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Abstract: Multiple-color reflectors using bichiral liquid crystal polymer films (BLCPFs) are
investigated. The BLCPFs consist of alternate layers of two different single-pitch cholesteric liquid
crystal (CLC) layers, named CLC#A and CLC#B. The thickness of each CLC layer equals its single pitch
length. The optical properties in terms of reflections, reflection-wavelength ranges, and distributions
of reflection spectra of the BLCPFs that result from the fixed pitch length of CLC#A along with the
decrease of the pitch length of CLC#B are qualitatively simulated and investigated. The results indicate
that the above optical properties of the BLCPFs depend on the LC birefringence and pitch lengths of
CLC#A and CLC#B layers. The concept of fabrication method of the BLCPFs by using polymerizable
CLCs and thin films of poly(vinylalcohol) or photoalignment materials is discussed. They have
potential practical applications in functional color filters, asymmetrical transmission systems, etc.,
owing to the multiple reflection bands of BLCPFs. Moreover, the BLCPFs, which can enhance the
color gamut and light-utilization efficiency of light sources/LC displays, are reported herein.

Keywords: cholesteric liquid crystals; multiple-color reflectors; chiral polymers; liquid crystal polymers;
color gamut; light-utilization efficiency

1. Introduction

Manipulations of wavelength and reflection of reflection light can be realized while using
one-dimensional photonic crystals (1D-PCs) that consist of alternate layers of two dielectric materials.
The reflection and reflection-wavelength range of 1D-PCs depend on the thicknesses of the two
dielectric materials and the refractive index difference between them [1]. Common ways of fabricating
1D-PCs that are based on layer-by-layer depositions have been reported [2–4].

Cholesteric liquid crystals (CLCs), which are also called chiral nematic LCs (NLCs), can be
considered to be 1D-PCs, owing to their periodic twist structures [5,6]. CLCs with a single pitch usually
possess a single reflection band, and the reflection-wavelength range depends on CLC pitch length,
the ordinary and extraordinary refractive indexes (no and ne) of the LCs, and others. Aiming to obtain
multiple reflection bands while using single-pitch CLCs, Ha et al. successfully demonstrated a reflector
comprising alternate layers of polymer single-pitch CLCs and isotropic layers in order to realize
simultaneous red-green-blue reflection colors [7]. Gao et al. and Gevorgyan et al. studied reflectors
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comprising alternative layers of CLCs and an isotropic material [8–10]. Ha et al. further investigated
bichiral LC films comprising two CLC layers with an isotropic PVA film in between as a defect layer
and found that the optical properties of the bichiral LC films are polarization independent. They also
demonstrated the color-temperature tunability of a reflector while using bichiral LC films [11,12].
The optical properties of single-pitch CLC films, which possess quasi-periodic Fibonaccian defects,
have also been investigated [13]. Sabah et al. also reported optical properties of a chiral mirror
comprising alternating chiral layers [14].

Bichiral structures (so-called chiral periodic/periodic chiral structures) can also be realized while
using chiral metamaterials. These bichiral structures can be applied to microwave filters or antenna
systems [15]. The optical properties of periodic chiral structures (periodic chiral media) and their
applications as polarization-/wavelength-dependent filters, devices of distributed-feedback, etc.,
have been reported [16–19]. Moreover, light scattering that results from a grating based on bichiral
structures (chiral periodic structures) and applications of bichiral structures for optical fibers have
been explored [20–22].

In the present study, multiple-color bichiral LC polymer films (BLCPFs) are investigated.
The BLCPFs consist of alternate layers of two different single-pitch CLC layers, namely, CLC#A
and CLC#B. The thicknesses of a single layer of CLC#A (CLC#B) equal a single pitch length of CLC#A
(CLC#B). The complete changes in reflections, reflection-wavelength ranges, and distributions of
reflection spectra of the BLCPFs, which result from the fixed pitch length of CLC#A and the decrease
in pitch length of CLC#B, are qualitatively investigated. The LC birefringence and the pitch lengths
of CLC#A and CLC#B layers play important roles in the optical properties of reflection spectra of
the BLCPFs. We also report a conceptual method of fabricating the BLCPFs using a thin film of
poly(vinylalcohol) (PVA) or photoalignment materials and CLC polymers. The BLCPFs have potential
for applications as functional color filters (CFs), asymmetrical transmission systems, etc. Furthermore,
the BLCPFs, which simultaneously enhance the light-utilization efficiency and color gamut of light
sources/LC displays, are reported herein.

2. Simulation Method

The simulation method used herein is based on the Berreman 4 × 4 matrix while using commercial
1D-DIMOS software (Display-Messtechnik & Systeme GmbH & Co., KG, Rottenburg am Neckar,
Germany) [23]. Figure 1 presents the schematics of the BLCPFs comprising alternate layers of CLC#A
and CLC#B, where the substrates are not considered in the simulation. The thickness of a single layer
of CLC#A (CLC#B) equals a single pitch length of CLC#A (CLC#B). The BLCPFs consist of 10 cycles of
alternate layers of CLC#A and CLC#B. The directions of chiral handedness of CLC#A and CLC#B are
identical. An unpolarized broadband light beam, whose wavelength ranges from 400 nm to 1500 nm,
is used as a light source for simulation. For simplicity, the refractive-index dispersion of the LCs
that were used in the present simulations is not considered [24,25]. Helical axes of all CLC layers are
uniform and along the z-axis; light scattering is not considered in all simulations. All of the incident
lights travel along the z-axis.

