9%

when only the top one hundred ions were used to classify the

samples into separate groups. The percentages of classification

accuracy were identical for the analysis of both positive and

negative mode data.

Selected ions for further verification and validation were chosen

through the S-plots and RF top ranked lists. In particular, ion

number 3 with [M2H]2 = 167.0202 m/z, retention time of

0.3179 min was verified as uric acid, which as mentioned earlier

is involved in the purine metabolism. Plasma levels of uric acid

appear to be upregulated in the pneumonia group relative to the

controls, although not statistically significant (Fig. 4A, p = 0.119).

This is in contrast to the urine levels where the uric acid levels are

downregulated in the pneumonia group (Fig. 3A, p = 0.026). Ion

number 4 with [M2H]2 = 135.0303 m/z, retention time of

0.3158 min was verified to be hypoxanthine, also involved in the

metabolism of purines (Fig. 4B, p = 0.008). Ion number 5 with

[M2H]2 = 146.0447 m/z, retention time of 0.2821 min was

verified to be glutamic acid, involved in multiple metabolic

processes (Fig. 4C, p = 0.0165). Ion number 6 with

[M2H]2 = 203.0811 m/z, retention time of 1.6051 min was

verified to be L-tryptophan, which is an essential amino acid

and the only stereoisomer used in structural or enzymatic proteins

(Fig. 4D, p = 0.006). Ion number 7 with [M2H]2 = 426.0235 m/z

and retention time of 0.3533 min was verified to be adenosine-59-

diphosphate (ADP) (Fig. 4E, p = 0.0004).

Four additional ions were further investigated with MS/MS

against pure chemicals; however, their identity was not verified as the

MS/MS spectra differed significantly. In particular ion number 13

([M+H]+ = 274.0924 m/z, retention time of 0.317 min), ion number

14 ([M+H]+ = 112.0496 m/z, retention time of 0.3231 min), and ion

number 15 ([M2H]2 = 145.0604 m/z, retention time of 0.273 min)

were tested against 29-deoxyadenosine and muramic acid for ion 13,

cytosine and pyrrole-2-carboxylic acid for ion 14, and L-glutamine,

Ala-Gly, adipic acid, and D-glutamine for ion 15. Ions 3–6, 14 and

15 (Table 1) have clearly been marked on both the S-plot and the

heatmap (Fig. 4D and F).

Discussion

Metabolomics is a powerful new technology that allows for the

assessment of global metabolic profiles in easily accessible biofluids

and biomarker discovery in order to distinguish between diseased

and non-diseased status. We utilized this approach in a pilot study

in urine and plasma samples from pneumonia patients from The

Gambia. The global metabolic profiling and subsequent multi-

variate analysis clearly distinguished severe pneumonia patients

from matched community controls. Although no common

pathogenic factor was identified in all the cases, it is noteworthy

that a similar disease manifestation allows for similar metabolic

profiles and identification of biomarkers. Six metabolites emerged

as markers of key differences between the two groups: uric acid, L-

histidine, hypoxanthine, glutamic acid, L-tryptophan, and ADP.
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Figure 2. Analysis of the control and pneumonia samples utilizing SIMCA-P+ and Random Forests revealed differences in ion
abundance between the two groups. Panels A and B show PCA scores plots for urine (ESI+ mode) and for plasma (ESI - mode), respectively. PCA
analysis is an unsupervised method of extracting information, where the classes (i.e. experimental groups) are unknown. Panels C and D show the S-
plots constructed from the supervised OPLS analysis of urine (ESI+ mode) and plasma (ESI- mode) respectively. Ions with the highest abundance and
correlation in the pneumonia group with respect to the controls are present on the upper far right hand quadrant, whereas ions with the lowest
abundance and correlation in the pneumonia group with respect to the control group are residing in the lower far left hand quadrant. Ions are
marked with either their identity or a number corresponding to Table 1. Panels E and F show heatmaps for urine (ESI+ mode) and plasma (ESI- mode)
respectively. The heatmaps were constructed based on the top fifty metabolites of importance, which were extracted with Random Forests analysis.
Variable differences are revealed between the control and pneumonia groups, with verified and unknown ions marked on the right corresponding to
Table 1. The parallel analysis of the samples with SIMCA-P+ and Random Forests allows for the ability to verify that ions, which are identified through
both ways (i.e. hypoxanthine), are highly significant, as depicted through two completely different algorithms. Additionally, it allows for the increase
of the numbers of ions that are potential candidates for biomarkers.
doi:10.1371/journal.pone.0012655.g002
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These metabolites together are important for the host response to

