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Abstract The principles underlying the animacy organization of the ventral temporal cortex

(VTC) remain hotly debated, with recent evidence pointing to an animacy continuum rather than a

dichotomy. What drives this continuum? According to the visual categorization hypothesis, the

continuum reflects the degree to which animals contain animal-diagnostic features. By contrast, the

agency hypothesis posits that the continuum reflects the degree to which animals are perceived as

(social) agents. Here, we tested both hypotheses with a stimulus set in which visual categorizability

and agency were dissociated based on representations in convolutional neural networks and

behavioral experiments. Using fMRI, we found that visual categorizability and agency explained

independent components of the animacy continuum in VTC. Modeled together, they fully explained

the animacy continuum. Finally, clusters explained by visual categorizability were localized posterior

to clusters explained by agency. These results show that multiple organizing principles, including

agency, underlie the animacy continuum in VTC.

DOI: https://doi.org/10.7554/eLife.47142.001

Introduction
One of the main goals of visual cognitive neuroscience is to understand the principles that govern

the organization of object representations in high-level visual cortex. There is broad consensus that

the first principle of organization in ventral temporal cortex (VTC) reflects the distinction between

animate and inanimate objects. These categories form distinct representational clusters

(Kriegeskorte et al., 2008) and activate anatomically distinct regions of VTC (Grill-Spector and

Weiner, 2014; Chao et al., 1999).

According to the visual categorization hypothesis, this animate-inanimate organization supports

the efficient readout of superordinate category information, allowing for the rapid visual categoriza-

tion of objects as being animate or inanimate (Grill-Spector and Weiner, 2014). The ability to rap-

idly detect animals may have constituted an evolutionary advantage (Caramazza and Shelton,

1998; New et al., 2007).

However, recent work has shown that the animacy organization reflects a continuum rather than a

dichotomy, with VTC showing a gradation from objects and insects to birds and mammals

(Connolly et al., 2012; Sha et al., 2015). This continuum was interpreted as evidence that VTC reflects

the psychological property of animacy, or agency, in line with earlier work showing animate-like VTC

responses to simple shapes whose movements imply agency (Castelli et al., 2002; Martin and Weis-

berg, 2003; Gobbini et al., 2007). According to this agency hypothesis, the animacy organization

reflects the degree to which animals share psychological characteristics with humans, such as the abil-

ity to perform goal-directed actions and experiencing thoughts and feelings.

Importantly, however, the finding of an animacy continuum can also be explained under the visual

categorization hypothesis. This is because some animals (such as cats) are easier to visually catego-

rize as animate than others (such as stingrays). This visual categorizability is closely related to visual
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typicality – an animal’s perceptual similarity to other animals (Mohan and Arun, 2012). Indeed,

recent work showed that the visual categorizability of animals (as measured by reaction times) corre-

lates with the representational distance of those animals from the decision boundary of an animate-

inanimate classifier trained on VTC activity patterns (Carlson et al., 2014). The finding of an animacy

continuum is thus fully in line with the visual categorization hypothesis.

The difficulty in distinguishing between the visual categorization and agency hypotheses lies in

the fact that animals’ visual categorizability and agency are correlated. For example, four-legged

mammals are relatively fast to categorize as animate and are also judged to be psychologically rela-

tively similar to humans. Nevertheless, visual categorizability and agency are distinct properties that

can be experimentally dissociated. For example, a dolphin and a trout differ strongly in perceived

agency (dolphin > trout) but not necessarily in visual categorizability. In the present fMRI study, we

disentangled visual categorizability and agency to assess their ability to explain the animacy contin-

uum in VTC. This was achieved by selecting, out of a larger set, 12 animals for which visual categoriz-

ability and agency were orthogonal to each other across the set.

We find that visual categorizability and agency independently contribute to the animacy contin-

uum in VTC as a whole. A model that combines these two factors fully explains the animacy contin-

uum. In further analyses, we localize the independent contributions of visual categorizability and

agency to distinct regions in posterior and anterior VTC, respectively. These results provide evidence

that multiple organizing principles, including agency, underlie the animacy continuum and that these

principles express in different parts of visual cortex.

Results

Disentangling visual categorizability and agency
To create a stimulus set in which visual categorizability and agency are dissociated, we selected 12

animals from a total of 40 animals. Visual categorizability was quantified in two ways, using convolu-

tional neural networks (CNNs) and human behavior, to ensure a comprehensive measure of visual

categorizability. Agency was measured using a rating experiment in which participants indicated the

degree to which an animal can think and feel. Familiarity with the objects was also assessed and con-

trolled for in the final stimulus set used in the fMRI experiment.

Agency and familiarity
Agency and familiarity measures were obtained through ratings (N = 16), in which participants indi-

cated the thoughtfulness of, feelings of, and familiarity with the 40 animals (Figure 1A). The correla-

tion between the thoughtfulness and feelings ratings (t = 0.70) was at the noise ceiling of both those

ratings (tthought = 0.69, tfeel = 0.70). We therefore averaged the thoughtfulness and feelings ratings

and considered the averaged rating a measure of agency.

Visual categorizability
The first measure of visual categorizability was based on the features extracted from the final layer

(FC8) of a pre-trained CNN (VGG-16 [Simonyan and Zisserman, 2015]; Materials and methods).