Figure 1. Schematics of using bichiral liquid crystal polymer films (BLCPFs) comprising alternate
layers of cholesteric liquid crystal#A (CLC#A) and CLC#B.
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3. Results and Discussions

3.1. Changes in Reflection Spectra of BLCPFs by Adjusting the Pitch Lengths and Refractive Indexes of LCs

The complete changes in all reflection spectra that are induced by fixing the pitch length of
CLC#A at 560 nm and by decreasing the pitch length of CLC#B from 560 nm to 10 nm are qualitatively
demonstrated. Figure 2 presents the simulation results of the reflection spectra. The no (ne) of the
LCs set herein for the CLC#A and CLC#B layers is 1.5 (1.65). Some reflection bands located on the
wavelength below 400 nm can be obtained when the pitch length of CLC#B decreases, and we focus
on the changes in reflection spectra with wavelength ranging from 400 nm to 1500 nm. We initially
describe the complete changes in the reflection spectra of BLCPFs and then summarize the rules in
designing the reflection spectra of BLCPFs for practical applications. The curves presenting the cases
with the pitch length of CLC#B of 470 nm [350 nm] {230 nm} that are plotted in Figure 2a,b [Figure 2b,c]
{Figure 2c,d} are the same.

Figure 2. Simulation results of the reflection spectra of BLCPFs realized by fixing the pitch length of
CLC#A at 560 nm and by decreasing the pitch length of CLC#B from (a) 560 [yellow curve], to 550 [red
curve], 510 [blue curve], and 470 [green curve] nm; (b) 470 [yellow curve], to 430 [red curve], 390 [blue
curve], and 350 [green curve] nm; (c) 350 [yellow curve], to 310 [red curve], 270 [blue curve], and 230 [green
curve] nm; and, (d) 230 [yellow curve], to 150 [red curve], 70 [blue curve], and 10 [green curve] nm.
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Figure 2a–c present that the full width at half maximum (FWHM), the central reflection wavelength
(CRW), and the reflection of CRW of reflection band (circled by a black dashed frame A) shrinks,
blue-shifts, and keeps exceeding 0.48 by decreasing the pitch length of CLC#B from 560 to 550, 510, 470,
430, 390, 350, 310, and 270 nm, respectively. Table 1a shows the simulation results. The reflection of
CRW starts decreasing to below 0.48 when the pitch length of CLC#B decreases to 230 nm. The reflection
disappears when the pitch length of CLC#B decreases to 150 nm.

Table 1. Values of FWHM, CRW, and reflection of CRW of reflection bands with reflections of CRW
close to 0.5 (>0.48) in the black dashed frames (a) A, (b) B, (c) C, and (d) D plotted in Figure 2.

(a)

Pitch Length of
CLC#B (nm) 560 550 510 470 430 390 350 310 270

Reflection
band in the

black dashed
frame A

FWHM (nm) 92.7 91.9 87.5 81.8 74.3 65.3 54.9 43.6 32.2

CRW (nm) 882.4 874.5 843.0 811.4 779.8 748.2 716.6 685.0 653.4

Reflection of CRW 0.51 0.51 0.51 0.51 0.51 0.50 0.50 0.50 0.48

(b)

Pitch length of CLC#B (nm) 350 310 270 230 150

Reflection band in the black dashed
frame B

FWHM (nm) 64.7 68.8 70.9 70.4 60.1

CRW (nm) 958.0 915.5 872.9 830.4 745.7

Reflection of CRW 0.49 0.50 0.50 0.51 0.50

(c)

Pitch length of CLC#B (nm) 430 390 350 310 270 230

Reflection band in the black dashed
frame C

FWHM (nm) 24.6 27.3 28.4 27.8 25.0 20.2

CRW (nm) 620.9 596.0 571.3 546.6 522.0 497.2

Reflection of CRW 0.48 0.50 0.50 0.50 0.50 0.49

(d)

Pitch length of CLC#B (nm) 310 270 230

Reflection band in the black dashed frame D

FWHM (nm) 17.0 17.7 16.6

CRW (nm) 455.1 434.4 413.8

Reflection of CRW 0.49 0.50 0.50

Figure 2a–c show that the reflection of CRW of reflection band (circled by a black dashed frame B)
becomes greater than 0.25 when the pitch length of CLC#B decreases to 470 nm; it increases with
decreasing the pitch length of CLC#B from 470 to 430, and 390 nm. The reflection of CRW becomes
greater than 0.48 when the pitch length of CLC#B decreases to 350 nm. Table 1b shows the variations of
FWHM, CRW, and reflection of CRW of reflection band (circled by a black dashed frame B) when the
pitch length of CLC#B are 350, 310, 270, 230, and 150 nm. All of the reflections of CRW that are shown
in Table 1b are greater than 0.48. The reflection of CRW decreases to below 0.48 when the pitch length
of CLC#B decreases to 70 nm. The reflection band disappears when the pitch length of CLC#B further
decreases to 10 nm.

Figure 2a–c present that the reflection of CRW of reflection band (circled by a black dashed
frame C) becomes greater than 0.25 when the pitch length of CLC#B decreases to 510 nm; it increases
with decreasing the pitch length of CLC#B from 510 nm to 470 nm. The reflection of CRW becomes
greater than 0.48 when the pitch length of CLC#B decreases to 430 nm. The variations of FWHM, CRW,
and reflection of CRW of reflection band (circled by a black dashed frame C) are shown in Table 1c
when the pitch length of CLC#B are 430, 390, 350, 310, 270, and 230 nm. All of the reflections of CRW
that are shown in Table 1c are greater than 0.48. The reflection band disappears when the pitch length
of CLC#B decreases to 150 nm.

