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Abstract: Germline oxidative stress is intimately linked to several reproductive pathologies including a
failure of sperm-egg recognition. The lipid aldehyde 4-hydroxynonenal (4HNE) is particularly damaging
to the process of sperm-egg recognition as it compromises the function and the stability of several
germline proteins. Considering mature spermatozoa do not have the capacity for de novo protein
translation, 4HNE modification of proteins in the mature gametes has uniquely severe consequences
for protein homeostasis, cell function and cell survival. In somatic cells, 4HNE overproduction has
been attributed to the action of lipoxygenase enzymes that facilitate the oxygenation and degradation
ofω-6 polyunsaturated fatty acids (PUFAs). Accordingly, the arachidonate 15-lipoxygenase (ALOX15)
enzyme has been intrinsically linked with 4HNE production, and resultant pathophysiology in various
complex conditions such as coronary artery disease and multiple sclerosis. While ALOX15 has not
been well characterized in germ cells, we postulate that ALOX15 inhibition may pose a new strategy to
prevent 4HNE-induced protein modifications in the male germline. In this light, this review focuses on
(i) 4HNE-induced protein damage in the male germline and its implications for fertility; and (ii) new
methods for the prevention of lipid peroxidation in germ cells.

Keywords: male fertility; oxidative stress; 4-hydroxynonenal (4HNE); arachidonate 15-lipoxygenase
(ALOX15); lipid peroxidation; reactive oxygen species (ROS)

1. Introduction: Fertility and Oxidative Stress

A decline in fertility rates is becoming an increasingly prevalent issue worldwide, with
current estimates indicating that 1 in every 6 couples experience issues with conception [1].
Furthermore, the contribution of male factor infertility accounts for up to half of these cases [2].
The leading cause of male infertility stems from a loss of sperm function, ultimately resulting in a
loss of fertilization potential [3]. This loss in function is causatively linked to oxidative stress within
the cell [4,5] driven by the presence and/or overproduction of intracellular reactive oxygen species
(ROS). Reactive oxygen species are oxygen-containing molecules that can contain unpaired electrons
(radicals) or be non-radical oxidizing agents [6]. The consequences of ROS are realized through redox
reactions with a great number of biological substrates, producing either further reactive products
or oxidized biomolecules. Within spermatozoa, low levels of ROS are essential for promoting key
stages of development. For instance, ROS actively participate in metabolic pathways during sperm
activation, which leads to cholesterol efflux, cyclic adenosine monophosphate (cAMP) production
and tyrosine phosphorylation, important events that contribute to fertilization competence [5,7–9].
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However, if intracellular ROS production escalates beyond the buffering antioxidant capacity of the cell
in a state of oxidative stress, the redox biochemistry leads to damaging effects such as lipid peroxidation,
organelle degradation, DNA damage and eventually cell death [10,11]. Typically, antioxidants, which
counteract and protect against oxidative stress, are housed within the cytoplasm and mitochondria of
somatic cells [12,13]. However, spermiogenesis, a process that gives rise to the unique architecture
of mature spermatozoa, results in significant cytoplasmic depletion [14,15], thereby diminishing
antioxidant capacity in the spermatozoon [16]. Furthermore, during testicular maturation, there is an
enrichment of long chain poly-unsaturated fatty acids (PUFAs) in the sperm plasma membrane, which
can serve as important substrates for lipid peroxidation [10]. Indeed, PUFAs such as arachidonic acid,
linoleic acid and docosahexaenoic acid are enriched within the sperm plasma membrane [17,18],
and can be broken down into cytotoxic lipid aldehydes that promote cellular damage and the
dysregulation of cell function [19]. Common metabolites of lipid peroxidation within spermatozoa
include reactive aldehyde compounds such as 4-hydroxynonenal (4HNE) and malondialdehyde
(MDA) [19–21]. Herein, we review literature pertaining to the reactivity, production and prevention of
these cytotoxic lipid peroxidation products in the male germline.