This layer contains rich feature sets that can be used to accurately categorize objects as animate or

inanimate by a support vector machine (SVM) classifier. This same classifier was then deployed on

the 40 candidate objects (4 exemplars each) of our experiment to quantify their categorizability. This

resulted, for each object, in a representational distance from the decision boundary of the animate-

inanimate classifier (Figure 1B). Because this measure was based on a feedforward transformation of

the images, which was not informed by inferred agentic properties of the objects (such as thought-

fulness), we label this measure image categorizability.

The second measure of visual categorizability was based on reaction times in an oddball detec-

tion task previously shown to predict visual categorization times (Mohan and Arun, 2012;

Figure 1C). The appeal of this task is that it provides reliable estimates of visual categorizability

using simple and unambiguous instructions (unlike a direct categorization task, which relies on the

participants’ concept of animacy, again potentially confounding agency and visual categorizability).

Participants were instructed to detect whether an oddball image appears to the left or the right of

fixation. Reaction times in this task are an index of visual similarity, with relatively slow responses to
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oddball objects that are visually relatively similar to the surrounding objects (e.g. a dog surrounded

by cats). A full matrix of pairwise visual similarities was created by pairing all images with each other.

For a given object, these similarity values constitute a perceptual representation with respect to the

other objects. These visual similarity values were then used as features in an SVM trained to classify

Figure 1. Obtaining the models to describe animacy in the ventral temporal cortex. (A) Trials from the ratings

experiment are shown. Participants were asked to rate 40 animals on three factors - familiarity, thoughtfulness, and

feelings. The correlations between the thoughtfulness and feelings ratings are at the noise ceilings of both these

ratings. Therefore, the average of these ratings was taken as a measure of agency. (B) A schematic of the

convolutional neural network (CNN) VGG-16 is shown. The CNN contains 13 convolutional layers (shown in green),

which are constrained to perform the spatially-local computations across the visual field, and three fully-connected

layers (shown in blue). The network is trained to take RGB image pixels as inputs and output the label of the

object in the image. Linear classifiers are trained on layer FC8 of the CNN to classify between the activation

patterns in response to animate and inanimate images. The distance from the decision boundary, toward the

animate direction, is the image categorizability of an object. (C) A trial from the visual search task is shown.

Participants had to quickly indicate the location (in the left or right panel) of the oddball target among 15 identical

distractors which varied in size. The inverse of the pairwise reaction times are arranged as shown. Either the

distractors or the targets are assigned as features of a representational space on which a linear classifier is trained

to distinguish between animate and inanimate exemplars (Materials and methods). These classifiers are then used

to categorize the set of images relevant to subsequent analyses; the distance from the decision boundary, towards

the animate direction, is a measure of the perceptual categorizability of an object.

DOI: https://doi.org/10.7554/eLife.47142.002

The following figure supplement is available for figure 1:

Figure supplement 1. Pairwise similarities between the image categorizabilities of layers from VGG-16.

DOI: https://doi.org/10.7554/eLife.47142.003
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animate vs inanimate objects. Testing this classifier on the images of the fMRI experiment resulted,

for each object, in a representational distance from the decision boundary of the animate-inanimate

classifier (Figure 1C). Because this measure was based on human perception, we labeled this mea-

sure perceptual categorizability. The neural representations the reaction times in this task rely on are

not fully known, and might reflect information about inferred agency of the objects. As such,

accounting for the contribution of perceptual categorizability in subsequent analyses provides a con-

servative estimate of the independent contribution of agency to neural representations in VTC.

The two measures of visual categorizability were positively correlated for the 12 animals that

were selected for the fMRI experiment (Kendall’s t = 0.64), indicating that they partly reflect similar

animate-selective visual properties of the objects. The correspondence between these two indepen-

dently obtained measures of visual categorizability provides a validation of these measures and also

shows that the image categorizability obtained from the CNN is meaningfully related to human

perception.

Selection of image set
The final set of 12 animals for the fMRI experiment were chosen from the set of 40 images such that

the correlations between image categorizability, agency, and familiarity were minimized (Figure 2).

This was successful, as indicated by low correlations between these variables (t < 0.13, for all correla-

tions). Because perceptual categorizability was not part of the selection procedure of the stimulus set,

there was a moderate residual correlation (t = 0.30) between perceptual categorizability and agency.

Figure 2. Disentangling image categorizability and agency. The values of agency and image categorizability are

plotted for the 40 animals used in the ratings experiment. We selected 12 animals such that the correlation

between agency and image categorizability is minimized. Data-points corresponding to those 12 animals are

highlighted in red.

DOI: https://doi.org/10.7554/eLife.47142.004

The following source data is available for figure 2:

Source data 1. Agency and image categorizability scores for the 40 animals.

DOI: https://doi.org/10.7554/eLife.47142.005
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Animacy in the ventral temporal cortex
Participants (N = 17) in the main fMRI experiment viewed the 4 exemplars of the 12 selected animals

while engaged in a one-back object-level repetition-detection task (Figure 3). The experiment addi-

tionally included 3 inanimate objects (cars, chairs, plants) and humans. In a separate block-design

animacy localizer experiment, participants viewed 72 object images (36 animate, 36 inanimate) while

detecting image repetitions (Figure 3).

In a first analysis, we aimed to replicate the animacy continuum for the objects in the main experi-

ment. The VTC region of interest was defined anatomically, following earlier work (Haxby et al.,

2011; Figure 4A; Materials and methods). An SVM classifier was trained on activity patterns in this

region to distinguish between blocks of animate and inanimate objects in the animacy localizer, and

tested on the 16 individual objects in the main experiment. The distances from the decision bound-

ary, towards the animate direction, were taken as the animacy scores.