Figure 2b,c indicate that the reflection of CRW of reflection band (circled by a black dashed
frame D) becomes greater than 0.25 when the pitch length of CLC#B decreases to 430 nm; it increases
with decreasing the pitch length of CLC#B from 430 nm to 350 nm. The reflection of CRW becomes
greater than 0.48 when the pitch length of CLC#B decreases to 310 nm. The variations of FWHM, CRW,
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and reflection of CRW of reflection band (circled by a black dashed frame D) are shown in Table 1d
when the pitch lengths of CLC#B are 310, 270, and 230 nm. All of the reflections of CRW that are shown
in Table 1d are greater than 0.48. The wavelength range of the reflection band is below 400 nm when
the pitch length of CLC#B decreases to 150 nm.

Figure 2c,d show that the reflection of CRW of reflection band (circled by a black dashed frame A-1)
becomes greater than 0.25 when the pitch length of CLC#B decreases to 230 nm; it increases with a
decrease of the pitch length of CLC#B from 230 nm to 10 nm. The reflection of CRW becomes greater
than 0.48 when the pitch length of CLC#B decreases to 70 nm.

Table 1a–d summarize the values of the FWHM and CRW, as well as the reflection of CRW of the
reflection bands with reflections that are close to 0.5 (>0.48) in the black dashed frames A–D plotted
in Figure 2, respectively. The reflection of CRW is rounded to the second decimal place. All of the
reflections blue-shift with the decrease of the pitch length of CLC#B. The FWHM presented in Table 1a
decreases with the decrease of the pitch length of CLC#B, whereas the FWHM in Table 1b,c,d initially
increases and then decreases when the pitch length of CLC#B decreases.

The rules for designing the reflection spectra of BLCPFs for real applications are summarized
based on the simulation results that are shown in Figure 2 and Table 1. The reflection of the blue
reflection band in the black dashed frame A in Figure 2c starts decreasing when the pitch length of
CLC#B decreases to 270 nm from 560 nm; it decreases to below 0.4 when the pitch length of CLC#B
decreases to 230 nm. Moreover, the reflection of each reflection band in the black dashed frames A, B,
C, and D in Figure 2c reaches around 0.5 when the pitch length of CLC#B decreases to 310 nm from
560 nm. Table 1a–d also show that all of the reflections of CRW are close to 0.5 when the pitch length
of CLC#B is around 310 nm. Accordingly, the first rule is that the pitch length of CLC#B should be
around half of the pitch length of CLC#A in order to ensure that all reflections of reflection bands
in the black dashed frames A, B, C, and D in Figure 2b,c are close to 0.5. In the in Appendix A,
Figure A1 shows the results plotted in Figure 2c with the wavelength range from 300 nm to 1500 nm.
The reflection band in the black dashed frame E appears when the pitch length of CLC#B decreases to
350 nm; its reflection becomes greater than 0.43 when the pitch length of CLC#B decreases to around
half of the pitch length of CLC#A. The reflection band can be applied to LC displays if it is located
within the visible light range by increasing the pitch length of CLC#A. The second rule is that the
reflection bands red-shift (blue-shift) when the pitch length of CLC#A is fixed and that of CLC#B
increases (decreases). The second rule is similar to that of 1D-PCs. The reflections and bandwidths of
the reflection bands presented in Figure 2 can reach 0.5 and expand if the birefringence of the LCs
could be further increased, respectively. This finding is discussed in the next paragraph.

This paragraph discusses the reflection spectra of the BLCPFs comprising CLC#A and CLC#B with
various ne and no values of the LCs. The simulation results of three different BLCPFs, made by CLC#A
with a fixed pitch length (560 nm) and CLC#B with various pitch lengths of 550, 470, and 390 nm,
are shown in Figure 3a,b, Figure 3c,d, and Figure 3e,f, respectively. Regarding the variations in
refractive index, the blue, green, red, and yellow curves that are presented in Figure 3a,c,e show the
simulated reflection spectra of the cases with a fixed no of 1.5 and various ne values of 1.65, 1.68, 1.71,
and 1.74, respectively. The blue, green, red, and yellow curves in Figure 3b,d,f depict the simulated
reflection spectra of BLCPFs with a fixed ne of 1.65 and various no values of 1.5, 1.47, 1.44, and 1.41,
respectively. The small no values of 1.41 and 1.44 are just used in order to theoretically analyze the
wavelength shifts of the reflection bands that are shown in Figures 3 and 4, respectively. Figure 4a–f
show the detailed reflection spectra of the reflection spectra circled in the black dashed circles presented
in Figure 3a–f, respectively.
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Figure 3. The simulation results of the reflection spectra of BLCPFs when the pitch length of CLC#A
is fixed at 560 nm, and the pitch lengths of CLC#B are (a,b) 550 nm, (c,d) 470 nm, and (e,f) 390 nm.
The various ne [no] values of CLC#A and CLC#B of the blue, green, red, and yellow reflection spectra
presented in (a,c,e) [(b,d,f)] are 1.65, 1.68, 1.71, and 1.74 [1.5, 1.47, 1.44, and 1.41], respectively; the fixed
no (ne) of the LCs in (a,c,e) [(b,d,f)] is 1.5 [1.65].
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Figure 4. Simulation results of the reflection spectra of BLCPFs. (a–f) are the detailed reflection spectra
in the black dashed circles plotted in Figure 3a–f, respectively.