2. Aldehydes in the Male Germline

In developing male germ cells and mature spermatozoa, two of the primary aldehyde products
of lipid peroxidation that have been reported to cause cellular damage are MDA and 4HNE [19,22].
Increased levels of MDA are linked to a reduction in sperm concentration, normal morphology and
motility [23,24]. Similarly, MDA is present at higher levels within the sperm of infertile men and is
thought to initiate a loss of motility, reduction in sperm concentration and atypical morphology [24].
The levels of 4HNE within spermatozoa are positively correlated with mitochondrial superoxide
formation [10], suggesting that elevated levels of 4HNE place sperm cells under increased levels of
oxidative stress. Accordingly, the presence of 4HNE has been linked to numerous adverse effects on
sperm function including a decline in motility, morphology, the capacity to acrosome react, and to
engage in interactions with the zona pellucida of oocytes [19,25,26]. Specifically, the exposure of
biomolecules to 4HNE stimulates an upregulation of mitochondrial ROS, generating a cascade of
oxidative stress within human spermatozoa [19], as depicted in Figure 1.
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Figure 1. The cascade of oxidative stress in human spermatozoa. Mitochondrial reactive oxygen
species (ROS) are produced and initiate the breakdown of the lipid plasma membrane. This promotes
lipid peroxidation and the production of cytotoxic lipid aldehydes such as 4-hydroxynonenal (4HNE).
In turn, 4HNE upregulates ROS production while causing an overall decline in cell function, ultimately
impairing sperm-egg interaction. Figure created with BioRender.
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Overproduction of 4HNE within sperm cells is linked to a reduction in sperm motility [26] and
sperm-zona pellucida (ZP) interaction mediated by the molecular chaperone heat shock protein A2
(HSPA2) [25], and an increase in cell death [19]. There are several non-enzymatic pathways for aldehyde
production, the best characterized being Fenton reactions, whereby ferrous iron (Fe2+) within the cell is
able to interact with lipids (LOOH) allowing the formation of lipid hydroperoxides (LO•) as shown in
Equation (1) [27] and the production of aldehydes (as reviewed by Spiteller and Ayala et al.) [20,27].

LOOH + Fe2+ → LO• + Fe3+ + OH• (1)

Importantly, 4HNE is also produced via enzymatic pathways involving lipoxygenases such
as arachidonate 15-lipoxygenase (ALOX15), with several studies highlighting that key metabolites
such as 13-HpODE lead to the production of 4HNE [20,28], while MDA appears to be synthesized
independent of lipoxygenase activity [29]. 4-hydroxynonenal is considered to be the most toxic lipid
aldehyde produced within the cell [30]. This is due, at least in part, to its reactivity and subsequent
capacity to alkylate proteins, generate DNA damage and ultimately cause cell death [19,25,26,31].
The reactivity of 4HNE lies in its ability to form Schiff bases and/or participate in Michael reactions.
The preferential biological targets for these reactions are proteins, specifically primary amines such
as lysine, but reactions with cysteine and histidine amino acid residues are also common [32,33].
A particular target for 4HNE adduction is succinate dehydrogenase (SDH) [19], a key protein in the
electron transport chain within the mitochondria. Excess 4HNE has been shown to form adducts with
SDH, which result in a loss of function. This ultimately facilitates electron leakage to electron acceptors
in an unregulated fashion, increasing the production of ROS and eventually precipitating a state of
oxidative stress within the cell [19]. Another such example in human spermatozoa is the molecular
chaperone HSPA2 [34], which is also targeted for adduction by 4HNE [25]. Such modifications of
HSPA2 results in a loss of its chaperoning ability and thus significantly attenuates the ability of the
protein to coordinate the expression of receptors on the sperm surface; a maturational event that is
critical for sperm-egg recognition [25]. Ultimately, this sequence of events culminates in a severely
reduced capacity for fertilization [25,26].

Overall, the production of 4HNE has been shown to have a direct effect on the function of
its protein targets, leading to cellular damage in the male germline as well as other cell types.
Therefore, targeting the lipoxygenases responsible for the production of these reactive aldehydes
may be an important strategy to both counter the onset of oxidative stress and reduce the cellular
damage generated by 4HNE. Here, we investigate in more detail the involvement of lipoxygenase
proteins in the enzymatic production of 4HNE.

