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Abstract

The previously identified LRS (Loss of rDNA Silencing) domain of the nucleosome is critically important for silencing at both
ribosomal DNA and telomeres. To understand the function of the LRS surface in silencing, we performed an EMS
mutagenesis screen to identify suppressors of the H3 A75V LRS allele. We identified dominant and recessive mutations in
histones H3, H4, and dominant mutations in the BAH (Bromo Adjacent Homology) domain of SIR3. We further characterized
a surface of Sir3p critical for silencing via the LRS surface. We found that all alleles of the SIR3 BAH domain were able to 1)
generally suppress the loss of telomeric silencing of LRS alleles, but 2) could not suppress SIN (Swi/Snf Independent) alleles
or 3) could not suppress the telomeric silencing defect of H4 tail alleles. Moreover, we noticed a complementary trend in the
electrostatic changes resulting from most of the histone mutations that gain or lose silencing and the suppressor alleles
isolated in SIR3, and the genes for histones H3 and H4. Mutations in H3 and H4 genes that lose silencing tend to make the
LRS surface more electronegative, whereas mutations that increase silencing make it less electronegative. Conversely,
suppressors of LRS alleles in either SIR3, histone H3, or H4 also tend to make their respective surfaces less electronegative.
Our results provide genetic evidence for recent data suggesting that the Sir3p BAH domain directly binds the LRS domain.
Based on these findings, we propose an electrostatic model for how an extensive surface on the Sir3p BAH domain may
regulate docking onto the LRS surface.
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Introduction

Previous work identified a nucleosome surface named the LRS

domain critically important for silencing at all classically defined

silent loci in Saccharomyces cerevisiae [1,2]. The relevant residues are

located at Super Helical Location (SHL)+/22.5 (equivalent to 4

o’clock on the nucleosome face, with 12 o’clock being the dyad

axis) [3]. These residues surround histone H3 K79, the site of

Dot1p methylation that regulates silencing [4,5]. Bulk nucleo-

somes are 90% methylated at H3K79 and this modification is

widely distributed across the euchromatic yeast genome but

markedly depleted at heterochromatic mating-type, ribosomal

DNA, and telomeric loci. These results suggest that this residue is

important for defining euchromatin, and imply that the absence of

such methylation defines a silent chromatin ground state [4–7].

Most of the genome of S. cerevisiae is in the active state, as genes are

densely spaced and most of the genes are expressed under

standard laboratory growth conditions. There are three regions of

silent chromatin, the silent mating type cassettes or HM loci, the

telomeres, and the rDNA repeats (reviewed in [8]). Three models

have been put forth to explain the role of the LRS domain in

silencing: (i) these residues are simply directly required for K79

methylation/Dot1p recognition, (ii) the LRS surface could

represent a direct nucleosome-nucleosome interaction surface

important for tight packing of nucleosomes and silencing (iii), the

surface may represent a site of interaction between the nucleosome

and a silencing protein(s) [1]. While there is evidence against the

first two models, until recently data supporting the third

hypothesis, which we favor, were lacking. The evidence against

the first two hypotheses is as follows: i) Most LRS alleles are

competent for Dot1p methylation [9]; (ii) despite the fact that

many of LRS residues are important for DNA binding, we showed

that the LRS surface is not required structurally for condensation

of oligonucleosome arrays in vitro [9]. Moreover, one model for a

condensed chromatin fiber, based on the tetranucleosome

structure, suggests that LRS surfaces are solvent-exposed and

not involved in intimate nucleosome-nucleosome interactions [10].

(iii) Data presented here and elsewhere [11,12] provide evidence

that the LRS surface directly binds the Sir3p BAH domain, and

this binding is important for silencing at the telomeres.

In the current model for telomeric silencing, Rap1 and Ku

proteins bind directly to telomere chromatin, followed by

recruitment of the Sir complex (Sir2/3/4p). Iterative cycles of

deacetylation of histone tails, and specifically H4 K16, by Sir2p

create high-affinity sites for the Sir 2/3/4 complex in adjacent

nucleosomes, allowing spreading of silent chromatin [13–17]. The

encroachment of silent chromatin from silent loci into neighboring

euchromatin is prevented by several redundant mechanisms. The

modification of residues of H3 K4 and H3 K79 and H4 K16 are

important for telomeric silencing. Methylation of both H3 K4 and

K79 and acetylation of H4 K16 in active chromatin are needed to

restrict Sir3p to silent chromatin [4–6,18–20]. Recent work has
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given insight into how these modifications restrict silent chromatin.

These data suggest that Sir3p and Dot1p, the methyl transferase

for H3 K79, compete for binding of overlapping nucleosome

surfaces consisting of the short basic patch of the H4 tail

surrounding K16 as well as the region of the nucleosome core

surrounding H3 K79 (the LRS surface), for overall chromatin

binding affinity. Importantly, the Sir3p in vitro interaction is

inhibited by both H4 K16 acetylation and H3 K79 methylation,

whereas Dot1p binds irrespective of K16 acetylation status

[11,21,22]. This scheme sets up a two fold level of regulation,

the first level of competition between for the Sas2p, the H4 K16

acetyl transferase and Sir2p, the deacetylase, for the acetylation

status of H4 K16 affects the second level of competition between

Dot1p and Sir3p for the nucleosome surface. The region of Sir3p

that is responsible for binding the nucleosome, and whether the

interaction is direct remains unclear. Yeast two hybrid, in vitro and

in vivo studies implicated the Sir3p C-terminus in interaction with

Sir4p, Rap1p, itself, H3 and H4 tails, and the region around H3

K79 [14,23–27]. However, point mutations in the N-terminal

BAH region can weaken or abolish silencing, [28] and recent

studies provide evidence that the N-terminal BAH domain of

Sir3p is important for nucleosome binding [11,12]. In this paper,

we provide a genetic confirmation of the Sir3 BAH-LRS surface

interaction that suggests it represents an extensive direct

interaction surface dominated by the overall complementary

charge states of the two surfaces. Based on these genetic data we

propose a model of how the Sir3p BAH domain docks onto the

nucleosome face.

Results

Nucleosome Electrostatics
On the disk face of the nucleosome, there are two electroneg-

ative (red) surfaces, one of which partially overlaps the LRS

surface ([29], K. Luger, personal communication, Figure 1) The

other, stronger of the two, is at the H2A/H2B interface and has

been shown to bind in trans to the H4 tail and make an important

crystal contact in the Xenopus nucleosome structure [3]. The LRS

region of the nucleosome consists of H3 residues 72–83 and H4

residues 78–81; data from both directed and random mutagenesis

studies reveal an overwhelming trend in that all mutations in the

LRS region that lose silencing either remove positive charge from

the LRS surface or do not detectably affect the LRS surface

potential. Importantly, no LRS allele was found to alter an acidic

residue (Figure 1). In fact, mutations that increase the positive

charge on this surface such as mutations in H3 D77(G,V,N), and

H3 D81(G,N) actually increase telomeric silencing [1,2,9,30–32].

