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Eukaryotic cells package their genomes into a nucleoprotein

form called chromatin. The basic unit of chromatin is the

nucleosome, formed by the wrapping of �147 bp of DNA

around an octameric complex of core histones. Advances in

genomic technologies have enabled the locations of

nucleosomes to be mapped across genomes [1,2]. This has

revealed a striking organisation with respect to transcribed

genes in a diverse range of eukaryotes. This consists of a

nucleosome depleted region upstream of promoters, with an

array of well spaced nucleosomes extending into coding

regions [2]. This observation reinforces the links between

chromatin organisation and transcription. Central to this is the

paradox that while chromatin is required by eukaryotes to

restrict inappropriate access to DNA, this must be overcome in

order for genetic information to be expressed. This conundrum

is at its most flagrant when considering the need for nucleic

acid polymerase’s to transit 1000’s of based pairs of DNA

wrapped as arrays of nucleosomes.
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Dissociative versus non-dissociative models
for transcribing nucleosomes
In vitro a range of biochemical approaches indicate that

RNA polymerase II (Pol II) can pass through a nucleo-

some without the need for complete dissociation of

histone proteins (reviewed by [3]). However the distri-

bution of Pol II pausing sites observed in vitro and in vivo
differs [4,5��], raising the awkward question of whether

what has been observed in vitro accurately reflects what

has taken place in vivo. Furthermore, changes to the

experimental conditions used in vitro can result in

increased histone dissociation. For example, closely

packed polymerases are more effective in disrupting

chromatin [6�] and it has recently been reported that
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transcription  rates in excess of 5 bp per second result in

increasing levels of histone dissociation [7��]. As

elongation proceeds at 20 bp per second in yeast [8��]
and up to 830 bp per second in human cells [9], dis-

sociation of nucleosomes is a possibility. Some support

for the retention of histones during elongation stems

from the observation that histones retain contact with

DNA at moderately transcribed genes [10–13]. However,

the majority of yeast genes are transcribed sporadically,

approximately seven times per hour [14�], making tran-

sient dissociation hard to detect. This problem is avoided

at highly transcribed genes. In these cases substantial

chromatin disruption is observed [15,16], but reassembly

is rapid, occurring within 1 min of transcription ceasing

[15]. This means that on a genome scale a correlation

between histone association and Pol II occupancy could

be interpreted as evidence for a transient dissociative

mechanism. This is indeed what is observed [1,11–13].

What is not clear from these observations is whether Pol

II is directly responsible for dissociation of histones or

whether additional factors participate. Here we review

the roles of some of the factors contributing to the

pathway by which Pol II transits chromatin with empha-

sis on recent developments from studies in Saccharomyces
cerevisiae which has proven to be an excellent model

system.

The Pol II CTD and PAF complex: recruitment
platforms
Key players in the orchestration of the interplay between

chromatin and transcription are the C-terminal heptapep-

tide repeats (CTD) of the Rpb1 subunit of Pol II and the

polymerase associated PAF complex (reviewed by [17–
20]). The repeated sequence (YSPTSPS) within the C-

terminus of Rbp1 is subject to differential phosphoryl-

ation during different phases of the transcription cycle. It

is thought to be unphosphorylated upon recruitment to

promoters facilitating interactions with initiation factors

such as mediator. During the early stages of elongation

the CTD is phosphorylated at serine 5 (S5P) by the Cdk7

subunit of TFIIH allowing recruitment of the mRNA

capping complex. CTD S5P also destabilizes interactions

with initiation factors and facilitates promoter escape and

recruitment of the Bur1 kinase which phosphorylates the

elongation factors Spt4 and Spt5. This in turn promotes

recruitment of the PAF complex comprising the Paf1,

Rtf1, Cdc73, Leo1 and Ctr9 proteins. PAF and Spt4/Spt5

assist the recruitment of Rad6 and Bre1 which ubiquiti-

nylate H2B at K123 (H2BK123Ub). H2BK123Ub is in

turn required for methylation of H3K4 and H3K79 by

Set1 and Dot1, respectively. Set1 itself interacts with

both the PAF complex and serine 5 phosphorylated CTD
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and the recruitment of Dot1 is also dependent on PAF.