The short [long] wavelength of the reflection-band edge in the black dashed circle presented in
Figure 3a (Figure 4a) [Figure 3b (Figure 4b)] is almost invariant when the no [ne] of CLCs is fixed.
The possible reason may be that the structures of the BLCPFs become more similar to those of
single-pitch CLCs when the difference in the pitch length between CLC#A and CLC#B becomes as
small as possible. The short [long] wavelength of the reflection-band edge of usual single-pitch CLCs
is invariant when the no [ne] of the CLCs is fixed [5]. According to Figure 3a,c,e [Figure 3b,d,f],
the amount of red-shift [blue-shift] of the long [short] wavelength of the reflection-band edge from the
reflection spectrum which is marked by blue to that of the reflection spectrum which is marked by
yellow (marked by the red dashed circles) is much larger than the amount of red-shift [blue-shift] of
the short [long] wavelength of the reflection-band edge from the reflection spectrum which is marked
by blue to that of the reflection spectrum which is marked by yellow (marked by the black dashed
circles) when ne [no] increases [decrease] and no [ne] is fixed. Moreover, the amount of the red-shift
[blue-shift] of the short [long] wavelength of the reflection-band edge from the reflection spectrum
which is marked by blue to that of the reflection spectrum which is marked by yellow progressively
enlarges with the increase of the difference in pitch length between CLC#A and CLC#B, as shown
in Figure 4a,c,e [Figure 4b,d,f]. These results indicate that the effect of fixing ne/no of LCs in order
to fix the long/short wavelength of the reflection-band edges of the BLCPFs progressively weakens
when the difference in pitch length between CLC#A and CLC#B progressively enlarges. In order to
further study the simulation results shown in Figures 3 and 4, we find that the CRW of the reflection
band (λcen), the long wavelength of the reflection-band edge (λlong), and the short wavelength of the
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reflection-band edge (λshort) of each reflection band presented in Figure 4 can be roughly estimated
while using the following equations [5–7],

λcen =
(no + ne)

2
×
(PCLC#A + PCLC#B)

2
(1)

λshort = no ×
(PCLC#A + PCLC#B)

2
(2)

λlong = ne ×
(PCLC#A + PCLC#B)

2
(3)

where PCLC#A and PCLC#B are the pitch lengths of CLC#A and CLC#B, respectively. We substitute the
parameters of the blue reflection spectra of Figure 4a,b into Equations (2) and (3) in order to obtain a
λshort of 832.5 nm and a λlong of 915.8 nm, respectively. The obtained λshort and λlong approximately fit
the short and long wavelengths of the reflection-band edge of the reflection spectra which are marked
by blue in Figure 4a,b, respectively. Figure 5 shows the simulated spectrum of single-pitch CLCs with
20 turns of CLC helix while using 1D-DIMOS software, which is a reference for determining the short
and long wavelengths of the reflection-band edges of the reflection spectra which are marked by blue
in Figure 4a,c,e and Figure 4b,d,f, respectively. The pitch length and no/ne of the CLCs in Figure 5 are
560 nm and 1.5/1.65, respectively, and the short [long] wavelengths of the reflection-band edges of
the reflection spectrum are 840 nm [924 nm] using Equation (2) [(3)] when PCLC#A and PCLC#B are the
same [5]. Furthermore, we substitute the parameters of the reflection spectra that are marked by the
blue color in Figure 4c,d [Figure 4e,f] into Equations (2) and (3) in order to obtain a λshort of 772.5 nm
[712.5nm] and a λlong of 849.8 nm [783.8 nm], respectively. The calculated λshort of 772.5 nm [712.5nm]
and λlong of 849.8 nm [783.8 nm] do not fit well the short and long wavelengths of the reflection-band
edges of the reflection spectra which are marked by blue shown in Figure 4c,d [Figure 4e,f], respectively.
Equations (2) and (3) can only be used to estimate the wavelengths of the reflection-band edges
in Figure 4 when the difference in pitch length between CLC#A and CLC#B is small. Moreover,
the amount of the red-shift [blue-shift] of the short [long] wavelength of the reflection-band from
the reflection spectrum which is marked by blue to that of the reflection spectrum which is marked
by yellow at the reflection of 0.25 progressively enlarges with the increase of the difference in pitch
length between CLC#A and CLC#B, as shown in Figure 4a,c,e [Figure 4b,d,f]; referring to Figure 4a
[Figure 4b] {Figure 4e [Figure 4f]}, the wavelength difference between the short [long] wavelengths of
the reflection-bands of the reflection spectra that are marked by blue and yellow colors at the reflection
of 0.25 is around 2.5 nm {5 nm} when the pitch length difference is 10 nm {170 nm}. Meanwhile,
by substituting the parameters of the pitch lengths of CLC#A and CLC#B that are shown in Table 1a
into Equation (1), Table 2 shows the corresponding λcen of 882, 874.1, 842.6, 811.1, 779.6, 748.1, 716.6,
685.1, and 653.6 nm, which approximately fit the CRWs shown in Table 1a. These results indicate that
the use of Equation (1) is nearly independent of the difference in pitch length between the CLC#A and
CLC#B of BLCPFs. Furthermore, the reflection and reflection bandwidth of the other reflection bands,
which are excluded within the black dashed and red dashed circles presented in Figure 3, increase
with the increase of the difference between ne and no, and their reflection bands red-shift (blue-shift)
with the increase (decrease) of ne (no) when no (ne) is fixed. Overall, when the pitch length of CLC#B
is larger than half of the pitch length of CLC#A, we deduce that the reflections of reflection bands,
which are unaffected by variations in LC birefringence, are CLC-like reflection bands. Conversely,
the reflections of reflection bands, depending on variations in LC birefringence are 1D-PC-like reflection
bands. The reflection of 1D-PC varies with the differences in thickness and refractive index between the
two dielectric materials [1–4]. Accordingly, the variations in the reflection of the 1D-PC-like reflection
bands in the black dashed frames B, C, D, and A-1 shown in Figure 2 and the 1D-PC-like reflection
bands in Figure 3 can be qualitatively understood through the mechanism of variation of reflection
bands of 1D-PCs. Accordingly, the third rule is that the reflections, bandwidths, and positions of the
reflection bands of BLCPFs can be determined by ne and no, as well as the difference between ne and no;
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this rule is similar to that of 1D-PCs. Equations (1)–(3) are only used to elucidate CLC-like reflection
bands, and the limitation of the use of Equations (2) and (3) is discussed. Moreover, Equation (1) can be
used in order to determine which reflection band among a reflection spectrum is a CLC-like reflection
band, and the rest are considered as 1D-PC-like reflection bands in any BLCPF.