The mean cross-validated training accuracy (animacy localizer) of animate-inanimate classification

in VTC was 89.6%, while the cross-experiment accuracy in classifying the 16 stimuli from the main

fMRI experiment was 71.3%, indicating reliable animacy information in both experiments. Impor-

tantly, there was systematic and meaningful variation in the animacy scores for the objects in the

main experiment (Figure 4B). Among the animals, humans were the most animate whereas reptiles

and insects were the least animate (they were classified as inanimate, on average). These results rep-

licate previous findings of an animacy continuum (Connolly et al., 2012; Sha et al., 2015).

Now that we established the animacy continuum for the selected stimulus set, we can turn to our

main question of interest: what are the contributions of visual categorizability and agency to the ani-

macy continuum in VTC? To address this question, we first correlated the visual categorizability

scores and the agency ratings with the VTC animacy scores (Figure 4C). VTC animacy scores corre-

lated positively with all three measures: image categorizability (t = 0.16; p = 10-3), perceptual cate-

gorizability (t = 0.26; p < 10-4); and agency (t = 0.30; p < 10-4). A combined model of image

categorizability and perceptual categorizability (visual categorizability; Materials and methods) also

positively correlated with VTC animacy (t = 0.23; p < 10-4).

Figure 3. The fMRI paradigm. In the main fMRI experiment, participants viewed images of the 12 selected animals

and four additional objects (cars, trees, chairs, persons). Participants indicated, via button-press, one-back object

repetitions (here, two parrots). In the animacy localizer experiment, participants viewed blocks of animal (top

sequence) and non-animal (bottom sequence) images. All images were different from the ones used in the main

experiment. Each block lasted 16s, and participants indicated one-back image repetitions (here, the fish image).

DOI: https://doi.org/10.7554/eLife.47142.006
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Figure 4. Assessing the nature of the animacy continuum in the ventral temporal cortex (VTC). (A) The region-of-

interest, VTC, is highlighted. (B) The order of objects on the VTC animacy continuum, image categorizability (IC),

perceptual categorizability (PC), and agency (Ag) are shown. (C) The within-participant correlations between VTC

animacy and image categorizability (IC), perceptual categorizability (PC), visual categorizability (VC, a combination

of image categorizability and perceptual categorizability; Materials and methods), and agency (Ag) are shown. All

four models correlated positively with VTC animacy. (D) The left panel shows the correlations between VTC

animacy and VC and Ag after regressing out the other measure from VTC animacy. Both correlations are positive,

providing evidence for independent contributions of both agency and visual categorizability. The right panel

shows the correlation between VTC animacy and a combination of agency and visual categorizability

(Materials and methods). The combined model does not differ significantly from the VTC animacy noise ceiling

(Materials and methods). This suggests that visual categorizability and agency are sufficient to explain the animacy

organization in VTC. Error bars indicate 95% confidence intervals for the mean correlations.

DOI: https://doi.org/10.7554/eLife.47142.007

The following source data and figure supplements are available for figure 4:

Source data 1. Values of the rank-order correlations shown in the figure, for each participant.

DOI: https://doi.org/10.7554/eLife.47142.011

Figure supplement 1. The contribution of the principal components of VTC activations to VTC animacy.

DOI: https://doi.org/10.7554/eLife.47142.008

Figure supplement 2. The contributions of image and perceptual categorizabilities (IC and PC), independent of

agency (Ag), to VTC animacy.

DOI: https://doi.org/10.7554/eLife.47142.009

Figure supplement 3. The robustness of our findings to the choice of the layer of VGG-16 used to quantify image

categorizability.

Figure 4 continued on next page
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Because agency and visual categorizability scores were weakly correlated, it is possible that the

contribution of one of these factors was partly driven by the other. To test for their independent

contributions, we regressed out the contribution of the other factor(s) from VTC animacy scores

before computing the correlations. The correlation between VTC animacy and agency remained pos-

itive in all individual participants (t = 0.23; p < 10-4 Figure 4D) after regressing out both image cate-

gorizability and perceptual categorizability. Similarly, the correlation between VTC animacy and

visual categorizability remained positive after regressing out agency (t = 0.12; p = 4.7 � 103).

Finally, to test whether a combined model including visual categorizability and agency fully

explained the animacy continuum, we performed leave-one-out regression on VTC animacy with all

three factors as independent measures. The resultant combined model (derived separately for each

left-out participant) had a higher correlation with VTC animacy than any of the three factors

alone (within-participant comparisons - DIC = 0.21, p < 10-4; DPC = 0.10, p = 6 x 10-4,

DAg = 0.07, p = 8.3 x 10-3). Furthermore, the correlation between the combined model and VTC ani-

macy (t = 0.37; Figure 4D) is at VTC animacy noise ceiling (tNC = 0.39; Materials and methods). This

result suggests that a linear combination of the two models (visual categorizability and agency) fully

explains the animacy continuum in VTC, but the single models alone do not.

