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Abstract: The large-scale and label-free molecular character-
ization of single cells in their natural tissue habitat remains
a major challenge in molecular biology. We present a method
that integrates morphometric image analysis to delineate and
classify individual cells with their single-cell-specific molecular
profiles. This approach provides a new means to study spatial
biological processes such as cancer field effects and the
relationship between morphometric and molecular features.

Matrix-assisted laser desorption/ionization (MALDI) mass
spectrometry imaging (MSI) combines the molecular sensi-
tivity and specificity of mass spectrometry with the capability
to spatially resolve the molecular information within tissues.[1]

It has therefore become an invaluable tool in biological
research for the label-free imaging of otherwise inaccessible
molecular classes, such as metabolites, lipids, or drugs, in
tissues.[2, 3] Despite advances in sample preparation and
instrumentation that enabled MALDI-MSI to retrieve chem-
ical information at single-cell resolution a very limited
number of high-spatial-resolution MALDI-MSI biomedical
studies has been reported.[4–7]

Detailed histological tissue annotations to contextualize
the obtained molecular signals from individual cells are
considered a major limitation for comprehensive biomedical
research using MALDI-MSI. Typically, the MSI-analyzed
tissue section is histologically stained, co-registered to the
MALDI-MSI data, and annotated by a pathologist.[8] Anno-
tation of every single cell is a tedious and time-consuming
process, even for a trained pathologist. A manual annotation

that matches the spatial resolution of MALDI-MSI at the
single cell level is therefore infeasible and hampers single-cell
MALDI-MSI applications in translational research.

Recently, the field of digital image analysis has emerged
and aims to support the evaluation and annotation of
microscopic images using machine learning algorithms.[9,10]

In particular, the morphometric analysis of cells in histolog-
ical images[11] has gained interest as it can be used for the
automatic detection and classification of cells.[12] Morphom-
etry uses quantitative statistical models to learn about size
and shape (e.g. nucleus size, cell eccentricity, cell circum-
ference, etc.) of each cell. These models are used to
instantaneously detect and classify whole tissues according
to the learned cell-types.

The continuous increase in performance in resolution,
sensitivity and specificity of MS-based molecular imaging has
always offered the potential of complete integration in digital
pathology. Yet, comprehensive methods that allow this at the
single-cell level, in an automated fashion where both mor-
phometric information and MSI information of a single cell
are brought together, are lacking. Here, we present a method
that uses machine learning for semi-automated image anal-
yses to obtain single-cell morphometric annotations, which
are then accurately correlated with the MALDI-MSI data
from the same tissue section. This workflow enables us to
determine a detailed molecular profile for each individual cell
in its complex tissue context. This results in innovative
applications in basic biology, translational research and
clinical diagnostics.

We demonstrate this approach with high-spatial-resolu-
tion MALDI-MSI data acquired from a porcine colon and
a human gastric cancer specimen using a timsTOF flex and
a RapifleX tissue typer (both Bruker Daltonik, Bremen,
Germany), respectively. Because cell sizes in mammals
usually range between 5–20 mm,[13] we performed all experi-
ments at 10-mm pixel size to ensure a well-balanced chemical
sensitivity and sufficient spatial resolution to obtain single-
cell molecular information. As sample preparation steps such
as washing, enzyme application, or derivatization can deloc-
alize molecules and hamper the achievable spatial resolu-
tion,[14] we opted for MALDI-MSI of lipids, which does not
require any additional sample pre-treatment steps after tissue
sectioning and mounting. But, our method is applicable to all
other MSI sample preparation protocols, within the limits of
potential delocalization beyond the pixel resolution that may
result from them. The tissue sections were stained by conven-
tional hematoxylin & eosin (H&E) and scanned with a digital
slide scanner (Aperio CS2, Leica Biosystems) after MALDI-
MSI acquisition (Supplementary Figures 1A and 8A).
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The H&E image was subsequently co-registered to the
MSI dataset via an optical image of the slide, which was taken
prior to the MSI experiment. This optical image guides the
MS acquisition to the defined measurement regions based on
a manual control point co-registration of the optical image
with fiducial markers visible in the camera within the mass
spectrometer (Supplementary Figures 1B, 2, 8B and 9). This
process links the spatial coordinates of the mass spectrometer
with the pixel positions in the optical image. As the same
fiducial markers can be used to co-register the H&E image to
the optical image, the H&E image can be superimposed with
the MSI data.