3. Mechanisms for the Generation of 4HNE: A Focus on Lipoxygenase Proteins

Lipoxygenase proteins are a highly conserved family of enzymes that are ubiquitously found in
plants [35,36], fungi [37] and mammals [38], but are rarely found in lower eukaryotes and prokaryotes
and are absent in archaea and viruses [38–40]. Mammalian lipoxygenases typically consist of singular
polypeptide chains, two functional domains and a molecular mass of ~75–80 kDa [41–43]. The C
terminus contains the catalytic domain, while the N terminus is involved in processes governing
membrane binding and interaction with substrates [42]. The catalytic pocket of the enzyme coordinates
a single, non-heme containing iron atom per molecule [41,44], which is actively involved in the redox
reactions necessary to facilitate the selective peroxidation of PUFAs [41,45]. However, this two domain
structure is not conserved across all prokaryotes [46], and the presence of manganese replaces iron
in the catalytic site of some fungal lipoxygenases [47–49]. The classification system of lipoxygenases
(ALOX-n) defines the carbon position where oxygenation takes place along the PUFA chain. Table 1
indicates the known paralogs of human lipoxygenases, their substrates and metabolic products.

PUFA substrates for ALOX15 includeω-6 fatty acids such as arachidonic and linoleic acid and
theω-3 fatty acid, docosahexaenoic acid [50]. The mechanisms underpinning lipoxygenase function
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are still not entirely understood. However, it is clear that the iron center can alternate between
ferric (Fe3+/active) and ferrous (Fe2+/inactive) forms [43] and this redox activity assists in hydrogen
abstraction (L-H→L) of PUFAs when the iron atom undergoes a reduction (Fe3+→Fe2+) [41,51].
This reaction mechanism anticipates that the enzyme is converted back to its active form
through oxidation of the iron center (Fe2+→Fe3+) and oxygenation (L→LOO) of the PUFA [41,43].
Importantly, recent studies assessing the enzymatic action of ALOX15 have identified binding sites for
allosteric inhibition, which will allow for further insight into its specific activity [52,53].

Table 1. Paralogs and metabolites of the family of human lipoxygenase enzymes.

Lipoxygenase Enzyme 1 Substrates 2 Metabolic Products References

ALOX5 AA LA EPA 5-HpETE, 5-HETE and DGLA, Leukotrienes [43,54]

ALOX12 AA LA EPA DGLA 12-HpETE, 12-HETE, 12-HPETre, 12-HEPE, 12-HPOTrE [50,54,55]

ALOX15 AA LA DHA 15-HpETE, 15-HETE, 13-HpODE, 13-HODE, 17-HpDHA [50,54,56,57]

ALOX12B AA LA LωHC 12R-HpETE, 12R-HETE, 9R-HpODE, 9HωHC [50,54,58]

ALOX15B AA 15-HpETE, 15-HETE [50,54,59]

ALOXE3 12(R)HpETE 9HωHC Epoxyalchohols (metabolism of 12(R)-HpETE)
9TEHωHC [54,60] 3

1,2 Paralogs of the lipoxygenase family are shown along with their corresponding substrates of
arachidonic acid (AA, red), linoleic acid (LA, green), eicosapentanoic acid (EPA) and docosahexaenoic
acid (DHA). Abbreviations: arachidonate lipoxygenase (ALOX), epidermal type lipoxygenase (ALOXE),
hydroperoxyeicosatetraenoic acid (HpETE), hydroxyeicosatetraenoic acid (HETE), 12-hydroxyeicosapentaenoic acid
(HEPE), Hydroperoxyeicosatrienoic acid (HPEtrE) hydroperoxyoctadecadienoic (HpODE), hydroxyoctadecadienoic
(HODE), 12-hydroperoxy-9Z,13E,15-octadecatrienoic acid (12-HPOTrE) hydroperoxydocosahexaenoic acid (HpDHA)
and Dihomo-γ-linoleic acid (DGLA), Linoleyl-ω-hydroxy ceramide (LωHC), 9(R)-hydroperoxyllinoleoyl-ω-hydroxy
ceramide (9HωHC), 9(R)-10(R)-trans-epoxy-11E-13(R)-hydroxylinoleoyl-ω-hydroxy ceramide (9TEHωHC). 3 It is noted
that under normoxic conditions ALOXE3 does not exhibit lipoxygenase activity [60].