Whole-brain searchlight analysis
Our results indicate that both visual categorizability and agency contribute to the animacy contin-

uum in VTC as a whole. Can these contributions be anatomically dissociated as well? To test this, we

repeated the analyses in a whole-brain searchlight analysis (spheres of 100 proximal voxels). To

reduce the number of comparisons, we constrained the analysis to clusters showing significant

above-chance animacy classification (Materials and methods). Our aim was to reveal spheres showing

independent contributions of visual categorizability or agency. To obtain the independent contribu-

tion of agency, we regressed out both image categorizability and perceptual categorizability from

each sphere’s animacy continuum and tested if the residue reflected agency. Similarly, to obtain the

independent contribution of visual categorizability, we regressed out agency from the sphere’s ani-

macy continuum and tested if the residue reflected either image categorizability or perceptual cate-

gorizability. The resulting brain maps were corrected for multiple comparisons

(Materials and methods).

Results (Figure 5) showed that both visual categorizability and agency explained unique variance

in clusters of VTC, consistent with the region-of-interest analysis. Moreover, there was a consistent

anatomical mapping of the two factors: the independent visual categorizability contribution (LH:

1584 mm3, center Montreal Neurological Institute (MNI) coordinates: x = -38, y = -80, z = 7; RH:

7184 mm3, center coordinates: x = 41, y = -71, z = 1) was located posterior to the independent

agency contribution (LH: 592 mm3, center coordinates: x = -42, y = -56, z = -19; RH: 4000 mm3, cen-

ter coordinates: x = 39, y = -52, z = -12), extending from VTC into the lateral occipital regions. The

majority of the independent agency contribution was located in the anterior part of VTC. A similar

posterior-anterior organization was observed in both hemispheres (Figure 5B), though stronger in

the right hemisphere. These results provide converging evidence for independent contributions of

visual categorizability and agency to the animacy continuum, and show that these factors explain the

animacy continuum at different locations in the visual system.

Discussion
The present study investigated the organizing principles underlying the animacy organization in

human ventral temporal cortex. Our starting point was the observation that the animacy organization

expresses as a continuum rather than a dichotomy (Connolly et al., 2012; Sha et al., 2015;

Carlson et al., 2014), such that some animals evoke more animate-like response patterns than

others. Our results replicate this continuum, with the most animate response patterns evoked by

humans and mammals and the weakest animate response patterns evoked by insects and snakes

Figure 4 continued

DOI: https://doi.org/10.7554/eLife.47142.010
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(Figure 4B). Unlike previous studies, our stimulus set was designed to distinguish between two pos-

sible organizing principles underlying the animacy continuum, reflecting the degree to which an ani-

mal is visually animate (visual categorizability) and the degree to which an animal is perceived to

have thoughts and feelings (agency). We found that both dimensions independently explained part

Figure 5. Searchlight analysis testing for the independent contributions of agency and visual categorizability to

the animacy continuum. The analysis followed the approach performed within the VTC ROI (Figure 4C, middle

panel) but now separately for individual spheres (100 voxels). The independent contribution of agency is observed

within anterior VTC, while the independent contribution of visual categorizability extends from posterior VTC into

the lateral occipital regions. Results are corrected for multiple comparisons (Materials and methods). (B) The

correlations between agency and the animacy continuum in the searchlight spheres (variance independent of

visual categorizability, in red) and the mean of the correlations between image and perceptual categorizabilities

and the animacy continuum in the searchlight spheres (variance independent of agency, in blue), are shown as a

function of the MNI y-coordinate. For each participant, the correlations are averaged across x and z dimensions for

all the searchlight spheres that survived multiple comparison correction in the searchlight analysis depicted in (A).

The blue and red bounds around the means reflect the 95% confidence bounds of the average correlations across

participants. The green area denotes the anatomical bounds of VTC. Visual categorizability contributes more than

agency to the animacy organization in the spheres in posterior VTC. This difference in contribution switches within

VTC and agency contributes maximally to the animacy organization in more anterior regions of VTC.

DOI: https://doi.org/10.7554/eLife.47142.012

The following source data and figure supplement are available for figure 5:

Source data 1. Values of the correlations shown in the figure, for each participant, and the maps of the significant

independent contributions of agency and visual categorizability across the brain.

DOI: https://doi.org/10.7554/eLife.47142.014

Figure supplement 1. The contributions (independent of agency) of image and perceptual categorizabilities to

the animacy continuum in the searchlight spheres are shown (ICAg and PCAg).

DOI: https://doi.org/10.7554/eLife.47142.013
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of the animacy continuum in VTC; together, they fully explained the animacy continuum. Whole-brain

searchlight analysis revealed distinct clusters in which visual categorizability and agency explained

the animacy continuum, with the agency-based organization located anterior to the visual categoriz-

ability-based organization. Below we discuss the implications of these results for our understanding

of the animacy organization in VTC.

The independent contribution of visual categorizability shows that the animacy continuum in VTC

is at least partly explained by the degree to which the visual features of an animal are typical of the

animate category. This was observed both for the image features themselves (as represented in a

CNN) and for the perceptual representations of these images in a behavioral task. These findings

are in line with previous studies showing an influence of visual features on the categorical organiza-

tion in high-level visual cortex (Baldassi et al., 2013; Coggan et al., 2016; Nasr et al., 2014;

Rice et al., 2014; Jozwik et al., 2016). Furthermore, recent work has shown that mid-level percep-

tual features allow for distinguishing between animate and inanimate objects (Levin et al., 2001;

Long et al., 2017; Schmidt et al., 2017; Zachariou et al., 2018) and that these features can elicit a

VTC animacy organization in the absence of object recognition (Long et al., 2018). Our results show

that (part of) the animacy continuum is similarly explained by visual features: animals that were more

easily classified as animate by a CNN (based on visual features) were also more easily classified as

animate in VTC. This correlation persisted when regressing out the perceived agency of the animals.