Figure 5. Simulated reflection spectrum of single-pitch CLCs with 20 turns of CLC helix, and the pitch
length and the no/ne of the CLCs are 560 nm and 1.5/1.65, respectively.

Table 2. Values of λcen of 882, 874.1, 842.6, 811.1, 779.6, 748.1, 716.6, 685.1, and 653.6 nm approximately
fit the CRWs that are shown in Table 1a.

Pitch Length of CLC#B (nm) 560 550 510 470 430 390 350 310 270

CRW (nm) 882.0 874.1 842.6 811.1 779.6 748.1 716.6 685.1 653.6

3.2. Application Concept of BLCPFs in LC Displays

The BLCPFs can be applied to various optical devices, such as RGB reflectors, color filters,
and asymmetrical transmission systems, backlight enhancement films [5,7,14,26–32]. An application of
the BLCPFs is elucidated as follows. Figure 6a shows the simulation results of the reflection spectrum
of a BLCPF [black curve], for example. Figure 6a does not consider the refractive-index dispersion
of LCs. The parameters for the BLCPF used in Figure 6a are as follows: (i) the pitch length of CLC#A
(CLC#B) is 680 (340) nm and (ii) the no (ne) of the LCs is 1.45 (1.72). While using Equation (3),
the reflection band covering a wavelength of 891 nm is a CLC-like one. Figure 6a presents a spectrum
of a light-emitting diode (LED) light source comprising red, green, and blue emission bands [red,
green, and blue curves], for example to elucidate the application of the BLCPFs [33,34]. The multiple
reflection bands of the BLCPFs simultaneously include the peak-intensity wavelengths of the three
emission bands of LED light source. Intrinsically, the light-utilization efficiency of the light source of LC
displays (LCDs) is extremely low, primarily owing to the light absorption by linear polarizers [29–32].
Figure 6b shows the backlight unit that is embedded with the BLCPFs and a broadband wavelength
plate (WP) in order to improve the light-utilization efficiency of the LED light source [29–32,35,36].
The parameters of the BLCPFs that are used in Figure 6b and those used in Figure 6a are identical.
The unpolarized light (denoted by 0 in Figure 6b) from the LED light-source unit, which consists
of a diffuser, edge-lit LED (whose emission bands are shown in Figure 6a), a waveguide, a prism
array, and others [29–32,37–41], propagates toward the BLCPFs (whose reflection bands are marked
by black color in Figure 6a). A reflector is placed on the backside of the light-source unit. If CLC#A
and CLC#B are right-handed, then left-handed circularly polarized light (CPL) (denoted by 1 in
Figure 6b) passes through the BLCPFs, and right-handed CPL (denoted by 2 in Figure 6b) is reflected.
Thereafter, the reflected circularly polarized light is reflected by the reflector with depolarization
in order to become unpolarized light (denoted by 3 in Figure 6b), and only the left-handed CPL
passes through the BLCPFs and the right-handed CPL is reflected [32,40]. The left-handed CPL
(denoted by 1 and 4 in Figure 6b) transforms into linearly polarized light (denoted by 5 in Figure 6b)
after passing through a broadband WP. Eventually, the light that passes through the broadband WP
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passes through the linear polarizer [32,35,36]. The BLCPFs select the right polarization (left-handed
CPL) to let it pass and the wrong polarization (right-handed CPL) to be reflected by repeating the
process. Notably, the configuration still works if the reflector shown in Figure 6b has the function of
polarization conversion [40]. The CPLs are used to elucidate the operation that is shown in Figure 6b;
the actual polarization of light exiting the BLCPFs is not exactly a CPL, which will be discussed later.
Most importantly, the BLCPFs serving as a CF with a broadband WP can improve the light-utilization
efficiencies of LED light source for the red, green, and blue emission wavelength ranges within the
reflection bands of BLCPFs, but the light-utilization efficiencies of the light wavelength outside the
reflection bands cannot be effectively enhanced. Accordingly, if the light-utilization efficiency of
wavelength ranges around the peak intensities of the three primary colors can be effectively enhanced,
then the expansion of the color gamut of the light source is realized simultaneously.