Numerous studies have focused on the possible pathogenic implications of the lipoxygenase
family, with a key focus on ALOX5 due to its role in the biosynthesis of leukotrienes, which are
inflammatory mediators [61]. Leukotrienes can cause pathological inflammatory responses in diseases
such as cystic fibrosis [62], inflammatory bowel disease [63] and asthma [64], thereby presenting
a relationship between lipoxygenase activity and immune responses. Chronic inflammation has
the potential to place cells under stress, which in turn can promote cell death or abnormal cell
differentiation [65]; the latter of these, in turn, has the potential to promote tumorigenesis [66]. In the
case of ALOX15, several studies have implicated this protein in the inflammation pathway of diseases
such as colorectal cancer [67], prostate cancer [68] and chronic myeloid leukemia [69]. However, while
the formation of 14,15-leukotrienes from ALOX15 has been proposed [70], the biological relevance of
these specific compounds has not yet been explored.

Interestingly, ALOX15 activity has also been linked to obesity as the enzyme is highly expressed
in omental tissue compared to the subcutaneous fat layer of obese patients [71]. Accordingly, analysis
of ALOX15 transgenic mice supports a link between inflammation, obesity and insulin resistance [72].
Indeed, this study proposes that an overexpression of ALOX15 stimulates the production of
pro-inflammatory mediators, which promote insulin resistance induced through a high fat diet [72].
In turn, insulin resistance results in an overall increased risk in developing type 2 diabetes and
obesity [72]. It is now well established that obesity can have detrimental impacts on both maternal
and paternal fertility, as well as embryo health and development [73,74]. Obesity in males, is linked
with an increased time to conception and a decrease in sperm function [73]. With these lines of
evidence, the activity of ALOX15 may have a systemic and indirect effect on male infertility through
obesity, alongside the direct effects it may have within the male germline through 4HNE production.
The imperative for understanding mechanisms of male infertility is further supported by the growing
evidence that male fertility status may in fact be an effective indicator of general health of the
individual [75–77]. Specifically, studies assessing the fertility of more than 40,000 males have revealed
that important semen parameters such as volume, cell count, and morphology are directly correlated



Antioxidants 2018, 7, 132 5 of 15

with life expectancy [76]. A similar link has also been observed in the context of the prevalence of
infertility in diseased men experiencing inflammatory bowel disease [78], obesity [79–81], diabetes [82],
hypertension and also sexually transmitted diseases such as chlamydia [83], human immunodeficiency
virus (HIV), and hepatitis C [84]. Such data suggest that drivers of poor fertility may originate in
systemic issues rather than being restricted to the male reproductive tract, again emphasizing the
importance of gaining a better understanding of the fundamental aspects of infertility and its origins.

At this time, literature on ALOX15 in the male germline is very scarce. Nevertheless, analysis
of ALOX15 within mature spermatozoa has indicated a putative role for the enzyme within the
cytoplasmic droplet of mammalian species such as boar [85] and mouse [86]. These studies suggest
that ALOX15 works in concert with the ubiquitin pathway to cause organelle degradation, assisting
in the removal of the cytoplasmic droplet [85]. Additionally, the production of an ALOX15 knockout
mouse model has shown that the loss of this enzyme does not compromise sperm production per
se. However, the spermatozoa produced from null males exhibited atypical cytoplasmic droplet
degradation during epididymal transit [85]. Earlier work provided an indication that the bull sperm
acrosome reaction may be suppressed following lipoxygenase inhibition [87]. However, these data
must be interpreted with caution owing to the use of non-specific lipoxygenase inhibitors, and the
absence of substantiating evidence to illuminate the direct role of ALOX15 in the induction of acrosomal
exocytosis. Recent studies have suggested a possible link between this lipoxygenase enzyme and
oxidative stress propagation in human spermatozoa [88] and in mouse germ cells [89,90]. Using an
immortalized spermatocyte cell line [GC-2spd(ts)], we have demonstrated that the treatment of these
cells with an ALOX15 inhibitor resulted in significant reductions in 4HNE protein modifications and
subsequent oxidative stress cascades [89]. However, direct evidence of the ability of PD146176 to
inhibit ALOX15 function is yet to be established and further work is required to verify the function
of ALOX15 in rodent models [91]. Despite these shortcomings, using a double knockout study,
Brütsch and colleagues have established a clear link between ALOX15 activity and a key antioxidant,
glutathione peroxidase 4 (GPX4), in mouse germ cells [90]. In this study, the inactivation of Gpx4
(genotype Gpx4+/−) led to significant sperm defects, including marked reductions in sperm motility
(total, rapid and progressive). These Gpx4+/− mice correspondingly exhibited significantly reduced
litter sizes compared to wild type mice. However, both the motility attributes and the litter sizes of
the animals were significantly improved following a simultaneous knockout of the Alox15 gene (i.e.,
genotype Gpx4+/−/Alox15−/−), thus implicating ALOX15 in the mediation of oxidative damage in the
mouse [90].