Altogether, these findings support accounts that link the animacy organization in VTC to visual cate-

gorization demands (Grill-Spector and Weiner, 2014).

In parallel to investigations into the role of visual features in driving the categorical organization

of VTC, other studies have shown that visual features do not full explain this organization (for

reviews, see Peelen and Downing, 2017; Bracci et al., 2017). For example, animate-selective

responses in VTC are also observed for shape- and texture-matched objects (Proklova et al., 2016;

Bracci and Op de Beeck, 2016) and animate-like VTC responses can be evoked by geometric

shapes that, through their movement, imply the presence of social agents (Castelli et al., 2002;

Martin and Weisberg, 2003; Gobbini et al., 2007). The current results contribute to these findings

by showing that (part of) the animacy continuum reflects the perceived agency of the animals: ani-

mals that were perceived as being relatively more capable of having thoughts and feelings were

more easily classified as animate in VTC. This correlation persisted when regressing out the influence

of animal-diagnostic visual features. These findings provide evidence that the animacy continuum is

not fully explained by visual categorization demands, with perceived agency contributing signifi-

cantly to the animacy organization. The finding of an agency contribution to the animacy continuum

raises several interesting questions.

First, what do we mean with agency and how does it relate to other properties? In the current

study, agency was measured as the perceived ability of an animal to think and feel. Ratings on these

two scales were highly correlated with each other, and also likely correlate highly with related prop-

erties such as the ability to perform complex goal-directed actions, the degree of autonomy, and

levels of consciousness (Appendix). On all of these dimensions, humans will score highest and ani-

mals that score highly will be perceived as relatively more similar to humans. As such, the agency

contribution revealed in the current study may reflect a human-centric organization (Contini et al.,

2019). Future studies could aim to disentangle these various properties.

Second, why would agency be an organizing principle? One reason for why agency could be an

important organizing principle is because the level of agency determines how we interact with an

animal: we can meaningfully interact with cats but not with slugs. To predict the behavior of high-

agentic animals requires inferring internal states underlying complex goal-directed behavior

(Sha et al., 2015). Again, these processes will be most important when interacting with humans but

will also, to varying degrees, be recruited when interacting with animals. The agency organization

may reflect the specialized perceptual analysis of facial and bodily signals that allow for inferring

internal states, or the perceptual predictions that follow from this analysis.

Finally, how can such a seemingly high-level psychological property as agency affect responses in

visual cortex? One possibility is that anterior parts of visual cortex are not exclusively visual and rep-

resent agency more abstractly, independent of input modality (Fairhall et al., 2017; van den Hurk

et al., 2017). Alternatively, agency could modulate responses in visual cortex through feedback

from downstream regions involved in social cognition. Regions in visual cortex responsive to social

stimuli are functionally connected to the precuneus and medial prefrontal cortex – regions involved
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in social perspective taking and reasoning about mental states (Simmons and Martin, 2012).

Indeed, it is increasingly appreciated that category-selective responses in visual cortex are not solely

driven by bottom-up visual input but are integral parts of large-scale domain-selective networks

involved in domain-specific tasks like social cognition, tool use, navigation, or reading (Peelen and

Downing, 2017; Price and Devlin, 2011; Martin, 2007; Mahon and Caramazza, 2011). Consider-

ing the close connections between regions within each of these networks, stimuli that strongly

engage the broader system will also evoke responses in the visual cortex node of the network, even

in the absence of visual input (Peelen and Downing, 2017; Amedi et al., 2017).

An alternative possibility is that agency is computed within the visual system based on visual fea-

tures. This scenario is consistent with our results as long as these features are different from the fea-

tures leading to animate-inanimate categorization. Similar to the visual categorizability of animacy,

visual categorizability of agency could arise if there was strong pressure to quickly determine the

agency of an animal based on visual input. In a supplementary analysis, we found that a model based

on the features represented in the final fully connected layer of a CNN allows for predicting agency

ratings (Appendix). As such, it remains possible that agency is itself visually determined.

The unique contributions of agency and visual categorizability were observed in different parts of

VTC, with the agency cluster located anterior to the visual categorizability cluster. This posterior-

anterior organization mirrors the well-known hierarchical organization of visual cortex. A similar pos-

terior-anterior difference was observed in studies dissociating shape and category representations in

VTC, with object shape represented posterior to object category (Proklova et al., 2016; Bracci and

Op de Beeck, 2016). The finding that visual categorizability and agency expressed in different parts

of VTC is consistent with multiple scenarios. One possibility is that VTC contains two distinct repre-

sentations of animals, one representing category-diagnostic visual features and one representing

perceived agency. Alternatively, VTC may contain a gradient from a more visual to a more concep-

tual representations of animacy, with the visual representation gradually being transformed into a

conceptual representation. More work is needed to distinguish between these possibilities.

In sum, our results provide evidence that two principles independently contribute to the animacy

organization in human VTC: visual categorizability, reflecting the presence of animal-diagnostic visual

features, and agency, reflecting the degree to which animals are perceived as thinking and feeling

social agents. These two principles expressed in different parts of visual cortex, following a poste-

rior-to-anterior distinction. The finding of an agency organization that is not explained by differences

in visual categorizability raises many new questions that can be addressed in future research.