The only exception to this trend is H3 E73, which when mutated

to any residue regardless of charge loses telomeric silencing, but

increases rDNA silencing. Based on these observations, we

hypothesized that the LRS surface is a binding site for a trans-

acting silencing factor, and that this interaction might be

electrostatic in nature.

Genetic Screen To Identify Suppressors of the LRS
Surface

To investigate the function of the LRS surface we undertook an

EMS screen for suppressors of the loss of telomeric silencing

phenotype of one of the non-charge-altering LRS mutants, H3

A75V. H3 A75V was chosen because it showed a severe loss of

both telomeric and rDNA silencing. We designed a telomeric

silencing reporter strain lacking endogenous copies of all histone

H3 and H4 genes, with a wild type H4 (HHF2) gene and H3-

A75V (HHT2-A75) expressed from a centromeric plasmid. The

strain contained a two-tiered reporter system described by Smith

et al [31,33]. In this strain, ADE2 is located adjacent to the

truncated right telomere of chromosome V (V-R) and URA3 next

to the truncated left telomere of chromosome VII (VII-L). The

ADE2 reporter gene displays a range of colors from dark red

indicating most intense silencing to white indicating complete loss

of silencing. Colonies of wild-type yeast display an intermediate

phenotype, with sectors of red and white, reflecting epigenetic

switching between states [33]. Similarly, silencing of the telomeric

URA3 reporter can be monitored quantitatively by growth on

synthetic medium lacking uracil, or on counter-selective medium

containing 5-FOA (5-fluoroorotic acid). The URA3 coactivator,

PPR1, was also deleted, rendering the reporter strain completely 5-

FOA sensitive in the presence of histone H3 LRS mutant H3-

A75V, but 5-FOA resistant with wild-type histones. Suppressors of

H3-A75V were isolated by selection on 5-FOA. We mutagenized

approximately 109 cells, yielding 44 independent plasmid-borne

mutations and 40 independent genomic mutations (summarized in

Table 1).

Histone Suppressor Mutations
Based on the electrostatic properties of the LRS surface, we

predicted that histone mutations that decreased the negative

charge of the LRS surface might restore telomeric silencing. The

only copies of histone H3 and H4 genes in the reporter strain were

supplied on a centromeric plasmid, thus potential suppressor

mutations in H3 and H4 were easily identified by a plasmid

shuffling strategy. 44 of the isolates displayed a plasmid-dependent

phenotype. We recovered the original suppressor-containing

plasmids and identified the following inter- and intragenic histone

suppressor mutations: H4 A15V, H75Y, R39K, and H3 D77N,

and D77G (Table 1 and Figure 2). Remarkably, an independent

screen for H3 and H4 mutations that increased telomeric silencing

in a cac1D background also revealed these same H3 and H4 alleles

[31]. The most potent of these mutants, and the only dominant

alleles among them, H3 D77N and D77G, are located on the LRS

surface and are predicted to decrease its negative charge.

Author Summary

The chromatin in which eukaryotic DNA is wrapped is
organized in nucleosome units, consisting of eight core
histone molecules. We study gene silencing, thought to be
associated with chromatin compaction in Saccharomyces
cerevisiae, which has most of its genome in the form of
open chromatin, i.e., the genes are expressed. There are
three distinct classes of silent genomic loci associated with
such a compact structure; when genes are inserted at
these loci, they are subject to silencing, regardless of DNA
sequence. Yeast cells distinguish between silent and
expressed loci using silencing complexes, concentrated
at silent loci, as well as establishing different modification
states of silent and expressed chromatin. One of these
silencing proteins, Sir3p, is crucial for silencing transcrip-
tion. Using suppressor genetics, we identified a genetic
interaction between a specific surface patch on the
nucleosome face (the LRS surface) and Sir3p; the
complementary charges of the respective surfaces deter-
mine the strength of this key interaction. Genetically
guided molecular docking experiments identified electro-
static and steric complementarity between these two
surfaces at the molecular level that could help explain
both the genetics and the impact of the critical
nucleosomal modifications that control silent chromatin
formation.

Genetics of the SIR3/LRS Interaction
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Additionally D77N, but not H75Y suppresses the loss of rDNA

silencing phenotype of H3 A75V (Figure 3).

Chromosomal Suppressor Mutations
The remaining 40 dominant suppressor mutants retained their

H3-A75V suppressor phenotype after retransformation with a

‘‘clean’’ histone plasmid. These mutations were mapped using a

new TAG array based meiotic mapping procedure, TaGAM

(Norris and Boeke, unpublished data) followed by DNA sequenc-

ing. All of the non-histone suppressors mapped to SIR3. Of these

SIR3 suppressor mutants, 38 carried the SIR3-D205N allele and 2

carried the novel allele SIR3-L79I, both located in the N-terminal

BAH domain of SIR3 (Figure 4). Interestingly, the SIR3-D205N

mutation was previously isolated as a suppressor of the mating

defect of a histone H4 K16Q tail mutation [27] and also as a

suppressor of a rap1-17 allele incapable of recruiting Sir3p to the

telomere [24], consistent with a general gain of function or ‘‘super-

SIR3’’ phenotype for this allele. Additionally, a bacterially

expressed Sir3p-D205N BAH domain reportedly binds to

nucleosomes and naked DNA in vitro with a higher affinity than

the wild type [34]. The L79I substitution lies in a hydrophobic

loop between b5 and b6; this protein segment is disordered in the

existing crystal structures of the Sir3p BAH domain [34,35] (see

Figure 4).

SIR3-D205N and L79I Specifically Suppress LRS Surface
Mutations

It was remarkable that, given the whole genome as the target,

only mutations in histones and SIR3 suppressed H3 A75V loss of

telomeric silencing. This result strongly supports a model in which

Sir3p interacted directly with the LRS domain at the telomeres

but did not rule out an indirect effect. To test the hypothesis that

the Sir3p BAH domain had a specific interaction with the LRS

surface of the nucleosome, we tested for the ability of SIR3-D205N

and SIR3-L79I to suppress other histone mutations that lose

telomeric silencing. Three different nucleosome regions are

important for telomeric silencing, the H3 and H4 N terminal

tails, the SIN (Swi/Snf Independent) surface and the LRS surface

[1,2,9,30,31]. The SIN surface is located at the dyad axis, where

the DNA enters and exits the nucleosome. The sin mutant alleles

partially bypass the need for the SWI/SNF chromatin remodeling

complex, are defective in nucleosome array formation, and

defective for telomeric silencing. Additionally, these alleles also

display defects in localization of Sir2p and Sir4p to the telomeres

[9,36]. If there were a specific interaction between the LRS surface

and the Sir3p BAH domain we would expect the SIR3 alleles to

Figure 1. LRS residues affect the electrostatics of the nucleosome. (A) Qualitative vacuum electrostatic representation of the nucleosome
1ID3 [29] rendered using PyMOL [62]. Red is electronegative and blue is electropositive. (B) A table of residues found in several studies showing that
an increase in positive charge in LRS residues leads to an increase in silencing, while a decrease in charge leads to loss of telomeric silencing. * The
mutation Q76 to R was found to have an increase in spreading of silent chromatin [61]. Data was compiled from the following references
[1,2,9,31,32,61].
doi:10.1371/journal.pgen.1000301.g001

Table 1. Summary of EMS mutagenesis.