The Bur1 and Ctk1 (P-TEFb in humans) kinases are

responsible for phosphorylation of the CTD at serine 2

(S2P). This marks the polymerase for progression to a

fully elongation competent form. Phosphorylation at S2P

suppresses the Sen1/Nrd/Nab3 termination pathway

which may contribute to the large numbers of short

non-productive transcripts observed at many genes

[5��,18]. In combination, multiply phosphorylated CTD

and PAF are responsible for recruitment of the Set2 the

enzyme that methylates histone H3 at K36.
Figure 1
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Modifications instruct modifications!
One of the consequences of the pathway described above

is the establishment of the characteristic distributions of

histone H3 K4Me3 and H3 K36Me3 across coding regions

(Figure 1). These modifications can in turn act as epitopes

for the recruitment of chromatin binding proteins. For

example, Eaf3 is a subunit of the histone acetyltransferase

NuA4 [21] and the histone deacetylase Rpd3S [22,23].

Within Rpd3S the PHD domain of the Rco1 subunit

together with the chromodomain of Eaf3 and interactions

with the Pol II CTD phosphorylated at both S2 and S5
ORF
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direct the complex to transcribed chromatin where it

removes acetylation preventing chromatin disassembly

and inappropriate initiation from within coding regions

[24,25,26�].

An assortment of factors have been found to recognise

histone H3 acetylated at lysine 4. These include the

Sgf29 subunit of the SAGA complex [27��,28�]. The

NuA3 HAT complex [29], human HBO1 HAT [30,31],

BPTF subunit of the human NURF complex [31], the

Set3c histone deacetylase complex [32] and human Chd1

[33].

The SAGA complex in addition to fulfilling a distinct

function at promoters accompanies Pol II during

elongation perhaps as a result of interactions between

Sgf29 and H3K4Me3 and serine 5 phosphorylation of the

Pol II CTD [27��,34,35]. This is especially prominent at

highly transcribed genes such as GAL1 where the reduced

acetylation observed in the absence of SAGA is associated

with increased nucleosome occupancy in the coding

region and decreased mRNA production [35] especially

of long transcripts [36�]. There is evidence to suggest that

acetylated nucleosomes are targeted for removal by bro-

modomain containing enzymes such as SWI/SNF and

RSC [34,37�,38]. While both SWI/SNF and RSC have

functions at promoters, there is also evidence linking both

complexes to elongation [37�,39]. Furthermore, in vitro,

the combined effect of histone acetylation and remodel-

ling by RSC can facilitate transcription through nucleo-

somes [40�]. However, it remains possible that there are

also modes of histone dissociation independent of histone

acetylation [7��,16].

In addition to histone acetyltransferase activity, SAGA

has a deubiquitinase (DUB) activity. As a H2B Ub is

required for H3 K4Me3 which in turn recruits SAGA, this

enzyme has the capability to destroy the H3K4Me3

messenger that summoned its recruitment. Furthermore,

the removal of H2B Ub is required for recruitment of

Ctk1 and phosphorylation of Pol II at serine 2 [41�]. As a

result the recruitment of SAGA is not only required for

efficient elongation, but its association is programmed to

be transient. Feedback loops of this type are exactly what

is required to generate a transient wave of destabilised

chromatin during transit of Poll II.

The coupling of histone acetylation mediated nucleo-

some dissociation with transcription potentially initiates a

destabilising positive feedback loop, which could drive

further nucleosome depletion and faster elongation.

While this may be an advantage at genes transcribed to

high levels, at genes expressed at lower levels this pro-

vides an opportunity for transcription from cryptic pro-

moters normally occluded by chromatin. To counter this

effect histone acetylation is short lived as a consequence

of coupling histone deacetylase activity with transcription
Current Opinion in Cell Biology 2012, 24:296–304 
as described above. Where nucleosomes have been

removed, chromatin assembly pathways are required to

reassemble nucleosomes.

Histone chaperones: reassembly or
dissociation
Histone chaperones are prime candidates for a role in this

chromatin assembly reaction [42]. Recent structural stu-

dies of the FACT chaperone complex indicate the pre-

sence of multiple domains capable of interactions with

histones [43]. FACT interacts with H2A and H2B with

high affinity but also interacts with H3–H4 [44], intact

nucleosomes [44,45��] and is capable of directing the

assembly of nucleosomes in vitro [46]. Functional studies

of FACT are complicated due to the complex having

distinct roles in replication and nucleosome removal at

promoters. None the less, mutation of FACT results in

histone depletion and increased histone exchange over

coding regions and increased intragenic transcription over

coding regions with no detectable change in elongation

rate [47,48�,49]. These observations establish a role for

FACT in chromatin reassembly following transcription

by Pol II. This appears to contradict the original obser-

vations that FACT enhances elongation through nucleo-

somes in vitro [49]. One the one hand it could be that the

original observations do not reflect the true function of

FACT. Alternatively FACT may function in both the

disassembly and reassembly of nucleosomes during tran-

scription [50]. Although FACT is abundant (being pre-

sent at approximately 1 copy per three nucleosomes), its

action is targeted through physical interactions with the

PAF complex and this requires CTD S5 phosphorylation.