Materials and methods

Neural network for image categorizability
Image categorizability was quantified using a convolutional neural network (CNN), VGG-16

(Simonyan and Zisserman, 2015), which had 13 convolutional layers and 3 fully-connected layers

which map 224 � 224 � 3 RGB images to a 1000 dimensional object category space (each neuron

corresponds to distinct labels such as cat and car). The CNN was taken from the MatConvNet pack-

age (Vedaldi and Lenc, 2015) and was pre-trained on images from the ImageNet ILSVRC classifica-

tion challenge (Russakovsky et al., 2015).

Activations were extracted from the final fully-connected layer, prior to the softmax operation, for

960 colored images obtained from Kiani et al. (2007) of which 480 contain an animal or animal parts

and the rest contain inanimate objects or their parts. The dimensionality of the activations was

reduced to 495 dimensions using principal component analysis in order to reduce the training time

while keeping the captured variance high (more details can be found in Thorat, 2017). Support vec-

tor machines (SVMs) with linear kernels were trained (with the default parameters of the function

fitcsvm in MATLAB r2017b, The MathWorks, Natick, MA) to distinguish between animate and inani-

mate object-driven activations. Training accuracies were quantified using 6-fold cross-validation. The

average cross-validation accuracy was 92.2%. The image categorizability of an object was defined as

the distance to the representation of that object from the decision boundary of the trained classifier.

The stimuli used in the subsequent tasks, behavioral and fMRI, did not occur in this training set of

960 images.
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Visual search task for perceptual categorizability
Perceptual categorizability was quantified using a visual search task adopted from Mohan and Arun

(2012). 29 healthy adults participated in this experiment, of which 21 (9 females; age range: 19–62,

median: 27) were selected according to the conditions specified below to obtain an estimate of per-

ceptual categorizability. All participants gave informed consent. All procedures were carried out in

accordance with the Declaration of Helsinki and were approved by the ethics committee of Radboud

University (ECSW2017-2306-517).

For details of the experimental procedure, we refer the reader to Proklova et al. (2016). Briefly,

on each trial, participants were presented with 16 images and had to indicate, as fast and as accu-

rately as possible, in which panel (left or right) the oddball image occurred (see Figure 1C). The 15

distractor images were identical except that they varied in size. Participants were not instructed to

look for a particular category and only had to indicate the position of the different-looking object.

All participants had accuracies of 90% and higher in every block. The trials on which they made an

error were repeated at the end of the respective blocks. Psychtoolbox (Brainard, 1997) controlled

the stimuli presentation. Gray-scaled images of the animate objects (four exemplars each of 12 ani-

mals and humans) used in the fMRI experiment and 72 images (36 animate) from the functional local-

izer experiment of Proklova et al. (2016) were used in this experiment. Images were gray-scaled to

make the participants capitalize on differences in object shapes and textures rather than color.

In order to obtain perceptual categorizability scores for the animate objects used in the fMRI

experiment, we trained animate-inanimate classifiers on representations capturing perceptual simi-

larity between objects. For each participant, the images of animate objects from the fMRI experi-

ment were the test set, and 28 (14 animate) images randomly chosen from the 72 images were the

training set. In order to obtain representations which encoded perceptual similarity between objects,

each of the images from the training and test set were used as either targets or distractors (ran-

domly chosen for each participant) while the images from the training set were used as distractors

or targets (corresponding to the previous choice made for each participant). The inverse of the reac-

tion time was used as a measure of perceptual similarity (Mohan and Arun, 2012). For each of the

images in the train and test set, 82 values (1/RT) were obtained which were associated with a per-

ceptual similarity-driven representational space and were used as features for the animate-inanimate

classifier. A linear SVM was trained to classify the training images as animate or inanimate. The dis-

tances of the representations of the test images were then calculated from the classification bound-

ary and were termed decision scores. This resulted, for each participant, in decision scores for

images of animals and humans used in the main fMRI experiment.

For further analysis, only those participants who had both training (4-fold cross-validation) and

test accuracies for animacy classification above 50% were selected. For the relevant 21 participants,

the mean training accuracy was 63.4% (>50%, p < 10-4), and the mean test accuracy was 70.0%

(>50%, p < 10-4). Each object’s perceptual categorizability was quantified as the average of its deci-

sion scores across participants.

Main ratings experiment for agency
Agency was quantified using a ratings experiment. Sixteen healthy adults participated in this experi-

ment (9 females; all students at the University of Trento). All participants gave informed consent. All

procedures were carried out in accordance with the Declaration of Helsinki and were approved by

the ethics committee of the University of Trento (protocol 2013–015).

In each trial, four colored images of an animal from a set of 40 animals were shown, and partici-

pants were asked to indicate, on a scale of 0 to 100, how much thoughtfulness or feelings they

attributed to the animal, or how familiar they were with the animal. These three factors constituted

three blocks of the experiment (the order was randomized across participants). At the beginning of

each block, a description of the relevant factor was provided. Participants were encouraged to use

the descriptions as guidelines for the three factors. In quantifying their familiarity with an animal, par-

ticipants had to account for the knowledge about and the amount of interaction they have had with

the animal. In quantifying the thoughtfulness an animal might have, participants had to account for

the animal’s ability in planning, having intentions, and abstraction. In quantifying the feelings an ani-

mal might have, participants had to account for the animal’s ability to empathise, have sensations,

and react to situations.
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As mentioned in the Results section, the feelings and thoughtfulness ratings co-varied substan-

tially with each other (the within-participant correlations were at the noise ceilings of the two fac-

tors). Agency was quantified as the average of the ratings for feelings and thoughtfulness.

fMRI experiment
A functional magnetic resonance imaging (fMRI) experiment was performed to obtain the animacy

continua in high-level visual cortex, specifically the ventral temporal cortex (VTC). The design was

adopted from Proklova et al. (2016). Schematics of the main experiment and the animacy localizer

experiment are shown in Figure 3.