Gene Mutations Dominant or Recessive

SIR3 D205N(38) Dominant

L79I (2) Dominant

HHT2 (H3) R39K (8) Recessive

D77N (31) Dominant

D77G (2) Dominant

HHF2 (H4) A15V (1) Recessive

H75Y (2) Recessive

The gene mutated is indicated in the left column. The mutations and number of
independent isolations of a mutation are indicated in parentheses.
doi:10.1371/journal.pgen.1000301.t001

Genetics of the SIR3/LRS Interaction
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suppress the LRS mutants’ defect in telomeric silencing but not the

defects of SIN or other alleles. Indeed both SIR3-D205N and SIR3-

L79I suppress the telomeric silencing phenotype of LRS alleles but

not SIN allele H4 H4-V43I or other non LRS Histone alleles such

as H3 E73D or H4 K16Q (Figure 5A and B). It should be noted

however, that both the SIR3-D205N and SIR3-L79I do suppress

the mating defects of both H3 E73D and H4 K16Q (data not

shown), suggesting that Sir3p may bind somewhat differently at

the two silent loci. Alternatively, these SIR3 alleles may impart a

small amount of restoration of silencing to HM loci sufficient to

restore mating, but they do not have much effect on telomeric

silencing. We found that these SIR3 mutations do not restore

rDNA silencing in H3 A75V (Figure 5C), as expected, given that

Sir3p is not a part of the silencing complex important for rDNA

[37,38].

SIR3 Alleles Restore Sir3p Binding to Telomeric
Chromatin in LRS Mutants

The mechanism of restoration of silencing by SIR3 in the H3

A75V strain could be due to restoration of binding of Sir3p to

telomeric DNA or to some indirect effect on telomeric silencing.

To provide further evidence against an indirect mechanism we

localized Sir3p using chromatin immunoprecipitation (ChIP) to

telomeric DNA in wild-type or H3 A75V strains with the SIR3

alleles D205N and L79I. We found that indeed the H3 A75V

mutant blocks wild-type Sir3p from binding to telomeric DNA,

consistent with similar effects on Sir2p and Sir4p observed

previously [9]. As predicted, Sir3p telomere localization was

restored in both hht2-A75V-SIR3-D205N and hht2-A75V-SIR3-L79I

strains (Figure 6A). This restoration of Sir3p binding is not a result

of increased steady state levels of Sir3p (Figure 6B). Interestingly,

Sir3-D205Np and Sir3-L79Ip also bind wild-type telomeric

nucleosomes more efficiently than does wild-type Sir3p, suggesting

a gain of function in these mutant proteins. The efficiency of Sir3p

telomeric localization does not entirely parallel the telomeric

silencing phenotype as assayed by the URA3 and ADE2 reporters.

Paradoxically, both SIR3-D205N and -L79I alleles show slight

decreases in silencing with wild-type histones as compared to wild-

type Sir3p with wild-type histones (Figure 5A and 5B). Clearly, the

telomeric silencing phenotype is determined by more than simply

the quantity or extent of Sir3p bound. This may explain why we

failed to observe any suppression of H3 A75V and other LRS

alleles by simple over-expression of wild-type SIR3 (data not

shown).

Figure 2. Histone suppressors of H3 A75V. (A) Disc face representation of the nucleosome 1ID3 [29] rendered using PyMOL [62]. (B) Zoom view
of the LRS surface of the disc face. The DNA is represented in green, the histones are represented in wheat, the LRS residues and their side chains are
highlighted in magenta, and the suppressor alleles are highlighted in cyan. (C) Telomeric ADE2 silencing with wild-type, H3 A75V and H3 A75V with
histone suppressors.
doi:10.1371/journal.pgen.1000301.g002

Genetics of the SIR3/LRS Interaction
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An Extended Surface of Sir3p Critical for Telomeric
Silencing

To further characterize the surface of Sir3p important for

suppression of the LRS surface, we selectively mutagenized the

BAH domain of SIR3 and selected for additional suppressors of H3

A75V or H4 R78G. We isolated many additional suppressor

substitution mutants (Table 2, Figure 4). All of these mutants

clustered on one face of the Sir3p BAH domain surface and are in

residues that are 100% conserved among S. paradoxus, S. mikatae, S.

bayanus, S. kudriavzevii, and S. castelli, except for S. castelli – the most

distantly related species – that differed only in having a glutamyl

residue at position 205 as opposed to the aspartyl residue found in

all other species examined (Figure 4B). These suppressor residues

are also surrounded by the previously identified eso (enhancer of sir1

mating defect) mutants, suggesting that this is indeed an important

functional surface of Sir3p. There are three notable structural

features of the Sir3 BAH domain affected by these mutants were

isolated: (i) there is a highly charged region between amino acids 24

and 34 that is disordered in the crystal structure in which both loss of

function and gain of function (ESO or enhancer of Sir One) alleles of

SIR3 have been isolated (current study, [24,28] and Danesh

Moazed, pers. comm.); (ii) There is also an extended hydrophobic

loop between residues 77 and 83, most of which is disordered in the

crystal structure; (iii) Finally the helix a8 and the twisted beta sheet

(see Figure 4B) make up a contiguous surface and is where the

majority of mutants were isolated. The SIR3 LRS suppressors

isolated here follow the general electrostatic trend in that many

(69%) of the mutations increase the positive charge of the BAH

domain and none of them decrease it. We also tested the allele

specificity of these SIR3 A75V suppressor alleles; all additional

suppressor alleles tested had the same specificity for the LRS surface

as both SIR3-D205N and SIR3-L79I (data not shown).

Sir3 Mutations Are ‘‘Orc1p-Like’’
Both Sir3p and the essential replication origin binding protein

Orc1p contain BAH domains [39]. The two BAH domains are

55% identical and 76% similar [34]. Many of the suppressor

alleles in SIR3 are in residues that are not conserved between the

Orc1p and Sir3p BAH domains. Of 21different independently

isolated suppressor mutations, 14 fall in nonconserved residues.

Remarkably, 4 of these are changes in Sir3p that introduce the

corresponding Orc1p residue. Additionally, the frequently isolated

D205N mutant changes to (N) asparagine at a position where

Orc1p has the closely related (Q) glutamine. These ‘‘Orc-like’’

mutations do not lie in the H subdomain of the BAH domain, the

Orc1p domain responsible for Sir1p binding. [40] (Figure 4). This

result argues against the possibility that the gain of function nature

of these SIR3 alleles is mediated by an Orc-like function that

recruits Sir1p to telomeres in the mutants, enhancing silencing (see

Figure 4B and Table 2). In fact, ectopically expressed Orc1p BAH

domain binds more Histone H3 than the Sir3p BAH domain as

measured by co-immunoprecipitations, but does not substitute well

for the Sir3 BAH domain in silencing [11].

