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Applying artificial intelligence 
to longitudinal imaging analysis 
of vestibular schwannoma 
following radiosurgery
Cheng‑chia Lee3,4,6,7, Wei‑Kai Lee1,7, Chih‑Chun Wu2,3, Chia‑Feng Lu1, Huai‑Che Yang3,4, 
Yu‑Wei Chen4, Wen‑Yuh Chung3,4, Yong‑Sin Hu2,3, Hsiu‑Mei Wu2,3, Yu‑Te Wu1,5,6* & 
Wan‑Yuo Guo2,3*

Artificial intelligence (AI) has been applied with considerable success in the fields of radiology, 
pathology, and neurosurgery. It is expected that AI will soon be used to optimize strategies for the 
clinical management of patients based on intensive imaging follow‑up. Our objective in this study 
was to establish an algorithm by which to automate the volumetric measurement of vestibular 
schwannoma (VS) using a series of parametric MR images following radiosurgery. Based on a sample 
of 861 consecutive patients who underwent Gamma Knife radiosurgery (GKRS) between 1993 and 
2008, the proposed end‑to‑end deep‑learning scheme with automated pre‑processing pipeline was 
applied to a series of 1290 MR examinations (T1W+C, and T2W parametric MR images). All of which 
were performed under consistent imaging acquisition protocols. The relative volume difference 
(RVD) between AI‑based volumetric measurements and clinical measurements performed by expert 
radiologists were + 1.74%, − 0.31%, − 0.44%, − 0.19%, − 0.01%, and + 0.26% at each follow‑up time 
point, regardless of the state of the tumor (progressed, pseudo‑progressed, or regressed). This study 
outlines an approach to the evaluation of treatment responses via novel volumetric measurement 
algorithm, and can be used longitudinally following GKRS for VS. The proposed deep learning 
AI scheme is applicable to longitudinal follow‑up assessments following a variety of therapeutic 
interventions.

Advances in computing have opened the door to the development of artificial intelligence (AI) for a wide range 
of medical applications. AI has been applied to imaging analysis in radiology, pathology, and neurosurgery, and 
advanced AI systems incorporating the expertise of physicians and big data have achieved diagnostic accuracy 
exceeding 80%1. It is expected that AI will soon be used to optimize strategies for the clinical management of 
patients requiring intensive imaging follow-up, such as those who undergo radiation therapy for malignant 
glioma or lung cancer patients undergoing immunotherapy or targeted  therapy2,3. This type of analysis requires 
the longitudinal analysis of medical images pertaining to multiple regions of interest.

Neurosurgery and radiation oncology are seen as a potential vanguard to guide the application of big-data 
analysis techniques in cancer research, quality assessment, and clinical  care4. In the field of neuro-oncology, 
researchers analyzing the effects of radiation therapy must consider patient demographics, the specifics of the 
radiation treatment, imaging guidance techniques, and follow-up images generated over periods spanning a 
few days to several months or years. Taking an example from radiosurgery for vestibular schwannoma (VS), it 
originates from the schwann cell sheath of vestibulo-cochlear nerves and causes damage of vestibular function 
with a high risk of deafness and facial palsy by tumor progression or treatment. Gamma Knife radiosurgery 
(GKRS) is a safe and effective strategy to treat VSs with an over 90% long-term tumor control rate and a lower 
risk of treatment-related  complications5–9. However, many VS patients exhibit tumor swelling for up to 1–2 years 
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before notable shrinking occurs. Under these circumstances, long-term MR imaging follow-up and volume 
measurements are crucial to clinical decision-making.