Participants
Seventeen healthy adults (6 females; age range: 20 � 32, median: 25) were scanned at the Center

for Mind/Brain Sciences of the University of Trento. This sample size was chosen to be the same as

in Proklova et al. (2016), as our animacy localizer and main experiment procedure were similar to

theirs. All participants gave informed consent. All procedures were carried out in accordance with

the Declaration of Helsinki and were approved by the ethics committee of the University of Trento

(protocol 2013–015).

Main experiment procedure
The stimuli consisted of colored images (4 exemplars each) of the 12 animals for which image cate-

gorizability and agency were orthogonalized, humans, and three inanimate objects (cars, plants, and

chairs). There were a total of 64 images.

The main experiment consisted of eight runs. Each run consisted of 80 trials that were composed

of 64 object trials and 16 fixation-only trials. In object trials, a single stimulus was presented for

300 ms, followed by a 3700 ms fixation period. In each run, each of the 64 images appeared exactly

once. In fixation-only trials, the fixation cross was shown for 4000 ms. Trial order was randomized,

with the constraints that there were exactly eight one-back repetitions of the same category (e.g.,

two cows in direct succession) within the object trials and that there were no two fixation trials

appearing in direct succession. Each run started and ended with a 16s fixation period, leading to a

total run duration of 5.9 min. Participants were instructed to press a button whenever they detected

a one-back object repetition.

Animacy localizer experiment procedure
In addition to the main experiment, participants completed one run of a functional localizer experi-

ment. During the localizer, participants viewed grey-scale images of 36 animate and 36 inanimate

stimuli in a block design. Each block lasted 16s, containing 20 stimuli that were each presented for

400 ms, followed by a 400 ms blank interval. There were eight blocks of each stimulus category and

four fixation-only blocks per run. The order of the first 10 blocks was randomized and then mirror-

reversed for the other 10 blocks. Participants were asked to detect one-back image repetitions,

which happened twice during every non-fixation block.

fMRI acquisition
Imaging data were acquired using a MedSpec 4-T head scanner (Bruker Biospin GmbH, Rheinstet-

ten, Germany), equipped with an eight-channel head coil. For functional imaging, T2*-weighted EPIs

were collected (repetition time = 2.0s, echo-time = 33 ms, 73˚ flip-angle, 3 mm � 3 mm � 3 mm

voxel size, 1 mm gap, 34 slices, 192 mm field of view, 64 � 64 matrix size). A high-resolution T1-

weighted image (magnetization prepared rapid gradient echo; 1 mm � 1 mm � 1 mm voxel size)

was obtained as an anatomical reference.

fMRI data pre-processing
The fMRI data were analyzed using MATLAB and SPM8. During preprocessing, the functional vol-

umes were realigned, co-registered to the structural image, re-sampled to a 2 mm � 2 mm � 2 mm

grid, and spatially normalized to the Montreal Neurological Institute 305 template included in SPM8.

No spatial smoothing was applied.
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Region of interest - Ventral temporal cortex
VTC was defined as in Haxby et al. (2011). The region extended from �71 to �21 on the y-axis of

the Montreal Neurological Institute (MNI) coordinates. The region was drawn to include the inferior

temporal, fusiform, and lingual/parahippocampal gyri. The gyri were identified using Automated

Anatomical Labelling (AAL) parcellation (Tzourio-Mazoyer et al., 2002).

Obtaining the animacy continua from fMRI data
Animacy continua were extracted from parts of the brain (either a region of interest such as VTC or a

searchlight sphere) with a cross-decoding approach. SVM classifiers were trained on the BOLD

images obtained from the animate and inanimate blocks of the localizer experiment, and tested on

the BOLD images obtained from the main experiment. The degree of animacy of an object is given

by the distance of its representation from the classifier decision boundary. As the BOLD response is

delayed by seconds after stimulus onset, we had to decide the latency of the BOLD images we

wanted to base our analysis on. The classification test accuracy and the animacy continuum noise

ceiling for the objects from the main experiment were higher for the BOLD images at 4s latency

than both 6s latency and the average of the images at 4 and 6s latencies. Therefore, we based our

analysis on the BOLD images at 4s latency. The findings remain unchanged across the latencies

mentioned.

All the images of the brain shown in this article were rendered using MRIcron.

Comparing models with the animacy continua in the brain
We compared the animacy continua in the brain (such as the animacy continuum in VTC and animacy

continua in searchlight spheres) with image and perceptual categorizabilities (visual categorizability),

agency, their combination, and their independent components. The comparisons were performed at

participant-level with rank-order correlations (Kendall’s t). The comparison between an animacy con-

tinuum and the independent component of a model was performed by regressing out other models

from the animacy continuum and correlating the residue with the model of interest, for each

participant.

Given a participant, the comparison between an animacy continuum and the combination of mod-

els was computed as follows. The animacy continuum was modeled as a linear combination of the

models (with linear regression) for the rest of the participants. The regression weights associated

with each model in the combination across those participants were averaged, and the animacy con-

tinuum of the participant of interest was predicted using a linear combination of the models using

the averaged weights. The predicted animacy continuum was then correlated with the actual ani-

macy continuum of this participant. This procedure was implemented iteratively for each participant

to get a group estimate of the correlation between an animacy continuum and a combination of

models.