Figure 6. (a) Simulation results of the reflection spectrum (black curve) of a designed BLCPF containing
three different reflection bands. The red, green, and blue curves are spectra of three emission bands
of a LED light source. (b) Configuration of the usage of the designed BLCPFs and a broadband WP
to improve the light-utilization efficiency and color gamut of LCDs/light-source unit based on (a).
(c) Simulation results of the reflection spectrum (black curve) of a designed BLCPF, which is identical to
that in (a). The red, green, and blue curves are the transmittance spectra of red, green, and blue CFs.
The calculated intensities without [with] the use of the designed BLCPFs and broadband WP (ac_w/o)
[(ac_w/)] of red, green, and blue primary colors as functions of wavelength (λ) curve (d) [(e)] using the
configuration plotted in (f) [(g)]. (f) and (b) are the same except that the CFs and the BLCPFs with the
broadband WP are added and removed in (f), respectively; (g) and (b) are the same, except that the CFs
are added in (g).



Polymers 2020, 12, 3031 11 of 18

Figure 6c shows the simulation results of the reflection spectrum of BLCPF [black curve], which is
identical to that plotted in Figure 6a, and the transmittance spectra of red, green, and blue CFs [34].
The wavelength ranges of the color crosstalk of the blue (green) and green (red) CFs are partially outside
the reflection bands. This finding indicates that the color gamut of LCDs can be expanded, because the
wavelength ranges of some color crosstalk areas that cause color gamut reduction are not enhanced by
the BLCPFs. This concept is similar to that of eliminating undesirable wavelengths in a light source in
order to expand the color gamut of light sources/LCDs, which has been previously reported [27,28].
Figure 6d [6e] shows the calculated intensities without [with] the BLCPFs and a broadband WP (ac_w/o)
[(ac_w/)] based on Equation (4) [(5)] of red, green, and blue primary colors as functions of wavelength
(λ) using the configuration illustrated in Figure 6f [Figure 6g] in order to estimate the enhancement
in light-utilization efficiency and color gamut. Figure 6f,b are the same, except that the CFs and the
BLCPFs with a broadband WP are added and removed in Figure 6f, respectively; Figure 6g,b are the
same, except that the CFs are added in Figure 6g. The details of the following two equations are
discussed below.

ac_w/o(λ) = SLED(λ) × 0.5×CFc(λ) (4)

ac_w/(λ) = SLED(λ) × T(λ)
[
1 + R(λ) + R2(λ) + · · ·

]
×CFc(λ)

= SLED(λ) × T(λ)
[

1
1−R(λ)

]
×CFc(λ)

(5)

Figure 7a [Figure 7b] shows the simulation result of the transmission [reflection] spectrum,
which is denoted as T(λ) [R(λ)] in Equation (5), using the configuration shown in Figure 7c, which is
identical to Figure 6b without the light-source unit and the reflector. The parameters of the BLCPFs
that are used in Figure 7c and those used in Figure 6a,b are identical. The broadband WP presented
in Figure 7c comprises a half-WP (HWP) and a quarter-WP (QWP). The angle between the slow
axis of the HWP (QWP) and the x-axis is 15◦ (75◦); the transmissive axis of the polarizer is along
the x-axis [35,36]. The phase retardations of the HWP and QWP are 0.74π/λ and 0.37π/λ (the unit
of λ is micrometer), respectively; the refractive indexes of the slow and fast axis of HWP/QWP are
1.6 and 1.5, respectively. The dispersion of the refractive-index is not considered, and the incident
light is unpolarized. The subscript of c in Equations (4) and (5) is red, green, or blue. The ared_w/o(λ),
agreen_w/o(λ), and ablue_w/o(λ) [ared_w/(λ), agreen_w/(λ), and ablue_w/(λ)] represent the intensities of red, green,
and blue primary colors as functions of wavelength, respectively, while using the configuration of
Figure 6f [6g]. The SLED(λ) is the sum of Ired(λ), Igreen(λ), and Iblue(λ) [SLED(λ) = Ired(λ)+Igreen(λ) +

Iblue(λ)], among which Ired(λ), Igreen(λ), and Iblue(λ) are the intensities as functions of wavelength for
the red, green, and blue LED emission bands, as shown in Figure 6a, respectively. CFred(λ), CFgreen(λ),
and CFblue(λ) are the transmissive spectrum of red, green, and blue CFs, as plotted in Figure 6c,
respectively. The wavelength range concerned here is from 380 nm to 780 nm (unit wavelength = 1 nm)
[The unit wavelength used in all figures in this paper is 1 nm]. For simplicity, the linear polarizer is
assumed to absorb 50% intensity of unpolarized light with wavelength ranging from 380 nm to 780 nm
in Equations (4) and (5), and the reflector that is used in Figure 6f,g for Equations (4) and (5) is assumed
to have 100% reflection ability within the wavelength range. The reflector also depolarizes the incident
light into unpolarized light [40]. Here, we ignore any reflection that is caused by the light-source unit.
Eventually, partial light from the light source passes through the BLCPFs, and the residual light is
reflected and then depolarized and reflected in order to become unpolarized light by the reflector

(refer to Figure 6b,g). This process would be infinitely repeated, and the term, T(λ)
[

1
1−R(λ)

]
, presented

in Equation (5), is deduced. The calculated result of the color gamut in the International Commission
on Illumination 1931 (1976) color space while using the configuration of Figure 6g increases by around
5.62% (2.22%) as compared with that on Illumination 1931 (1976) color space using the configuration
of Figure 6f.
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Figure 7. Simulation results of the (a) transmission and (b) reflection spectra, denoted as T(λ) and R(λ),
respectively, in Equation (5) using the configuration of (c). Configuration of (c) is identical to that
plotted in Figure 6b without the light source and reflector. (d) Stokes parameters of S3/S0 (black curve)
as a function of the wavelength of the light passing through the BLCPFs that are shown in Figure 6b.
(e) Stokes parameters of S1/S0 (orange curve), S2/S0 (green curve), and degree of polarization (DoP)
(purple curve) as functions of the wavelength of the light passing through the BLCPFs that are shown
in Figure 6b. The gray curves in (d,e) are the same and are the simulation results of the transmission
spectrum of the BLCPFs as shown in Figure 6b.