Docking Sir3p BAH Domain onto the Nucleosome Face
Genetic suppressors of a defective nucleosome that has lost the

ability to bind Sir3p, should reveal side-chains of Sir3 or the

nucleosome that would either normally make inhibitory interac-

tions between Sir3 and the nucleosome, or reveal neutral

interactions that could be improved by the introduction of a

new side-chain. Substitutions of H3 D77 have been isolated as

enhancers of telomeric silencing (Table 2). The histone suppressor

allele H3 D77N and D77G are the strongest intragenic

suppressors of H3 A75V, suppressing both its telomeric

and rDNA silencing phenotypes, and the nature of these

Figure 3. Effect of histone mutations on rDNA silencing. H3 D77N but not H4 H75Y suppresses the loss of rDNA silencing phenotype of H3
A75V. JPY12 yeast strain with the histone alleles on a plasmid were plated as indicated. (A) SC2Trp for growth control and SC2URA or +FOA to
measure rDNA silencing. (B) MLA plates assaying for silencing of the MET15 reporter inserted into the NTS2 of the rDNA. Dark color indicates increased
silencing.
doi:10.1371/journal.pgen.1000301.g003

Genetics of the SIR3/LRS Interaction
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Figure 4. SIR3 suppressor mutants define a surface of Sir3p. (A) Mapping SIR3 mutants onto the crystal structure of the Sir3p BAH domain 2fl7
[35]. Mutants identified in both the EMS screen and the PCR mutagenesis of the BAH domain are represented in orange. SIR3 eso mutants are
represented in green [28]. (B) An alignment of Sir3p and Orc1p BAH domains with H3 A75V and eso mutants highlighted. Many of the mutants are
disordered in the crystal structure, the approximate locations of missing sections, and are represented by dashed lines. Residues important for
suppression of H3 A75V are highlighted in orange. H3 A75V suppressor mutants that introduce an ‘‘Orc1p like’’ residue are highlighted in magenta;
eso mutants are highlighted in green. Highly conserved and semiconserved residues are highlighted in light blue and gray, respectively.
doi:10.1371/journal.pgen.1000301.g004

Genetics of the SIR3/LRS Interaction
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negative2 . uncharged substitutions are consistent with the simple

notion that electrostatics underlie LRS surface function. Similarly,

many SIR3 suppressor alleles decrease the negative charge of the

BAH domain surface. These results are all consistent with the

hypothesis that electronegative regions of the nucleosome and Sir3

normally repel each other in wild-type yeast to some extent and it is

the slightly unstable nature of this interaction that underlies

silencing. Thus what the mutants do is decrease repulsion, which

presumably increases nucleosome binding. Our genetics suggested

that two surfaces, one on the nucleosome and one on Sir3p, could

directly interact. To this end, we performed studies to attempt to

dock the BAH domain on the nucleosome using the mutated

‘‘patches’’ of these surfaces as guides. Considering the large

positively charged stretch of amino acids 24 and 34 in SIR3 we

surmised that this section was likely to lie in proximity to the DNA.

Additionally, there is a deep cleft in the nucleosome neighboring the

LRS domain created by the H2B-H4 four helix bundle at the

interface between the H2A/B dimer and the H3/4 tetramer (see

Figure 7A and 7B). Guided by these constraints, the helix a8 of the

BAH domain was readily docked into this cleft, maintaining the

packing of the a-helices of H4 and H2B that make up the proposed

docking site (see Figure 7B). The area buried in this structure is

approximately 2300 Å2, consistent with a strong interaction.

Importantly, this configuration directly juxtaposes the LRS domain

with the surface of the BAH domain identified here (Figure 7A–7F).

We looked deeper into the structure to find evidence of consistent

electrostatic interactions between the two proteins. Remarkably, we

found that many residues of both surfaces not only line up well, with

few clashes, but importantly, we found adjacencies/interactions

consistent with the observed silencing-inhibitory and silencing-

enhancing mutations isolated (Figure 7). The most frequently

isolated SIR3 suppressor mutants were D205N, L138P, and W86R.

The importance of these residues in the docking structure are

demonstrated in Figure 7E and 7F. SIR3 D205 and L138 are all in

Figure 5. SIR3 D205N and L79I specifically suppress the LRS surface telomeric silencing defect. SIR3 alleles L79I and D205N were assayed
for their ability to suppress the loss of telomeric silencing of LRS alleles as well as other Histone alleles not on the LRS surface that lose telomeric
silencing. (A) The ADE2 reporter gene was assayed on SC2Trp. A pink color indicates silencing, whereas a lighter color indicates a loss of silencing. (B)
The URA3 gene was assayed for growth by serial dilution on SC2Ura. Increased growth indicates a loss of silencing, whereas decreased growth
indicates an increase in silencing. (C) JPY12 yeast strain with the SIR3 alleles on a plasmid were plated on MLA plates assaying for silencing of the
MET15 reporter in the rDNA.
doi:10.1371/journal.pgen.1000301.g005

Genetics of the SIR3/LRS Interaction
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close proximity (within 5 Å) to each other and to H3 K79. Given the

importance of H3 K79 methylation in Sir3p binding to the

nucleosome, we also found in this proposed docking scheme that tri-

methylation of H3 K79 is predicted to sterically hinder binding of

Sir3p to the LRS surface (Figure 7E). SIR3 W86 is within 5 Å of H3

T80, H3 D81 and H4 K79. A substitution of an arginine (R) at

position W86 could enhance an electrostatic interaction between

H3 D81 and Sir3p. Also H3 D77 makes potentially inhibitory

repulsive interactions with Sir3p-E178 (Figure 7C), which would be

ameliorated by introduction of glycine (G) or asparagine (N)

residues into either partner. There are of course stabilizing

interactions that would not necessarily be revealed by our

mutagenesis but were revealed in the docking study. While our

genetic data revealed important side-chains in limiting the

interaction between Sir3p and the nucleosome, the docking model

showed that there are potential attractive forces as well, namely the

a7 helix of the Sir3p BAH domain makes favorable contacts with

helices aC and a3 of H2B.

Discussion

Models for LRS Function
We considered three models for the function of the LRS domain

(i) recognition by the K79 methyltransferase Dot1p (ii) nucleo-

some-nucleosome interaction, and (iii) trans factor-nucleosome

interaction. At the outset of our investigation we had evidence

arguing against the first two models. 1) We found that LRS alleles

are not intrinsically deficient in H3 K79 methylation as evaluated

by immunoblot or in vitro Dot1 methylation assays. Although a few

alleles are deficient in methylation, most are not. Therefore,

recruitment of Dot1p to effect H3 K79 methylation cannot be the

sole function of the LRS surface. 2) The H3 R83A allele, unlike its

structurally equivalent H4 R45C SIN allele, is competent to form

oligonucleosome arrays in vitro by sedimentation analysis, arguing

against an inter-nucleosomal interaction defect [9].