Comparing visual categorizability with the animacy continua
The contribution of visual categorizability to an animacy continuum is gauged by the comparison

between that animacy continuum and a combination of image and perceptual categorizabilities in a

leave-one-participant-out analysis as mentioned above. The independent contribution of visual cate-

gorizability to an animacy continuum is gauged by regressing out agency from the image and per-

ceptual categorizabilities and combining the residues to model the animacy continuum in a leave-

one-participant-out analysis as mentioned above. When visual categorizability is to be regressed out

of an animacy continuum (to obtain the independent contribution of agency), image and perceptual

categorizabilities are regressed out. When visual categorizability is to be included in a combination

of models, image and perceptual categorizabilities are added as models.

To assess if a model or a combination of models explained all the variance in the animacy contin-

uum across participants, for each participant we tested if the correlation between the model or the

animacy continuum predicted by the combined model (in a leave-one-out fashion as above) and the

average of animacy continua of the other participants was lower than the correlation between the

participant’s animacy continuum and the average of animacy continua of the other participants. On

the group level, if this one-sided test (see ‘Statistical tests in use’) was not significant (p > 0.05), we

concluded that the correlation between the model or a combination of models hit the animacy
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continuum noise ceiling and thus explained all the variance in the animacy continuum across partici-

pants. In the comparisons in Figure 4C–D, only the correlation between VTC animacy and the com-

bination of visual categorizability and agency was at VTC animacy noise ceiling.

Searchlight details
In the whole-brain searchlight analysis, the searchlight spheres contained 100 proximal voxels. SVM

classifiers were trained to distinguish between the BOLD images, within the sphere, corresponding

to animate and inanimate stimuli from the localizer experiment. The classifiers were tested on the

BOLD images, within the sphere, from the main experiment. Threshold-free cluster enhancement

(TFCE; Smith and Nichols, 2009) with a permutation test was used to correct for multiple compari-

sons of the accuracies relative to baseline (50%). Further analysis was constrained to the clusters

which showed above-chance classification (between-subjects, p < 0.05, on both localizer and main

experiment accuracies) of animate and inanimate objects. Within each searchlight sphere that sur-

vived the multiple comparisons correction, the animacy continuum was compared with image and

perceptual categorizabilities (after regressing out agency) and agency (after regressing out both

image and perceptual categorizabilities). Multiple comparisons across spheres of correlations to

baseline (0) were corrected using TFCE. The independent visual categorizability clusters were com-

puted as a union of spheres that had a significant contribution (independent of agency) from either

image or perceptual categorizabilities.

Statistical tests in use
Hypothesis testing was done with bootstrap analysis. We sampled 10,000 times with replacement

from the observations being tested. p-Values correspond to one minus the proportion of sample

means that are above or below the null hypothesis (corresponding to the test of interest). The p-val-

ues reported in the paper correspond to one-sided tests. The 95% confidence intervals were com-

puted by identifying the values below and above which 2.5% of the values in the bootstrapped

distribution lay. Exact p-values are reported except when means of all the bootstrap samples are

higher or lower than hypothesized in which case we mention p < 10-4.
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Appendix 1

DOI: https://doi.org/10.7554/eLife.47142.016

Agency can be derived from visual feature differences
To test whether agency ratings can be predicted based on high-level visual feature

representations, agency ratings were collected for a set of 436 images. The activation patterns

of these images in the final fully-connected layer (FC8) of VGG-16 was established. A

regression model trained on these activation patterns could accurately predict agency ratings

of the stimuli used in our fMRI experiment, as described in more detail below.

Agency ratings were collected for 436 object images, which included the 12 animal images

from the main fMRI experiment. The ratings experiment was similar to the main ratings

experiment. However, instead of thoughtfulness and feelings, 16 participants rated the agency

of animals shown in the stimuli. All participants gave informed consent. All procedures were

carried out in accordance with the Declaration of Helsinki and were approved by the ethics

committee of Radboud University (ECSW2017-2306-517). One image of an object was shown

at a time. Agency was defined as the capacity of individuals to act independently and to make

their own free choices, and participants were instructed to consider factors such as ‘planning,

intentions, abstraction, empathy, sensation, reactions, thoughtfulness, feelings’. The agency

ratings for the 12 animals co-varied positively with the agency scores from the main ratings

experiment (t ¼ 0:75, p<10�4), and the mean correlation was at (main ratings experiment’s)

agency noise ceiling (t ¼ 0:75).

Activations from VGG-16 FC8 were extracted for these 436 images and principal

component analysis was performed on the activations driven by the 388 images, excluding the

12 � 4 animal images from the main fMRI experiment. A cross-validated regression analysis

was performed, with the agency ratings as the dependent variable and the principal

components of FC8 as the independent variables. The first 20 principal components

(regularisation cut-off) were included in the final model, as the models with more components

provided with little gains in the similarities of the computed scores to the actual agency scores

for the left-out images, while the similarities for the included images kept increasing (over-

fitting). The agency scores were computed for the left out 12 animals and compared to the

agency ratings obtained from the current experiment. They co-varied positively (t ¼ 0:61,

p<10�4) but the mean correlation was not at the agency ratings noise ceiling (t ¼ 0:79). These

observations show that agency ratings can be predicted based on high-level visual feature

representations in a feedforward convolutional neural network.
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