Figure 7d [Figure 7e] shows the Stokes parameters of the S3/S0 (black curve) [S1/S0 (orange curve),
S2/S0 (green curve), and degree of polarization (DoP) (purple curve)] of the light passing through
the BLCPFs, as shown in Figure 6b, as functions of the wavelength. The gray curves that are plotted
in Figure 7d,e are the simulated transmission spectrum of the BLCPFs shown in Figure 6b. Most of

the values of S3/S0 of the three bands are around −0.9, and DoP values (
√(

S2
1 + S2

2 + S2
3

)
/S0) are

wavelength-independent and extremely close to 1. Moreover, the S1/S0 and S2/S0 within the three
transmission bands vary with the wavelength [42].

Overall, when considering an unpolarized incident light, its transmitted light passes through the
BLCPFs and its wavelength located in the transmission bands still comprises Stokes parameters of S1
and S2, which reveals that the transmitted light is not perfectly CPL light. The existence of S1 and S2
can be understood, because they are caused by a large refractive-index mismatch between LCs and air
(the setting of the refractive index of the environment in the simulation in this paper is 1). A method
for reducing the absolute values of S1/S0 and S2/S0 and letting the absolute value of S3/S0 approach 1
can be found in the report of Woon et al. [42].

Equation (6) [(7)] are applied in order to calculate the total intensities of the red, green, or blue
primary colors that are shown in Figure 6d [Figure 6e], which is correlated with Equation (4) [(5)].

Ac_w/o =
λ=780∑
λ=380

ac_w/o(λ) =
λ=780∑
λ=380

[SLED(λ) × 0.5×CFc(λ)] (6)
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Ac_w/ =
λ=780∑
λ=380

ac_w/(λ) =
λ=780∑
λ=380

[
SLED(λ) × T(λ)[

1
1−R(λ)

] ×CFc(λ)

]
(7)

where Ac_w/o [Ac_w/] is defined as total red, green, or blue intensity obtained from Figure 6d [Figure 6e]
(c = red, green, or blue). Defining the summation of three primary colors (Ared_w/o + Agreen_w/o + Ablue_w/o
= D) and [Ared_w/+ Agreen_w/+ Ablue_w/= E], and E−D

D is ~0.5998. Accordingly, light-utilization efficiency
increases by ~60% when using the configuration of Figure 6b [40]. Overall, by using the configuration
of Figure 6g, the simultaneous expansion of color gamut and enhancement in light-utilization efficiency
of light sources/LCDs using BLCPFs become feasible. The BLCPFs, along with the broadband WP,
can be applied in various types of LCDs with corresponding optimized designs. CLCs with gradient
pitch lengths or stacked CLCs can also work as BLCPFs, as shown in Figure 6b. Although such kinds
of CLC devices do enhance light-utilization efficiency, the color gamut cannot be effectively expanded,
because the brightness of light within the wavelength range of the color crosstalk of the blue (green)
and green (red) CFs causing the reduction of color gamut is also enhanced. The advantage of using
CLCs with gradient pitch lengths or stacked CLCs is that they can be applied in large-size LCDs in
order to enhance the light-utilization efficiency for obliquely incident light [29–32,37–41]. The BLCPFs
in this work are valid when light travels around normally to the BLCPFs, as shown in Figure 6b.
Placing a micro-prism and a lens array between the LED light-source unit and the BLCPFs shown in
Figure 6b can overcome the limitation, because the obliquely incident light can be collimated to near
normally enter the BLCPFs [32,43]. Moreover, a diffuser that reduces brightness must be placed on the
outer side of LCDs.

Changes in LC birefringence (such as E7) are known to generally decrease with the increase of
wavelength. Assuming that the ne/no that is used in Figure 2 is for the wavelength of 633 nm, the shifts
in the positions of the reflection bands located in long wavelengths should be smaller than that located
in short wavelengths if LC refractive-index dispersion is considered as compared with the original
positions of the reflection bands shown in Figure 2 [24,25,32].