infection through antioxidant, inflammatory and antimicrobial

pathways, and energy metabolism.

Our observation of lower levels of urinary uric acid in severe

pneumonia patients relative to controls suggests increased tubular

reabsorption and renal retention of the analyte perhaps to protect

Figure 3. Relative changes of urinary ions that were verified with tandem mass spectrometry. Data is represented at the mean 6 SE of
the peak areas extracted through the TOFMS data (with * representing p,0.05 and ** representing p,0.01). The real peak areas were normalized to
each sample’s respective creatinine ([M+H]+ = 114.0667 m/z) peak area.
doi:10.1371/journal.pone.0012655.g003

Table 1. Identification of urinary and plasma biomarkers in severe pneumonia cases.

Mass (m/z)

Marker No.
Retention
Time (min) ESI Mode Biofluid Found Calculated

ppm
error Empirical formula Identity

Relative to
Controls

1 0.3281 pos Urine 169.0352 169.0361 5.3 C5H4N4O3 Uric Acid Decreased

2 0.2729 pos Urine 178.0586 178.0592 3.4 C6H9N3O2 L-Histidine+Na Decreased

2b 0.2864 pos Urine 156.078 156.0772 5.1 C6H9N3O2 L-Histidine Decreased

3 0.3179 neg Plasma 167.0202 167.0205 1.8 C5H4N4O3 Uric Acid Increased

4 0.3158 neg Plasma 135.0303 135.0307 3.0 C5H4N4O Hypoxanthine Increased

5 0.2821 neg Plasma 146.0447 146.0453 4.1 C5H8NO42 Glutamic Acid Increased

6 1.6051 neg Plasma 203.0811 203.0820 4.4 C11H12N2O2 L-Tryptophan Decreased

7 0.3533 neg Plasma 426.0235 426.0216 4.5 C10H15N5O10P2 ADP Decreased

8 2.764 neg Urine - - - - Unknown -

9 0.2948 pos Urine - - - - Unknown -

10 2.3983 pos Urine - - - - Unknown -

11 3.9999 pos Urine - - - - Unknown -

12 0.3166 pos Urine - - - - Unknown -

13 0.317 pos Plasma - - - - Unknown -

14 0.3231 pos Plasma - - - - Unknown -

15 0.273 neg Plasma - - - - Unknown -

Biomarkers that exhibit significant differences between controls and pneumonia samples as determined through SIMCA-P+ and Random Forests. Markers 1–7 have been
verified through tandem mass spectrometry (MS/MS) against pure chemical standards. Markers 8–15, although were determined as of high importance through the
multivariate data analysis, were also tested against pure chemical standards, but were not verified as such.
doi:10.1371/journal.pone.0012655.t001
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against oxidative stress [39,40]. In contrast, plasma levels of uric