Over the last three decades, researchers at our institute have been characterizing the anatomic details of 
target lesions following Gamma Knife radiosurgery (GKRS) based largely on the meticulous analysis of multi-
parametric MR images (i.e., T1W, T1W+C, and T2W)10. We have found that the results of manual tumor con-
touring (even by experienced team members) tend to be subjective. Obtaining accurate assessments pertaining 
to the effects of GKRS treatment requires a reliable system by which to automate the segmentation and volume 
measurement of VS from follow-up MR images. Especially for patients with a VS underwent transient tumor 
growth after GKRS, the phenomenoma of pseudoprogression is usually occurs during 6–18 months and need 
meticulous volume measurements. Our objective in this study was to establish an algorithm by which to auto-
mate the volumetric measurement of VS using a series of parametric MR images. Wang and Shapey et al. have 
proposed a 2.5D U-Net11,12 and then employed additional spatial attention maps to demonstrate the feasibility 
of CNN modeling to segment VSs using anisotropic T1W+C and T2W MR images. Specifically, we trained a 
convolutional neural network (CNN) to identify tumor regions of inhomogeneous intensity to reduce the errors 
of volumetric measurement. The proposed AI scheme is applicable to longitudinal follow-up assessments fol-
lowing a variety of therapeutic interventions.

Results
Dual‑pathway model for tumor delineation. A total of 381 patients were recruited for analysis, the 
clinical details of which are summarized in Table 1. We first compared the tumor mask based on model segmen-
tation with the results of manual delineation by experienced neurosurgeons (CC Lee, HC Yang, or WY Chung) 
and neuroradiologists (HM Wu, CC Wu, or WY Guo). When applied to 100 testing data, the proposed dual-
pathway model significantly outperformed the single-pathway model (paired t test; p-value of < 0.001). The dice 
scores were as follows: 0.90 ± 0.05 (dual-pathway model) and 0.87 ± 0.07 (single-pathway model) (mean ± SD). 
Figure 1A lists the dice scores in terms of mean, median, standard deviation, maximal, minimal, and interquar-
tile values. The case in Fig. 1B clearly illustrates the advantages of the dual-pathway model, with the following 
results: 0.84 (single-pathway model) and 0.90 (dual-pathway model).

Cystic VS and loss of central enhancement after GKRS. Cystic or mixed cystic tumors are not 
uncommon in patients with VS, and radiosurgery often leads to a loss of central enhancement during the follow-
up period. Note that in either of these situations, most AI models are susceptible to volumetric error. It appears 
that most AI models are able to interpret contrast-enhanced lesions with a high degree of accuracy; however, 

Table 1.  Demographic characteristics of 381 patients with vestibular schwannoma.

Characteristics Value (n or median) Range or percentage

Sex (male: female) 163:218 42.7%

Age (range), y/o 53.9 14.9–83.1

Laterality (left: right) 209:172 54.9%

Tumor volume (ml) 2.05 0.08–17.1

Tumor characteristics

Solid 168 44.1%

Cystic 17 4.8%

Mixed 172 45.1%

Neurological deficits

Hearing impairment 285 74.8%

Dizziness, tinnitus, imbalance 259 68.0%

Facial palsy 48 12.6%

Other CN deficits 46 12.1%

Long-tract sign (gait or weakness) 44 11.5%

Cerebellar sign 42 11.0%

SRS parameters

Max dose (Gy) 21.0 15.4–24.6

Margin dose (Gy) 12.0 11.0–15.0

Isodose level (%) 57.0 50–85

Clinical follow-up 73.0 6.1–217

Image follow-up (in months) 71.3 5.6–217

Image outcomes

Regression or stable 168 44.1%

Pseudo-progression 172 45.1%

Progression 17 4.8%
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they tend to underestimate the cystic component of the tumor due to a loss of enhancement. Finally, most AI 
models can be trained only for specific types of VS. The proposed dual-pathway model was designed to over-
come these limitations by combing the signals from T2W, and T1W+C images. This makes it possible to measure 
the volume of a tumor with a high degree of precision, even when dealing with cystic tumors or a loss of central 
enhancement following radiation treatment. Figure 1C illustrates the advantages of the proposed dual-pathway 
model. Despite the fact that this tumor is largely composed of cystic fluid, it is well-covered and segmented, 
with a dice value of 0.88. In fact, the dice values obtained from solid, cyst, and mixed tumors using the proposed 
model are comparable.