Some preliminary results are worth discussing. Figure 8a shows that the BLCPFs comprise
alternative layers of CLC#Ahalf and CLC#Bhalf; the thickness of a single layer of CLC#Ahalf (CLC#Bhalf)
equals half of the single pitch length of CLC#A (CLC#B), as shown in Figure 1. The reflection spectrum
(black curve) that is plotted in Figure 8b [Figure 8c] is identical to that plotted in Figure 2c with
the pitch length of CLC#A of 560 nm and the pitch length of CLC#B of 310 nm [230 nm]. The gray
curve that is shown in Figure 8b [Figure 8c] is the simulated reflection spectrum of BLCPFs when
the thickness of a single layer of CLC#Ahalf equals 280 nm, which equals half of the single CLC#A
pitch length of 560 nm in Figure 2; the thickness of a single layer of CLC#Bhalf equals to 155 nm
[115 nm], which equals half of the single CLC#B pitch length of 310 nm [230 nm] shown in Figure 2c.
Figure 8b,c show that the positions of the reflection bands (gray curve) blue-shift and reflection of the
right- and left-handed reflection bands (gray curve) increase when the thickness of every single layer of
CLC#Bhalf decreases. Accordingly, the optical properties of the BLCPFs comprising alternative layers
of CLC#Ahalf and CLC#Bhalf (Figure 8a) seem to be similar to those of BLCPFs comprising alternative
layers of CLC#A and CLC#B (Figure 1). However, the number of reflection bands of the black curve is
larger than that of gray ones shown in Figure 8b,c. The possible reason is that the thickness of a layer
of CLC#Ahalf/CLC#Bhalf of the BLCPFs of the gray curve in Figure 8b [Figure 8c] is half of that of a
layer of CLC#A/CLC#B of the black curve presented in Figure 8b [Figure 8c].
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Figure 8. (a) The BLCPFs comprise of alternative layers of CLC#Ahalf and CLC#Bhalf; the thickness
of a single layer of CLC#Ahalf [CLC#Bhalf] equals half of the single pitch length of CLC#A [CLC#B],
as shown in Figure 1. The black curves are identical to the curves shown in Figure 2c with the pitch
lengths of CLC#B of (b) 310 nm and (c) 230 nm. The gray curve is the simulation reflection spectrum
of BLCPFs when the thickness of a single layer of CLC#Ahalf equals 280 nm, which equals half of the
single CLC#A pitch length of 560 nm in Figure 2; the thicknesses of a single layer of CLC#Bhalf equal to
(b) 155 nm and (c) 115 nm, which equal half of the single CLC#B pitch lengths of 310 and 230 nm in
Figure 2c, respectively.

3.3. Concept of Fabrication Method of BLCPFs

A conceptual method of fabricating the structures of BLCPFs is discussed below. The fabrication
is based on the previous reports by alternately stacking different layers [7,11,44] and PVA thin film [45].
Figure 9 shows that the polymer layers of CLC#A, the PVA thin films, the polymer layers of CLC#B,
and the PVA thin films are sequentially and alternately stacked upon each other in order to form BLCPFs.
The fabrication of polymer layers of CLC#A is based on the report of Ohta et al. [44]. The methods of
coating a PVA thin film on top of the polymer layers of CLC#A can be found in previous works [7,45].
The thickness of a PVA film should be as thin as possible to avoid its influence on the optical properties
of BLCPFs. The PVA thin film and homogeneous aligned substrate generate homogeneous alignment,
anchoring forces along the x-axis in order to help CLCs form good planar textures with monodomain
structures (or perfect planar textures) [7,26,32,44]. The polymer layer of CLC#B is then fabricated based
on the report of Ohta et al. [44] on top of the PVA thin film. Another PVA thin film is then coated on
top of the polymer layer of CLC#B. The thickness of each polymer layer of CLC#A or CLC#B can be
precisely controlled by adjusting the solution concentration and/or the spinning speed during spin
coating process [7,11,44]. Repeating the fabrications of the coating polymer layer of CLC#A, PVA thin
film, polymer layer of CLC#B, and PVA thin film is possible for precisely generating the structures
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of the reported BLCPFs (Figure 1). Other thin films, such as photoalignment (PA) thin films [46–48],
may replace the PVA thin films.

Figure 9. Schematic of fabrication by repeated sequentially stacking alternate polymer layer of CLC#A,
poly(vinylalcohol) (PVA) thin film, polymer layer of CLC#B, and PVA thin film. PVA thin films may be
replaced by PA thin films [46–48].

Notably, the optical performances/properties of CLC devices while using NLCs are usually
sensitive to temperature, because the ne/no of NLCs generally decreases with the increase of temperature
and pitch changes with a variation in temperature [32,49,50]. Accordingly, if the reported BLCPFs
can be fabricated using chiral polymers and LC polymers, or polymerizable CLCs, their optical
properties/performances are less sensitive to temperature [7,26,32,51–54].

4. Conclusions

The complete changes in reflections, reflection-wavelength ranges, and positions of spectra of
BLCPFs by changing the pitch lengths and ne/no of CLC#A and CLC#B are investigated. The results can
serve as a useful reference for the further design of BLCPFs. A way to distinguish between CLC-like
and 1D-PC-like reflection bands is reported. We also report a possible method of precisely fabricating
BLCPF structures. Most importantly, the rules to design BLCPFs for various applications are discussed.
We also demonstrate the use of a BLCPF to enhance light-utilization efficiency and enlarge the color
gamut of light source/LCDs, and more precise simulation can be made in the future. Figure 8a,b show
some of the preliminary results; a full and systematic study can be further investigated. Future work
can focus on developing methods of reducing the absolute value of S1/S0 and S2/S0 to approach 0 and
increase the absolute value of S3/S0 to approach 1, as well as on the design of optimized reflection
spectra of BLCPFs and the parameters of broadband WP in order to realize practical applications in
various LCDs by considering their LC layer and other factors.
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Appendix A

Figure A1 shows the simulation results plotted in Figure 2c with a wavelength range from 300 nm
to 1500 nm.

Figure A1. Simulation results of the reflection spectra of BLCPFs, with wavelength ranging from
300 nm to 1500 nm, realized by fixing the pitch length of CLC#A at 560 nm and by decreasing the pitch
length of CLC#B from 350, to 310, 270, and 230 nm.
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