acid were elevated in pneumonia cases. In in vitro studies, uric acid

reacted rapidly with ozone and conferred protection of plasma

lipids from peroxidation and erythrocyte lysis [39]. Additional

studies have shown that uric acid released from injured cells

constitutes a major endogenous danger signal that activates the

NALP3 inflammasome (also called cryopyrin or NLRP3), leading

to IL-1b production [41] as part of the host response to lung

inflammation and fibrosis. Taken together, these studies suggest

that uric acid plays a major anti-inflammatory role in pneumonia

cases and allows for protection of the host organism from oxidative

damage. Additionally, plasma hypoxanthine levels were elevated

in patients relative to controls. Hypoxanthine and xanthine are the

precursors of uric acid and uric acid was also elevated in the

plasma of pneumonia patients, although not statistically signifi-

cant. Xanthine on the other hand was not identified as a marker

through the statistical analysis. High concentrations of hypoxan-

thine, xanthine, and uric acid have also been shown in patients

with bacterial meningitis [42]. This may be because sepsis

provokes significant alterations in energy metabolism homeostasis

with hypoxanthine and uric acid, offering possibly useful surrogate

markers of infection [42,43]. Elevation of hypoxanthine has also

been reported during septic shock and may reflect early high

energy nucleotide failure [44].

An additional marker with potentially important implications

for disease outcome is ADP. The main role of ADP in the blood is

the activation of platelets for effective hemostasis and blood

aggregation [45,46]. Our results indicated that ADP levels in

plasma from pneumonia patients are downregulated. This in turn

may lead to decreased platelet activation and decreased formation

of aggregates and thromboemboli. Lack of purinergic receptors for

ADP is a possible way to protect against aggregate formation,

however the reduced plasma levels of ADP in pneumonia patients

in our studies could confer a protective mechanism against organ

failure [45,47]. Nonetheless, other mechanisms, such as chemo-

kine activation [46], appear to mediate the platelet activation

under certain conditions, such as low ADP availability. Further

work is required in this direction of low plasma ADP in

pneumonia cases and its role in disease outcome and patient

survival.

The last three markers identified in this study are amino acids.

Hendriksen et al stressed that glutamic acid uptake and synthesis is

Figure 4. Relative changes of the plasma ions that were verified with tandem mass spectrometry. Data is represented as mean 6 SE of
the peak areas extracted through the TOFMS data (with * representing p,0.05 and ** representing p,0.01). Unlike the urine samples, plasma
samples do not require normalization to a particular metabolite since the volumes obtained are tightly controlled. Uric acid (Panel A) is upregulated
in pneumonia plasma levels, although not statistically significant (p = 0.119). This is in contrast to the urine findings. Hypoxanthine and glutamic acid
levels in Panels B and C are significantly upregulated in pneumonia samples. On the other hand, L-tryptophan and adenosine-59-diphosphate (ADP)
in Panels D and E are significantly downregulated in pneumonia samples.
doi:10.1371/journal.pone.0012655.g004
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important for full Streptococcus pneumoniae fitness and virulence [48].

The higher levels of glutamic acid in the plasma in patients relative

to controls in our study may indicate cellular injury and

protection. Additionally, excess circulation of glutamic acid during

the disease state requires special attention in this particular human

population as it can be associated with central nervous system

damage, which is sometimes associated with severe pneumonia

[49]. L-tryptophan, on the other hand, was lower in plasma of

patients relative to controls. Tryptophan starvation is a recognized

antimicrobial defense mechanism through Indoleamine 2,3-

dioxygenase (IDO) and mediates immunoregulatory effects [50].

It is possible therefore, that tryptophan starvation initially exhibits

an antimicrobial effect to aid in fighting the disease status and later

contributes in regulating the T-cell response from a possible

overstimulation [50]. Urinary L-histidine was also lower in

patients relative to controls. L-histidine is a precursor for the

synthesis of histamine, a major contributor to inflammation,

asthma, and potentially pneumonia in both human [51] and

animal studies [52]. The lack on detection of histamine in urines of

pneumonia patients and retention of L-histidine is possible

indication that histidine is being converted to histamine in the

tissues of pneumonia patients and contributing to their inflamma-

tory state and propagation of disease status.

The sex dependent clustering of the pneumonia group, which

was not present in the controls, points to differences in the

metabolic response to pneumonia between male and female

patients. Sex differences have been documented in survival

following community-acquired pneumonia and nosocomial infec-

tions, which could be explained by differences in immune

responses, genetics, or sex hormone levels [53,54]. Additionally,

a study by Casimir et al on childhood pneumonia revealed

significant differences in inflammatory markers between male and

female patients [55], making identification of metabolic differences

between male and female patients an attractive candidate for

future studies on diagnosis and drug development.