To genetically probe the function of the LRS surface, we used

EMS mutagenesis to find suppressors of H3 A75V loss of telomeric

Figure 6. SIR3 alleles restore Sir3p binding to telomeric DNA. (A) ChIP of Sir3p to telomeric DNA. The histone allele is indicated, followed by
the SIR3 allele on a CEN plasmid for each strain tested. Wt is wild-type, A75V is hht2-A7V5, D205N is sir3-D205N, and L79I is sir3–L79I. Wild type
histones with PRS415 vector and endogenous SIR3 deleted served as a control. All values were normalized to input DNA and the PHO5 locus and wild
type H3/SIR3+. Primers specific to subtelomeric sequences starting at 70-bp, and 500-bp, regions from the C1-3A repeats at the right end of
Chromosome VI (Chr. VI-R). (B) Steady state Sir3p levels in strains used for ChIP analysis show that increased ChIP to telomeric DNA is not a
consequence of over expression of Sir3p. Western blot of log phase cells expressing SIR3 alleles and LRS alleles probed with antibodies to Sir3p and
tubulin as a loading control. Wt is wild-type, and A75V is hht2-A75V. Wild type histones with PRS415 vector and endogenous SIR3 deleted served as a
control. Wt is wild-type, A75V is hht2-A7V5, D205N is sir3-D205N, and L79I is sir3–L79I.
doi:10.1371/journal.pgen.1000301.g006
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Table 2. SIR3 BAH mutants.

Sir3p BAH Residue Mutant Residue Change in Charge* In Crystal Structure
Corresponding
Orc1p BAH Residue Previous Report(s)

K33 R + No R

E37 G + Yes T

E84 A + Yes E

W86 R + Yes W W86R [27]

D205 N,G,V,I,S +,+,+,+,+ Yes Q D205N [24,27]

H72 Q,R 0, + Yes Q

S31 L,T 0 No R S31L [24]

F50 L 0 Yes L

T78 A 0 No T

L79 I 0 No L

N80 S 0 No N

L138 P,Q 0 Yes L

M199 V 0 Yes V

S204 F 0 Yes A

Bold residues indicate that the mutant residue is the same as the corresponding Orc1p residue. An underlined residue indicates mutant residues that are not conserved
between ORC1p and Sir3p suppressor mutants.
*+, mutant is more positively charged than wild type; 0, no change in charge; 2, mutant is more negatively charged than the wild type.
doi:10.1371/journal.pgen.1000301.t002

Figure 7. Model for Sir3p BAH domain binding to the LRS surface. The 2Fl7 [35] crystal structure was docked to the 1ID3 nucleosome
structure [29]. The helix a8 of Sir3p BAH packs against a group of Histone alpha helices consisting of H2B, H4, and H3. This juxtaposes the LRS surface
with the BAH domain found to be important for suppression of LRS alleles. (A) Sighted along the SHL+/23.5 axis, the DNA was removed to show the
details of the docking. (B) A close-up of the docking structure to show the juxtaposition of the LRS surface and the Sir3p BAH domain suppressor
residues. (C) An example of potential inhibitory interactions between H3 D77 and Sir3p E178. The introduction of an asparagine at H3 position 77
would ameliorate the inhibitory interactions. (D) A 90u rotation about the X axis from A, showing an overview of the docked structure. The DNA has
been removed to show details of the docking. (E) A close-up of the key residues Sir3p D205 and H3 K79. H4 E74 could also be destabilizing,
considering its proximity to D205. (F) Showing the interactions between the LRS residues H3 T80, D81, and H4 K79, and key residues W86 and E84.
The images were made using PyMOL [62], and the docked structure is available as Datasets S1 and S2.
doi:10.1371/journal.pgen.1000301.g007
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silencing. In this screen almost half of the mutations were in

histone H3 and H4 genes. Remarkably, all the remaining

chromosomal mutations, which were dominant and therefore

difficult to characterize, were subsequently found to map to SIR3

and to have point mutations in the Sir3p BAH domain that

accounted for the suppressor phenotype. This fact alone provides

strong evidence consistent with a Sir3p BAH - LRS surface

interaction underlying silencing. However, it was formally possible

that the Sir3p BAH domain could have an indirect effect on the

LRS surface. We have three additional lines of evidence that argue

against such an indirect effect. (i) SIR3 suppressor alleles restore

Sir3p binding to telomeric DNA in H3-A75V mutants (ii) the

electrostatic alterations in the mutants in H3 that lose silencing,

and the H3-A75V suppressing mutants in SIR3 and hht2 (H3) that

restore that silencing, suggest complementary physical interac-

tions, and (iii) SIR3 suppressor mutant residues lie in a contiguous

surface similar in dimensions to the LRS surface.

To provide evidence for a direct LRS-Sir3p interaction we used

ChIP analysis of Sir3p and we did indeed find that the LRS mutant

H3-A75V was completely defective in binding Sir3p to telomeric

chromatin, and that both Sir3p-D205N and Sir3p-L79I completely

restored the binding. Based on targeted mutagenesis of the BAH

domain of SIR3 we were able to further genetically define the

surface of Sir3p important for suppression of LRS alleles. We also

noted that both the D205N mutation and 69% of the mutants found

in the targeted mutagenesis study decreased the negative charge of

the Sir3p BAH domain, distinctly complementary to the electro-

static trend seen in the H3 A75V histone H3/H4 suppressors

located in the LRS domain, raising the possibility that decreasing

charge compatibility would decrease nucleosome/BAH affinity and

increasing it would restore binding. To test the notion that such

charge complementarity may function between the LRS surface

and the BAH domain we tested the allele specificity of the SIR3

suppressor mutants, and found that SIR3 mutants were able to

generally suppress the loss of telomeric silencing of LRS surface

mutations, but were not classically allele-specific. Why weren’t we

able to isolate residue-specific suppressors? The LRS surface may be

important for binding to several different proteins/complexes, and a

general electrostatic interaction could allow the surface to bind

different factors at different loci. While we provide evidence that

Sir3p binds to the LRS surface at telomeres, these SIR3 alleles do

not suppress H3-A75V’s loss of rDNA silencing. It will be interesting

to determine whether other BAH domain containing proteins such

as Orc1p, Rsc1p or Rsc2p can bind the LRS surface at other loci in

the yeast genome [39,40].

Complementary Surfaces Underlie the Sir3p-Nucleosome
Interaction

In this mutational study suppressor mutations were used to

inform docking experiments between the Sir3p BAH domain and

the LRS surface. The interaction between the LRS surface and the

Sir3p BAH domain is determined by charge complementarity and

surface complementarity, an improvement in either type of

complementarity can suppress defects in either type of complemen-

tarity. Based on this docking we did find residue-specific interactions

consistent with our genetics, and found that the key residues H3

K79 and H3 D77 could play critical roles in stabilizing the docked

structure. Specifically, H3 K79 could interact with Sir3p residues

W86, L138, and D205, all of which would be inhibited by tri-

methylation of H3 K79; such inhibition is presumably steric, i.e.

reducing surface complementarity. Additionally, substitutions of H3

D77 are the strongest suppressors of H3 A75V, suppressing both its

telomeric and rDNA silencing phenotypes (Figures 2 and 3). Based

on the idea that electrostatics underlie LRS surface function, and

based on our docking experiments, we predict that H3 D77

normally makes potentially inhibitory interactions with Sir3p E178

(Figure 7), hence the D77N and D77G substitutions most likely

function by increasing Sir3p/nucleosome affinity. H3 D77 is

important for inhibitory interactions with Sir3p residues, whereas

Sir3p D205 maintains inhibitory interactions with both H3 and H4,

all of which could be ameliorated by a decrease in negative charge

as seen in all of the substitutions of aspartic acid (D) at position 205

of SIR3 suppressors (Figure 7). Repulsion of electronegative forces

limit the interaction of Sir3p BAH domain and the LRS

nucleosomal domains, and hence decreasing them leads to greater

affinity. Figure 1 shows an electronegative region abutting the LRS

region; mutations that remove any positive charge from the LRS

surface lead to loss of silencing. We also predict that Sir3p W86 does

not normally make inhibitory interactions but introduction of an (R)