This registration, however, is not sufficiently accurate
because the fiducial markers are usually off-tissue and
thereby too far away for precise co-registration within
tissue. We performed a series of manual and automated
registrations in order to fine-tune the alignment and improve
the co-registration precision of the H&E image, the optical
image, and the MALDI-MSI dataset. To do so, all image
datasets were imported into MATLAB R2018b. First, we
manually co-registered the H&E image to the optical image
(Figure 1A). At least five prominent morphological features
were selected as control points that were clearly visible in
both images (Supplementary Figures 2 and 9). An automated,
intensity-based co-registration between the MALDI-MSI
data and the H&E image was then performed to fine-tune
the previous manual alignments (Figure 1B,C).

All image registrations were performed using affine
geometric transformations[15] using MATLAB built-in func-
tions, and the overall co-registration error was estimated
based on the difference between the calculated (using our co-
registration approach) and the visible positions of the laser
shot burns in the H&E image (Supplementary Figure 6). An
average co-registration error of 4.5� 1.45 mm standard devia-
tion (Supplementary Table 1) was considered acceptable as it
constitutes less than half a pixel size.

In parallel, the scanned H&E image was analyzed in
QuPath (v.0.2.0.m8), an open-source software platform for
digital pathology image annotation and analysis.[16] There,
representative regions for each cell type of interest were
manually defined (Figure 1D). Automated cell detection and
morphometric feature extraction of the detected cells were
then used to train a Random Forest classifier to distinguish
the annotated cell types (Figure 1E). This classifier was then
applied to the area of the MSI measurement (Figure 1 F) and
validated by a trained pathologist.

These cell annotations were then geometrically trans-
formed using the previously calculated co-registration
between H&E image and MALDI-MSI data. As a result,
the � 130 000 individual cell annotations could be overlaid
with the MSI images and linked to their cell-specific lipid
profiles (Figure 1H, Supplementary Figure 7).

Application of our method to the porcine colon dataset
enabled the extraction of molecular lipid profiles specific for

Figure 1. Step-by-step illustration of the integral classification workflow using a lipid MALDI-MSI dataset of a porcine colon. A) High-spatial-
resolution MALDI-MSI dataset at 10-mm resolution is manually co-registered to the hematoxylin and eosin (H&E) image. B) Zoom of the area
indicated by yellow square in (A), showing that manual co-registration lacks accuracy as displayed by an overlay of an intensity image of MSI (m/z
728.53�0.15 Da) specific for glandular cells and H&E. The dashed white line indicates the glandular cells in the H&E. C) The result of fine-tuned
co-registration using thresholded images of MSI (m/z 728.53�0.15 Da) and H&E. D) In parallel, regions of interest containing the cell types of
interest are manually defined in the H&E image (green= glandular cells, black= lamina propria cells). E) Enlargement of the area indicted by
yellow square in (D), which illustrates the automated cell detection and morphometric feature extraction (delineated in red) for the training of
a multivariate classifier. F) Result of the application of the trained classifier to the entire remaining specimen. G) Illustration of the single-cell
morphometric classification magnified from the yellow square highlighted in (F). H) Final integration of single-cell automatic morphometric
annotation and features with MALDI-MSI lipid classification. Average intensity of m/z 728.53�0.15 Da per cell is calculated.
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glandular cells and lamina propria cells (Figure 1H). Simul-
taneously, Figure 1H revealed that MSI data further differ-
entiates lamina propria cells based on their lipid content.
Cells with the same overall morphological classification are
molecularly differentiated by a variable expression of Hexo-
syl-Ceramide 36:0 with possible contamination of PS 32:3 (m/
z 728.53) among the lamina propria cells. Ceramides are
regarded as important signaling molecules in apoptosis as well
as precursors in biosynthesis of glycosphingolipids and
gangliosides.[17]

Having established the accurate co-registration workflow
for porcine colon, we wished to validate our method on
a gastric disease model. Diffuse-type gastric carcinoma
(DGC), unlike intestinal-type gastric carcinoma, does not
grow in tumor agglomerates or larger masses. This is a direct
result of loss of cellular adhesion properties, where individual
tumor cells or small tumor assemblies infiltrate nearby tissues
(Figure 2A).[18] Molecular pathology studies of cases like
DGC are challenging because of a) the time-consuming

manual annotation of each tumor cell in large specimens, and
b) the need for high-spatial-resolution MALDI-MSI experi-
ments in order to differentiate the individual tumor cells from
other cells. Thus, DGC is a prime example where the
combination of morphometric tissue analysis combined with
high-resolution MALDI-MSI may enable molecular profiling
to differentiate the different individual cells involved.