In addition to these animal studies, we have recently reported on a possible
role for ALOX15 in human spermatozoa using the selective ALOX15 inhibitor
6,11-dihydro[1]benzothiopyrano[4,3-b]indole (PD146176, Tocris). This (PD146176) inhibits
ALOX15 through non-competitive and non-antioxidant means [92,93] and has previously been shown
to reduce the production of specific ALOX15 metabolites such as 15-HPETE [94] and 13-HODE [95].
Though minimal studies have used PD146176 in spermatozoa, the use of this inhibitor in conjunction
with an oxidative challenge has been documented to give rise to significant ROS reductions in
neuronal cells [96]. This is consistent with our findings in human spermatozoa, that under oxidative
stress conditions ALOX15 inhibition significantly decreased ROS production and lipid peroxidation
levels while also improving the functional competence of sperm populations including their motility,
acrosome reaction rates and ability to undergo sperm-egg interaction processes [88]. Importantly, such
studies are also consistent with those completed in the context of neurological disorders such as
Alzheimer’s disease, where disease progression often relies on oxidative stress and the production of
4HNE. This lipid peroxide end product has been shown to promote the production of amyloid beta
plaques and neuronal death [97–99]. Strikingly, these studies have demonstrated reduced amyloid
plaque production with significant improvements in memory deficits through the inclusion of the
same ALOX15 inhibitor, PD146176 [100,101]. These data provide further evidence for the use of
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PD146176 as a potential therapeutic means to prevent pathologies induced through oxidative stress
and lipid peroxidation.

4. Protecting the Germline from 4HNE-Induced Damage

There are increasing numbers of couples using assisted reproductive technologies (ART) to achieve
conception. This has led to more than 5 million births since the invention of this technology [102].
While ART has undoubtedly changed the lives of many, such technologies are highly expensive and
have a live birth success rate of no more than ~30% [103,104]. There may also be a level of risk
associated with assisted conception where numerous studies have confirmed that higher levels of
DNA damage are present in men with subfertility [105]. This presents the possibility that ARTs could
be inadvertently using damaged sperm cells which may elevate the risk of adverse health outcomes
for the offspring conceived through assisted reproduction [106,107]. Additionally, the lack of selection
pressure on the gametes may eventually propagate further fertility issues for future generations.
A major origin of sperm cell damage arises through the onset of oxidative stress. Congruent with
DNA fragmentation, markers of oxidative stress are also elevated in the infertile population [108]. It is
therefore without surprise that antioxidant supplementation is an extensively studied area for the
mitigation of male infertility. Table 2 summarizes numerous studies that have examined male fertility
following antioxidant supplementation and their corresponding reproductive outcome. This table
was collated through examination of external literature as well as analysis of a variety of detailed
reviews [109–111]. Interestingly, only 5 out of the 28 investigated studies presented improvements to
pregnancy and live birth rates following antioxidant supplementation, with positive effects associated
with astaxanthin [112], L-carnitine + L-acetyl carnitine [113], Menevit® [114], vitamin E [115] and
zinc sulphate [116]. While some studies observed very high levels of variability when measuring
semen parameters, the studies focusing on L-glutathione, lycopene, N-acetylcysteine + selenium,
ubiquinone, selenium and zinc sulphate, consistently presented improvements in at least one or more
semen parameter [116–122]. Other studies using antioxidants such as Co-enzyme Q10, folic acid
+ zinc sulphate, lycopene and L-carnitine + L-acetyl carnitine showed variation in effects between
trials, with some studies reporting improvements to semen parameters [113,118,123–128], while others
showing no positive effects [129–131]. Some of this variation may be attributed to intrinsic variations
within each trial, such as dose regimes, methodology and the duration of treatments. Nonetheless, this
variability, combined with a lack of clinical success in terms of increased pregnancy rates and live birth
rates, highlights a clear need for further investigation into effective alternative strategies to prevent,
or at least limit, ROS production in the male germline to improve a large subset of male fertility issues.