Arginine could improve interactions with the nucleosome by

creating a salt bridge with H3 D81 (Figure 7F). Not all substitutions

in Sir3p BAH domain would improve electrostatic complementar-

ity, in fact many of the suppressor mutants change hydrophobic

residues, for example L79I and L138P. We predict that altering

these side-chains improves surface complementarity between the

BAH domain of Sir3p and the LRS surface. The attractive forces

may involve the positively charged H4 N-terminal tail and/or the

H2B a-C helix that abuts the a7 Sir3p helix; there are many

complementary charge interactions.

Indirect and Direct Histone Suppressor Alleles
Whereas the majority of the H3 A75V suppressor mutations in

histones mapped to the LRS surface, three suppressor mutations, H3

R39K, H4 A15V and H4 H75Y are elsewhere. A previous study that

sought H3 and H4 mutations that restored telomeric silencing to a

crippled cac1D mutant isolated the same histone alleles that we

isolated here that can suppress the H3 A75V telomeric silencing

phenotype. Investigating the function of these alleles, Smith et al. [31]

demonstrated that H4 A15V decreases the acetylation of H4 K16,

which in turn interferes with Sir3p binding [11,21,26]. Presumably,

decreasing the acetylation state of K16 tips the balance toward Sir3p

binding at the expense of Dot1p, and thereby increases silencing.

Losing H4 K16 acetylation all together could actually hinder

silencing because of a dilution effect on silencing complexes, which

explains why a H4 K16R mutation or a sas2 deletion can lead to loss

of telomeric silencing [41]. The suppressor mutations H3 R39K and

H4 H75Y are more difficult to reconcile. In a follow up study to the

original paper that identified these two mutations Xu et. al. [42]

demonstrated that both H4 H75Y and H4 R39K increased

spreading and H4 H75Y also increased the stability of silent

chromatin. Additionally, they predicted that a substitution of tyrosine

for histidine could increase the H2B/H4 interaction. Considering the

proposed docking of the Sir3 BAH domain onto the nucleosome, an

increase in stability between H4 and H2B could enhance Sir3p

binding and hence increase silencing. Alternatively, the decreased

interaction of H75Y with Asf1, predicted to decrease nucleosome

disassembly/assembly thereby increasing telomeric silencing could

explain its suppression of H3 A75V [43]. Recently H3 R39, along

with the residues N terminal to it, was co-crystallized with histone

chaperone RbAp46. This residue may have a similar effect as H75Y,

except not on the nucleosomal structure itself. Instead this mutation

may alter a histone/chaperone interaction, which is important for

disassembly/assembly processes that affect telomeric silencing [44].

The BAH Domain and the Evolution of Silencing
Mechanisms

Homologs of SIR3 have not been found in other fungal taxa

outside of Saccharomyces. However, all eukaryotes share an essential
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replication protein, Orc1p, the N-terminus of which consists of a

BAH domain similar to that of Sir3p. This fact suggests that

Sir3p’s role in silencing was recently acquired in evolution, and

study of the two proteins’ sequence might give some hints as to

functional constraints on their evolution. The similarity in

structures suggests that Orc1p’s BAH domain might also contact

the LRS surface as part of its role in defining origins of replication.

Indeed, a recent study of mammalian Orc1p BAH domain

suggests a specific role for this domain in chromatin binding, and

this domain expressed ectopically is able to co-immunoprecipitate

histone H3 in yeast [11,45]. Other BAH domains are found in

proteins important for DNA methylation and transcription,

consistent with a generic role in binding the LRS surface [39].

We observe that the majority of the mutations we isolated in

SIR3 that suppress LRS surface defects are ‘‘Orc1-like’’, i.e. the

amino acid substitutions are in equivalently positioned residues

that differ between these two proteins and the mutations

correspond to the residues found in Orc1p (Figure 4B). Addition-

ally we predict by our modeling that these mutations would

increase the affinity of Sir3p BAH domain for the nucleosome and

show that in vivo they ChIP more telomeric DNA than wild type

Sir3p. Counter intuitively, our suppressor Sir3 alleles do not

silence as well with wild-type histones as does wild-type Sir3p.

Perhaps, as in the case of the Orc1p BAH domain, binding too

strongly to chromatin is not productive for telomeric silencing

[11,12,45]. Following the presumed gene duplication event that

gave rise to SIR3, its BAH may have acquired a lower affinity for

the LRS surface, consistent with the fact that Sir3p seems to have

at least one additional distinct chromatin-binding domain [21,26].

Further, a role requiring alternating binding and release of

chromatin, or allowing for conformational changes that might be

required for silencing [11,46]. Sir3p might require a chromatin

binding affinity in a distinct ‘‘sweet spot’’ in between that required

to stabilize a silencing competent structure but sufficiently weak to

allow the necessary dynamic structural changes.

Sir3p and the Chromatin Fiber
There are two models of the chromatin fiber, solenoid model

and the two-start helix model [10,47,48]. In the two start

helixmodel the nucleosomes make a zig-zag formation with every

other nucleosome facing each other, while in the one-start solenoid

model nucelosomes are inter-digitated. Studies of chromatin

condensation in vitro used purified recombinant nucleosomes

lacking the modifications seen in vivo and their condensation is

highly dependent on salt and histone tail domains [46,49]. In vivo,

perhaps other proteins actually mediate nucleosome-nucleosome

interactions. SIR3 could play this role at the telomeres. In the fiber

models proposed by Schalch et al. or Robinson et. al. [10,48], the

LRS surface is solvent exposed and available for Sir3p binding.

However full engagement of Sir3p would result in a distortion of

either structure, and suggests that the actual higher order structure

of silent chromatin could be significantly different.

Materials and Methods

Strains and Media
All yeast strains are described in Table 3. Yeast media used for

silencing assays were as described previously [50], except that

0.8 mM adenine was added to Pb2+-containing medium. The

drugs clonNAT (Nat) and hygromycin (Hyg) were used as

described [51] to select for transformants. G418 was used as

previously [52]. Yeast media used for TaGAM were as previously

described [53].

Plasmids
pAN17 (SIR3, LEU2 CEN) was made by digesting the SIR3

containing plasmid plP30 [54] with SalI and cloning it into the SalI

site of pRS415. pAN18 (sir3-D205N) and pAN19 (sir3-L79I) were

cloned by PCR of SIR3 from suppressor strains and exploited the

endogenous ApaI site 530 bp upstream of the SIR3 ORF and the

BmgBI site internal to the gene. After digestion with those enzymes

the PCR products were subcloned into a similarly digested pAN17

vector.