This small-scale preliminary study has clear limitations. It is not

possible to say whether the metabolomic profile seen in these

children with severe pneumonia is pneumonia-specific or associ-

ated with a wider spectrum of illness. Either of these possibilities is

potentially diagnostically significant, and further work investigat-

ing the specificity of the findings must be done to resolve this

question. The literature reporting metabolomic analysis in

infectious diseases is limited. The majority of the work has been

conducted in meningitis patients and considerable work has been

conducted on the assessment of global metabolic profiling of

bacteria [56–58]. Pneumonia specific urinary metabolomic studies

have concentrated on primarily adult populations with specific

aetiology; however, this study is the first to provide pneumonia

metabolomic analysis in urine and plasma from a specific pediatric

population in parallel. Additionally, the differences in markers

identified could be attributed to age and population related

differences, overall aetiology of the pneumonia phenotype, and

technologies and analytical methods utilized. This study was too

small to define organism-specific metabolic responses, which will

be useful for diagnosis, and it was not possible using available

sensitive molecular techniques to distinguish causative pathogens

from asymptomatic ‘DNAemia’. This is a general challenge for the

growing field of molecular diagnostics rather than a limitation of

this study in particular. The size of this study also means it has

likely failed to identify other metabolites that will be important for

diagnostics in the future.

The ability of the methods used in this study to clearly

distinguish the children with severe pneumonia from their controls

points to the considerable potential of metabolomics to improve

diagnosis in sick children and to advance the knowledge of disease

mechanisms. This preliminary work’s importance is further

emphasized by the fact that specific markers were identified in

an outbred human population with genetic variability, no clear

common causative agent, and simply a shared clinical syndrome.

Metabolomics may provide an effective means to overcome the

inability of current molecular pathogen detection techniques to

distinguish causative pathogens from organisms that are ‘innocent

bystanders’. Larger scale studies are now needed to determine the

extent of its potential and to identify markers for different

causative agents and for other potentially important aspects of

disease such as illness severity, key comorbidities, and response to

treatment. Once a panel of key biomarkers has been established

there is the potential to take metabolomics closer to the bedside

through its incorporation into point-of-care devices, which it is

hoped will deliver breakthroughs in care in high mortality settings,

and the evolution of which will likely be rapid in the next few

years.

Supporting Information

Figure S1 Scores plots generated through the chemometric

software SIMCA-P+ vs 12.0. A and B depict the separation

between the controls and pneumonia groups when assessing the

metabolic profile of urines under positive ionization mode. A is a

plot generated from PLS-DA analysis whereas B is an OPLS plot,

from which we are able to determine that a greater variability

exists within the pneumonia group, possibly due to different

aetiological agents. C, D, and E panels in order represent the

PCA, PLS-DA and OPLS plots of the negative ionization mode

urines.

Found at: doi:10.1371/journal.pone.0012655.s001 (0.36 MB

TIF)

Figure S2 Scores plots generated through SIMCA-P+ based on

the metabolic profiles of plasma samples from controls and

pneumonia patients. A, B, and C panels show the PCA, PLS-DA

and OPLS scores plots from positive ionization mode plasma

samples, respectively. D and E show the PLS-DA and OPLS

scores plots from the negative ionization mode.

Found at: doi:10.1371/journal.pone.0012655.s002 (0.37 MB TIF)

Figure S3 PLS-DA scores plots examining the existence of sex

differences based on metabolic profiles between control and

pneumonia groups. Panels A (ESI+) and B (ESI-) based on urinary

metabolic profiles clearly depict that possible differences based on

sex could exist in the pneumonia group. In panels C (ESI+) of

plasma samples separation of profiles based on sex is still evident,

whereas in panel D (ESI-) of plasma samples the separation is not

existent.

Found at: doi:10.1371/journal.pone.0012655.s003 (0.38 MB TIF)
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