In seeking to account for the lack of consistent clinical success using regimens based on single
antioxidant supplementation as a means for combating male infertility, it is possible that the scavenging
nature of antioxidants [132] fails to provide direct protection against the cascades of lipid peroxidation
and 4HNE production that ensue under conditions of oxidative stress. Interestingly, nucleophiles such
as penicillamine have been shown to successfully reduce cellular ROS in both human spermatozoa
and in oocytes [19,25,133,134]; effects that manifest in the recovery of sperm-oocyte interaction
in vitro [25]. However, this antioxidant has serious off-target toxicity concerns [135], and thus
investigation into the clinical utility of penicillamine is not possible. Another novel antioxidant
formulation therapy in the male germline is Fertilix® (Cell Oxess, Ewing, USA), which has been shown
to protect against DNA damage in antioxidant deficient mice [136]. However, clinical trials have yet to
be performed to establish whether this therapy is an appropriate method for treating infertile men.
Among alternative methods that have shown promise in protecting somatic cells from diseases linked
to lipid peroxidation-dependent mechanisms [137–139], is the stabilization of the lipid membrane
through deuteration [140]. Such success provides an important precedent to investigate the efficacy of
this strategy to protect sperm membranes.
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Table 2. Benefits of antioxidant supplementation for male fertility. A summary of tested antioxidants
and their relative success for the improvement of male fertility as reviewed by Ahmadi et al., Ross et
al., and Majzoub and Agarwal [109–111].

Antioxidant Outcomes References

Astaxanthin
Increased pregnancy rates [112]
Reduced oxidative stress [112]

Co-enzyme Q10

Improved sperm motility [123]
Improved sperm concentration and morphology [124]
Altered antioxidant enzyme activity [124,129]
No improvements to sperm motility, concentration or morphology [129]

Folic Acid + Zinc Sulphate Improved sperm concentration [125,126]
No improvements to sperm motility, concentration or morphology [130]

L-Glutathione Improved motility [117]

L-Carnitine + L-acetyl carnitine
Increased motility (progressive and total) [127,128]
No changes to motility or concentration [131]
Increased pregnancy rates and improved sperm concentration, motility and morphology [113]

Lycopene Improved sperm motility and concentration [118]

Menevit Improved pregnancy rates [114]

N-acetylcysteine

Increased sperm concentration [141]
No significant increase in spontaneous pregnancies [141]
Improved sperm volume, motility and viscosity [142]
Reduced oxidative stress [142]

N-acetylcysteine + Selenium Improved sperm motility, concentration and morphology [119]

Ubiquinone Improved sperm motility, concentration and morphology [143]

Vitamin E
Improved sperm motility [115]
Improved pregnancy rates [115]
Decreased lipid peroxidation products [115]

Vitamin E + Vitamin C
No changes to motility or concentration [144,145]
Reduced DNA damage [144]
Improved ICSI outcomes [146]

Vitamin E + Selenium
Improved morphology [147]
Improved sperm motility [148]
Decreased lipid peroxidation products [148]

Selenium
Improved sperm motility [120]
No changes to sperm concentration [120]

Zinc Sulphate
Improved semen volume, sperm motility and concentration [116,121]
Improved live birth rate [116]
Altered antioxidant enzyme activity [122]

5. Conclusions

In this review we discuss strategies to alleviate oxidative stress in males suffering from fertility
issues (summarized in Figure 2). Here we provide new perspectives on the lipoxygenase–lipid
peroxidation pathway and discuss the merit of ALOX15 as a potential therapeutic target that could be
exploited to protect human spermatozoa against oxidative stress, a key origin of poor cell function.
Overall, this review highlights the importance of correct lipid metabolism in the maintenance of sperm
function and fertility and provides the impetus to explore targeted, lipid-based antioxidant approaches
to prevent lipid-peroxidation induced changes in the male germline.
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