Yeast Strains
The strains used are summarized in Table 3. ANY59 was made

by crossing ANY34 with YPH499 and isolating tetrads that were

MATa ade2-101 his3-200 leu2-1 lys2-801 trp1-63 ura3-52 ppr1::HIS3

adh4::URA3-TEL-VIIL TEVR-ADE2 hht1-f1::Nat, followed by

successive transformations with a ppr1::LYS2 cassette, integration

of hht1-f1::Nat hht2-f2::hyg-hht2 A75V-HHF2, and finally can1-

D::LEU2-MFA1pr-HIS3. ANY73 was a spore from the cross

between ANY34 and YPH499. ANY60 and ANY61 are spores

from a cross between ANY34 and ANY73. ANY71 and ANY72

were made by a one-step PCR-transformation method that

resulted in the replacement of the SIR3 open reading frame with

the KANMX4 cassette [51] of ANY34 followed by transforming

with their respective SIR3 containing plasmids.

PCR Mutagenesis of SIR3 BAH Domain
We constructed mutated derivatives of the SIR3 LEU2 plasmid

pAN17 by transforming ANY71or ANY72 cells and selecting Trp+

Leu+ colonies. These were then replica-plated to SC+FOA. The

mutations were identified by DNA sequence analysis and

confirmed by retransformation. SIR3 BAH domain mutagenesis

was done using PCR under the following conditions: 20 ng

pAN17, 0.1 mM MnCl2, 1.5 mM MgCl2, 0.4 M primers, 0.1 mM

dNTPs and 0.1 U Taq polymerase; 30 PCR cycles of 95uC for

1 min, 55uC for 0.5 min and 72uC for 1 min. A gapped pAN17

derivative was also generated by PCR using the Expand Long

template PCR system (Roche Biosciences), using recommended

conditions for buffer 2, generating a gap spanning the SIR3 BAH

domain. Approximately 300 ng of mutagenized PCR product and

150 ng of gapped plasmid PCR product were co-transformed into

ANY71 or ANY72 cells yielding 20,000 Leu+ Trp+ cells.

Approximately 600 colonies were pink in color and FOAr, 300

of which were sequenced by PCR.

Histone H3 A75V Suppression Screen
MATa and MATa versions of reporter strain ANY60 and

ANY61 were streaked to single colonies and then grown overnight

in 7 mL YPD. MATa versions carried TRP1-marked plasmid

pDM18-H3 A75V and MATa versions contained LEU2-marked

plasmid pJP15. 1 mL of each overnight culture was transferred to

a microfuge tube, washed twice with water and resuspended in

EMS buffer. 30 mL EMS was added to each tube and incubated at

room temperature for one hour. Cells were washed with 1 M Na

thiosulfate three times and the A600 was measured. Approximately

107 cells were plated each onto a total of 100 10 mm YPD plates

and incubated overnight at 30uC. Cells were replica-plated to

SC+0.1% FOA with 0.8 mM adenine and incubated for 5 days at

30uC, the plates were then replica-plated again to SC+0.1% FOA

with minimal adenine, grown for 3 days at 30uC and then

transferred to 4uC for 5 days to develop the pink color. Cells that

were both pink and FOAr were picked and streaked to single

colonies. Single colonies were patched to SC2Leu or SC2Trp

medium and replica plated to SC2Ura and SC2Ade to test for
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retention of the telomeric silencing markers. To isolate plasmid

dependent suppressors, cells were transformed with a clean

plasmid containing H3 A75V and wild-type H4. The original

plasmids were then recovered from suppressor strains that lost

their ability to suppress upon retransformation with new H3/H4

plasmid. The remaining suppressor strains were tested for

dominance and their mutations were mapped using TaGAM.

TaGAM (TAG Array Mapping) Procedure
The general strategy used to map the dominant suppressor

mutations (all of which were subsequently shown to reside in SIR3

by PCR amplification, sequencing, and phenotypic reconfirmation

in the context of full length SIR3) was to cross the suppressor

strain, which is 5-Foa resistant due to silencing of the telomeric

URA3 gene, to a bar coded pool of haploid mutant yeast, in which

all nonessential ORFs are individually knocked out using a kanMX

marker. The meiotic recombination frequencies between the

suppressor and the barcodes, which span the genome were

measured using a microarray readout as in SLAM (Synthetic

Lethality analyzed by Microarray; [53]). The recombinant spores

were selected for the URA3 marked telomere (Ura+), the mutant

histones (HygR), and the bar coded kanMX alleles (G418R). A

control pool was made in parallel and differed from the

experimental pool only in that it was never selected for 5-Foa

resistance.

Individual suppressor strains to be mapped were crossed with

strain ANY59, sporulated and then germinated on MM (magic

medium) to obtain an integrated form of H3 A75V and the SGA

reporter, which allows subsequent selection of MATa spores from

a sporulated culture [55]. Suppressor-containing spores were

selected by growth on 5-Foa, canavanine resistance, His+

phenotype and pink color. These MATa suppressor derivatives

were then crossed with a pool of the MATa haploid knockout

collection. Approximately 56105 log phase cells of both the pool

and each individual suppressor strain were mixed well in 1 mL

YPD. Cells were plated onto 7 10 mm YPD plates and incubated

overnight at 22uC for mating. Cells were harvested from the plates

and to obtain diploids; 96105 of these cells were plated onto 7

100 mm YPD+Nat+G418 (Nat is nourseothricin) plates incubated

2 days at 30uC and replica plated again to YPD+Nat+G418 for 1

day at 30uC. Cells were harvested and aliquots of diploid cells were

frozen. 150 OD600 of diploids were grown in 300 mL YPD for

three hours, washed with water and resuspended in 300 mL

sporulation media. Cells were sporulated for 5 days at 25uC and

then 56109 spores were plated onto one 100 mm SC+Can+-
Nat+Hyg+G4182Leu2His—Arg2Lys2Ura plate, grown for 5

days at 30uC, replica-plated again to the same medium, and

incubated at 30uC for 2 days. Finally, the cells were replica plated

to SC+5-Foa+Ade for the experiment (selecting for the suppressor)

and SC2Ura+Ade (selects for the presence of the URA marked

telomere) for the control. gDNA was made from both pools of

yeast, PCR of the barcodes of control gDNA was labeled using

Cy5 and the experimental gDNA was labeled using Cy3. The

PCR reactions were hybridized to the Hopkins TAG array as

Table 3. Strains used.