Here, we apply our workflow to investigate the lipid
molecular profiles of the different cell types in a DGC
specimen by MALDI-MSI at a spatial resolution of 10 mm.
The H&E image was subjected to a semi-automated cell
classification to discern tumor cells from surrounding muscle
cells of the muscularis propria (Figure 2A) based on the cells�
morphometric features such as cell and nuclear eccentricity
(Figure 2B). This classification allowed the isolation of
lipidomic information of DGC cells in MALDI-MSI (Fig-
ure 2C). The morphometric characteristics of individual cell
types could be related with their molecular content as
determined by principal component analysis of the

Figure 2. Spatial statistics enabled by our method for the investigation of diffuse-type gastric carcinoma. A) Histological images (H&E): full tissue
section (left) and magnification of the highlighted region (red square) after cell detection and classification (right). B) Box-plot shows cell
eccentricity as a differential morphometric feature to discern tumor from muscle cells of the muscularis propria. C) MALDI-MSI at 10-mm
resolution was performed and the average scores of the principal component (PC) 4 for each cell are shown (left) and overlaid with the co-
registered cell classification shown in the magnification denoted by a red square (right). D) Correlations of morphometric features with PCs from
the MALDI-MSI lipid data. E) Cell detection provides the spatial coordinates of every cell, which allows distinguishing muscle cells far away from
(green) and close to (blue) tumor cells (red). Full tissue section (left), magnification of the area indicated by a yellow square (right). F) The lipid
PE 38:0 (m/z 774.57�0.3 Da) exhibits a differential molecular abundance in muscle cells located close to tumor cells compared to muscle cells
far away from tumor cells.
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MALDI-MSI data (Figure 2D). Moreover, the cancer field
effect implies that tumor cells influence the molecular profiles
of other cells in their vicinity.[19] Having the coordinates of
every cell and the corresponding lipidomic information, our
method permits the molecular profiles of muscle cells to be
compared and investigated based on proximity to tumor cells
(Figure 2E). For example, the lipid PE 38:0 differentiated
muscle cells located far away from tumor cells from to those
located close to tumor cells (Figure 2F, Supplementary
Figure 13). PE 38:0 has many cellular functions, for example,
it is a lipid chaperone assisting in the folding of membrane
proteins, it plays a role in lipid-induced stress in the
endoplasmic reticulum and in the initiation of autophagy.[20]

This shows that our method opens new means to relate
molecular information to spatial functional information.

In order to correctly interpret the MALDI-MSI informa-
tion in the histological context of the tissue, precise co-
registration is crucial. Using a second, intensity-based co-
registration, we corrected for most sources of alignment
errors. These imprecise alignments could be due to manual
co-registration during setup of an MSI experiment or the
potential mismatch between the recorded pixel position and
actual laser impact due to laser misalignment or imprecise
stage movement. Here, we used the visible laser burn marks in
the tissue to estimate the alignment error between the
MALDI-MSI dataset and H&E image, which was determined
to be well below half a pixel size. We did not use the laser
burns as a part of the co-registration workflow, since laser
burns might not be visible during multimodal image acquis-
ition at lower laser power. While we considered this error
negligible with current instrumentation capabilities, precise
co-registration will be the next bottleneck in MSI when higher
spatial resolutions below 5 mm will become routinely avail-
able. This anticipated problem further highlights the need for
novel co-registration approaches in the field of MSI based on
new, fine-structured fiducial markers, which are visible in both
MSI and brightfield microscopy, as well as the introduction of
better optical visualization systems in commercial MSI
instrumentation (e.g. IMScope, Shimadzu).

In the presented examples, the morphometric differences
between the individual cells were clearly visible to the human
eye, and thus the morphometric classification performed was
accordingly accurate. Because the primary aim was to ease
and expedite the annotation workload of a researcher or
pathologist for single-cell MALDI-MSI purposes, semi-auto-
mated classifications were used. The user trains the system
first, validates the results, and is thus relieved from extensive,
manual single-cell annotations. While single-cell MALDI-
MSI has been available for a decade, its integration with
histological images for large-scale single cell profiling has not
been exploited. Here, we present a new method that
accelerates histological annotation for rapid correlation with
the chemical information provided by high-spatial-resolution
MALDI-MSI. It results in 105 single-cell morphometric and
molecular profiles. This workflow allows for true molecular
histology at the single-cell level and as such this methodology
lays out the future of high throughput, automated digital
pathology-based diagnosis. Our method accelerates research
in cellular molecular science that aims at understanding how

spatially structured communities of individual cells act and
interact in the context of their environment.
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