In addition, ubiquitin modification of H2BK123 has been

observed to augment Pol II transcription through nucleo-

somes in the presence or absence of FACT in vitro [51�]
and FACT function in chromatin reassembly in vivo [52�].

Spt6 acts similarly to FACT in the reassembly of chro-

matin following transcription [53�,54]. However, its inter-

action with RNA polymerase is mediated by interactions

with the highly phosphorylated forms of the CTD [55–
58]. Like yeast FACT, Spt6 interacts with nucleosomes

only in the presence of the HMG box protein Nhp6

[45��,59].

The reassembly of chromatin following transcription is

not restricted to coding mRNAs. Transcription of non-

coding RNAs is also associated with chromatin assembly

and in some cases this has been found to play regulatory

roles [60–62].

Re-phasing the template
When nucleosomes are assembled in vitro, in the absence

of other factors, the positions adopted by nucleosomes do

not fully replicate those observed in vivo [63,64]. An ATP

dependent activity has recently been found to be capable

of directing this repositioning in yeast extracts [65��].
www.sciencedirect.com
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Prime candidates for this include the Isw1 remodelling

enzyme that has been observed to influence nucleosome

spacing in mid coding regions [66] and Chd1 which

interacts with the Rtf1 subunit of PAF and FACT [67].

Both Isw1 and Chd1 are found to be enriched within the

coding regions of highly transcribed genes [67,68]. The

genetic interactions of CHD1 mutations with other

elongation factors suggest that Chd1 acts to reduce the

efficiency of elongation in a similar fashion to the Rpd3S

histone deacetylase complex [69��]. As cryptic intragenic

transcription is increased following mutation to com-

ponents of either CHD1 or ISW1 it is possible that these

proteins function with partial redundancy in chromatin

assembly [69��]. Further support for this stems from the

finding that the Chd1 and Isw1 ATPase share structurally

related SANT and SLIDE accessory domains [70] and

that deletion of these proteins results in an overall loss of

nucleosome spacing over coding regions [68]. The estab-

lishment of regular nucleosome spacing may play an

important role in stabilising the association of histones

by firstly, influencing the ability of arrays of nucleosomes

to form more compact structures, secondly, allowing for

the association of abundant nucleosome binding proteins

such as Nhp6 [71��] and thirdly, by simply preventing

collisions between nucleosomes which can be destabilis-

ing [72]. In addition to an inhibitory effect on non-coding

transcription, spaced chromatin may be less permissive to

re-initiation events [73].

Some doubt remains as to how tightly coupled the nucleo-

some spacing reaction is to transcription. Favouring

close links to transcription are the observation that nucleo-

some spacing decays with distance from the +1 nucleosome

whose positioning is likely to be established by other

factors [2], and that there are strong functional ties linking

both Isw1 and Chd1 to transcription. On the other hand the

spacing reaction appears to proceed in the apparent

absence of transcription in nuclear extracts [65��] and

substantial organization is retained following inactivation

of RNA polymerase [74�]. Possible explanations for these

observations include spaced chromatin being sufficiently

stable to persist once established, in the absence of on-

going transcription, and that there are sufficient spacing

enzymes in nuclear extracts to organise chromatin in

an untargeted fashion. Following inactivation of RNA

polymerase a retrograde shift in the positioning of nucleo-

somes is observed involving many nucleosomes moving

10 bp towards the 30 ends of coding regions [74�]. More

recently, it has also been observed that the replacement of

ancestral histones with nascent histones is slowest at the 50

ends of long genes transcribed at low levels [75��]. The

favoured explanation for these observations involve the net

migration of nucleosomes against the direction in which

RNA polymerase transcribes. As this behaviour is dis-

rupted by deletion of the H4 tail [75��] which is required

for the spacing activity of both Isw1 and Chd1, it is

tempting to speculate that spacing in the wake of a tran-
www.sciencedirect.com 
scribing polymerase is associated with a net movement of

nucleosomes in a 50 direction.

The problem with elongation
The very fact that Pol II moves across genes during

elongation complicates studies of its localisation in com-

parison to activities which are recruited to fixed loci such

as promoters. Furthermore, many genes are actively tran-

scribed for relatively short periods of time, making it even

harder to study factors involved in elongation using

chromatin immunoprecipitation assays. Genetic studies

of elongation factors are complicated as a result of them

often having distinct roles in other processes such as

chromatin reconfiguration at promoters (e.g. FACT,

SAGA, SWI/SNF, RSC, NuA4, Chd1 and Isw1). Where

a strong phenotype is conferred by one mode of action, for

example promoter remodelling, it may confuse interpret-

ation relating to transcriptional elongation. Another reoc-

curring issue is the presence of parallel pathways that

confer partial redundancy which greatly complicates the

interpretation of genetic interactions. For example, due to

overlapping functions, multiple HDACs and chromatin

remodelling enzymes must be removed to observe

defects [26�,68].