Strain or Plasmid Genotype and Characteristics Reference or Source

Strain

JPY12 MATa his3200 leu21 lys20 trp163 ura3-167 met150 ade2::hisG RDN1::mURA3/HIS3 RDN1::Ty1-MET15
TELV::ADE2 hht2-hhf2D::hygMX hht1-hhf1D::natMX pJP11 (LYS2 CEN HHT1-HHF1)

[1]

ANY34 MATa ura3-52 lys2-801 ade2-101 trp163 his3200 leu21 ppr1D::HIS3 adh4D::URA3-TEL-V11L VR-ADE-TEL
hht2-hhf2D::hygMX hht1-hhf1D::natMX pJP11 (LYS2 CEN HHT1-HHF1)

[9]

ANY59 MATa ade2-101 his3-200 leu2-1 lys2-801 trp1-63 ura3-52 ppr1D::LYS2 adh4D::URA3-TEL-VIIL TEVR- ADE2
hht1-f1D::Nat hht2-f2D::hyg-hht2 A75V-HHF2 can1D::LEU2-MFA1pr-HIS3

This study

ANY60 MATa ade2-101 his3-200 leu2-1 lys2-801 trp1-63 ura3-52 ppr1D::HIS3 adh4D::URA3-TEL-VIIL TEVR- ADE2
hht1-f1D::Nat hht2-f2D::hyg pA75V CEN LEU2

This study

ANY61 MATa ade2-101 his3-200 leu2-1 lys2-801 trp1-63 ura3-52 ppr1::HIS3 adh4D::URA3-TEL-VIIL TEVR- ADE2
hht1-f1D::Nat hht2-f2D::hyg pA75V CEN TRP1

This study

ANY70 MATa ade2-101 his3-200 leu2-1 lys2-801 trp1-63 ura3-52 ppr1D::HIS3 adh4D::URA3-TEL-VIIL TEVR- ADE2
hht1-f1D::Nat

This study

ANY71 MATa ura3-52 lys2-801 ade2-101 trp163 his3200 leu21 ppr1D::HIS3 sir3D::KANMX adh4D::URA3-TEL-V11L
VR-ADE-TEL hht2-hhf2D::hygMX hht1-hhf1D::natMX pDM18-A75V (TRP1 CEN hht1-A75V-HHF1) pAN17

This study

ANY72 MATa ura3-52 lys2-801 ade2-101 trp163 his3200 leu21 ppr1D::HIS3 sir3D::KANMX adh4D::URA3-TEL-V11L
VR-ADE-TEL hht2-hhf2D::hygMX hht1-hhf1D::natMX pDM18 R78G (TRP1 CEN HHT2-hhf2-R78G) pAN17

This study

ANY73 MATa ade2-101 his3-200 leu2-1 lys2-801 trp1-63 ura3-52 TEVR- ADE2 hht1-f1D::Nat hht2-f2D::hyg
pJP11(HHT1-F1 CEN LYS2)

This study

Plasmid

pJP11 LYS2 CEN HHF1-HHT1 [1]

pJP15 LEU2 CEN HHT2-HHF2 Park and Boeke unpublished

PDM18 TRP1 CEN HHT2-F2 [63]

pAN17 LEU2 CEN SIR3 This study

pAN18 LEU2 CEN SIR3-D205N This study

pAN19 LEU2 CEN SIR3-L79I This study

pAN20 LEU2 CEN SIR3 This study

pLP304 LEU2 2micron SIR3 [54]

doi:10.1371/journal.pgen.1000301.t003
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described previously [53,56]. Cy5 and Cy3 ratios were normalized

to overall intensity in both channels and the data were plotted

using Treeview [57] to produce a karyoscope of the Cy5/Cy3

ratios.

Chromatin Immunoprecipitation (ChIP)
Sir3p binding was analyzed in ANY71 transformed with

pRS414, pAN17, pAN18 or pAN19. ChIP was performed as

previously described [58] with optimization. For each strain

100 mL cells were grown in SC2Ura medium and grown to an

A600 of 0.8–1.2, cross-linked with 1% Formaldehyde for one hour,

washed 26with PBS, and frozen as pellets. The equivalent of 15–

20 OD’s and 2 mL polyclonal Sir3p antibody (a kind gift of

Danesh Moazed) per IP were used. IP and input were analyzed

using the Applied Biosystems SYBR green RT-PCR system. Each

immunoprecipitation was normalized relative to the IP observed

for the nonspecific PHO5 locus and input DNA. The data shown

are averages of at least three independent experiments. The

primers used were as described previously [9]. The dependence of

the ChIP signals on the Sir3p antibody was confirmed by

performing mock ChIP experiments in the absence of antibody

and performing ChIP experiments with an empty pRS415 vector.

Immunoblotting
Whole–cell extracts of yeast cells were obtained by NaOH as

described previously [59] Samples were denatured in boiling SDS

sample buffer, resolved by SDS–PAGE, transferred to nitrocellu-

lose membranes and probed with indicated antibodies; mouse

monoclonal anti-atubulin (Sigma–Aldrich, T5168) rabbit poly-

clonal anti–Sir3 (a gift from Danesh Maozed).

rDNA Silencing Assays
Silencing strength in the ribosomal DNA (rDNA) was assessed

with the mURA3/HIS3 reporter by serial dilution on SC2His

medium to prevent elimination of the rDNA reporter containing

0.1% 5-Foa to assay down-regulation of rDNA::mURA3. Silencing

strength of the telomeric DNA was assayed by serial dilution on

SC2Ura. Serial dilutions were performed as follows. Cells were

scraped from the plates and resuspended in 100 ml of sterile water.

The cell suspension was normalized to an A600 reading of 0.3 and

then serially diluted in 5-fold or 10-fold increments; 5 mL of each

dilution was spotted onto either nonselective or selective agar plates

using a 12-channel pipette. Plates were incubated for 2 to 5 days.

Colony Color Silencing Assays
rDNA silencing was also assayed using the MET15 color assay.

Strains to be tested were plated onto lead (MLA) plates to give

approximately 100 to 200 colonies per plate. The plates were

incubated at 30uC for 8 days and then photographed. Telomeric

silencing was also assayed using the ADE2 color assay. Strains to be

tested were plated onto SC2Trp plates to give approximately 100–

200 colonies per plate. The plates were incubated at 30uC for 3 days

and then were incubated at 4uC for 3 days and photographed.

Modeling of the Sir3p/Nucleosome Complex
Docking of Sir3p in the nucleosome was performed using the

molecular modeling program Quanta (Accelerys). The Sir3p

structural model (PDB ID 2FL7) was manually docked in the

nucleosome (PDB ID 1ID3) in a nucleosome cleft abutting the

LRS surface. This cleft, formed by the interface between H3/H4

and H2B/H2A, shows surface complementarity with Sir3p’s a8

helix. The Sir3p surface is at an optimal distance from the LRS

surface to allow the interaction between the regions in Sir3p and

the nucleosome that affect silencing. The orientation of Sir3p

BAH domain in the complex was guided by the assumption that

the basic region (residues 24–34), which is disordered in the crystal

structure, interacts with the negatively charged DNA backbone.

Protein-protein contacts were optimized only by modifications of

the side chain conformations. Initially, suitable side chain

conformations were selected from a library of rotamers and

further optimized by energy minimization using CHARMm32

(Accelerys) as the force field. Only the side chain atoms of both

proteins were allowed to move during the optimization, with all

other atoms constrained in a fixed position. Areas buried for the

modeled SIR3/nucleosome complex were calculated using the

program NACCESS [60].

Supporting Information

Dataset S1 Sir3p_model.pdb

Found at: doi:10.1371/journal.pgen.1000301.s001 (0.12 MB

TXT)

Dataset S2 nucleosome_model.pdb

Found at: doi:10.1371/journal.pgen.1000301.s002 (0.95 MB

TXT)
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