The logic of the transcription cycle
Over the last decade important insights into many of the

factors involved in transcribing through chromatin provide

the opportunity to take a step back and consider the overall

organisation of the pathway (Figure 2). The pathway

involves branching and feedback connections that act to

ensure process such as H2BK123Ub and histone acety-

lation not only occur during transcription, but are also

transient. The overall logic of the process appears to be

largely directed at ensuring the processes of chromatin

disassembly and reassembly are tightly coupled with tran-

scription in a fashion that is comparable with the cell cycle

where multiple check points ensure regulated progression

with the single outcome of duplication. Many of the

chromatin related factors involved in transcriptional

elongation have roles in chromatin reassembly following

transcription. Their action may be directed at breaking

the potentially dangerous positive feedback loop that

could result if a pioneering polymerase disrupts chroma-

tin so as to facilitate subsequent transcription events

from both the coding and non-coding strands. This would

be expected to result in correlated bursts of transcription,

an effect that appears not to occur at typical yeast

genes transcribed at moderate levels [8��]. However, this

situation may differ at more highly regulated genes

where short burst of transcription have been observed

[76], and there may be a greater requirement for memory

effects in organisms with more complex developmental

programmes [77].

Highly transcribed genes are observed to be enriched for

distinct patterns of histone modifications (Figure 1). The
Current Opinion in Cell Biology 2012, 24:296–304
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Figure 2
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different distributions of these modifications can largely

be attributed to differences in the frequency with which

RNA polymerase transcribes a gene. For example, at

genes transcribed at low levels Pol II directed histone

acetylation may be short lived as a result of coupled action

of histone deacetylases. Indeed, chromatin reassembly

following transcription has been estimated to occur within

1 min [15]. In contrast, the deacetylated and methylated

state may be relatively stable. As yeast genes are tran-

scribed at an average rate of seven transcripts per hour

[14�], most genes would be expected to be reassembled as

chromatin 90% or more or the time. However, at very

highly expressed genes, the high frequency of polymerase

passage would be expected to dramatically increase the

proportion of time chromatin is disrupted. Overall, the

application of this process to large numbers of genes

provides a means of directing many of the observed

patterns of histone modification across coding regions

(Figure 1). Removal of methylation marks by histone

demethylases is an area that requires further investi-

gation. Evidence to date suggests that demethylases

are likely to be involved, but are as yet difficult to place

in the overall pathway [78��]. Furthermore dilution of

methylation marks during replication may play a role in

the removal of H3K4 methylation [78��]. This is in effect

the reverse of the idea that histone marks are stably

inherited from one generation to the next. As a result,

it seems likely that a significant proportion of histone

modifications that characterise the coding regions of yeast

genes do not comprise an epigenetic signal, but are

instead instructed by the frequency of transcription.

The above description is no doubt a simplification. There

is considerable variation in the ways that different genes

respond to the loss of different component’s of the

transcriptional machinery [79]. There is also evidence

that the elongation machinery is deployed in different

ways at different yeast genes [26�,53�], and this is clearly

deployed as a major point of regulation in higher eukar-

yotes [80–84]. However, many of the histone modifi-

cations associated with elongation appear to function

in a similar way at large numbers of genes. As a result,

they are not acting to specify a broad range of distinct

downstream functions as proposed in the histone code

hypothesis [85].
(Figure 2 Legend) Systematic representation of selected events occurring d

of alterations to chromatin occurring during the course of transcriptional elo

been made to integrate these events with other events occurring during tran
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yet unidentified. Despite these limitations it is clear that the process involve

identified using systematic approaches [79,90]. For example H2B ubiquitina

can remove the H2BK123Ub mark. Furthermore removal of H2BK123Ub is 

phosphorylated at serine 2. This form of RNA polymerase can act to recruit

acetylation deposited moments earlier by the SAGA (or NuA4) complexes. T

during transit by Pol II is both tightly coupled to transcription and transient.
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In summary, the process of transcription through chro-

matin is becoming clearer as a result of a huge effort to

characterise each of the steps involved. While there are

undoubtedly many aspects that still remain to be discov-

ered, overall the process provides a means of ensuring that

the dynamic events occurring at the site of transcription

are restored. In this way a substantial proportion of the

chromatin landscape can be considered as being directed

towards discretely covering the tracks left by the passage

of RNA polymerase.
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