Longitudinal analysis of parametric MR images. The dual-pathway model was used for the longitu-
dinal analysis of parametric MR images to assess changes in tumor volume, the results of which are presented 
in Fig. 2. Regardless of the state of the tumor (progressed, pseudo-progressed, or regressed), the RVDs between 
model-measured tumor volume (MTV) with the clinically-measured tumor volume (CTV) are minimal. The 
mean differences at the follow-up time points were + 0.77%, − 0.90%, − 1.05%, − 1.13%, − 0.92%, and − 2.92%. The 
median differences were + 1.74%, − 0.31%, − 0.44%, − 0.19%, − 0.01%, and + 0.26%. Note that the accuracy of the 
proposed AI model was roughly 99% at most follow-up time points.

Case demonstration. In the following, we present three case studies involving (1) VS with direct tumor 
regression, (2) pseudo-progression leading to tumor regression, and (3) tumor progression. The former two 
cases responded favorably to radiosurgery, i.e., tumor shrinkage without any adverse radiation effects. MTV and 
CTV results were similar, with an RVD difference of less than 10% at most follow-ups in all of three patients. 
(Fig. 3). The proposed AI model was highly accurate.

Discussion
Regardless of the state of the tumor (progressed, pseudo-progressed, or regressed), the differences between the 
results of the proposed AI model and the clinical measurements obtained by expert radiologists were within 
the range deemed clinically acceptable, i.e., less than 1% at all time points other than the first (+ 1.74%). Note 
that this level of precision is far superior to the 10% measurement error that is normally deemed  acceptable13.

Figure 1.  (A) Box plots showing dice scores for single-pathway model and dual-pathway model applied to 
100 testing data sets (both models trained using T1W+C, and T2W images with Mean: average, Std: standard 
deviation, MIN: minimum, IQ1: 25th interquartile, IQ3: 75th interquartile, MED: median, MAX: maximum); 
(B) white ground-truth contour on left overlapping red contours predicted for a solid tumor using proposed 
dual-pathway model (dice score: 0.90); white ground-truth contour on right overlapping red contours predicted 
for same solid tumor using single-pathway model (dice score: 0.84); (C) upper and lower panels respectively 
display T1W+C and T2W images, where blue and red boxes respectively present testing results from cases of 
solid tumor and cystic tumor.
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Numerous researchers have addressed the issue of VS segmentation using MR images. Elizabeth et al.14 pro-
posed a Bayesian partial volume segmentation scheme based on probability statistics. Deep-learning techniques, 
such as convolutional neural networks (CNNs), have also been developed for image recognition and semantic 
segmentation. These methods use convolution kernels to produce feature maps aimed at facilitating classification 
tasks. They have also been applied in medical imaging  research15. Wang et al.11,16 proposed the 2.5D U-Net for 
VS segmentation, in which T2W MR images were used as input data and spatial attention maps were used to 
identify tumors from MR images with anisotropic resolution. Differences between the Wang study and current 
study in terms of through-plane resolution (1.5 mm vs. 3.0 mm), scanning parameters, and sample size (N = 46 
vs N = 100) preclude the direct comparison of results. Nonetheless, the excellent results of their study (dice coef-
ficient of 0.93 ± 0.04) demonstrate the feasibility of using CNN for VS segmentation. As shown in our proposed 
method, concatenating our T1W+C, and T2W images as multiparametric input cropped to 128 × 108 × 60 mm 
produced results (dice coefficient of 0.90 ± 0.05) that are remarkably close to those obtained by Wang et al.

The anisotropic MR image volumes with lower through-plane resolution would cause discontinuous tumor 
contour at through-plane direction. The results obtained using the single-pathway model with a single kernel 
size (3 × 3 × 3) for encoding was influenced by features manifesting in the through-plane direction, the spatial 
resolution of which is far lower than that of in-plane features. As shown in Fig. 1B, the tumor contour delineated 
by the dual-pathway model (Fig. 1B, left) successfully detected the bottom region of tumor, which was missed 
by the single-pathway model (Fig. 1B, right).

This study used multiple parametric MR images prior to GKRS as inputs for CNN training, with the aim of 
capturing tumor regions presenting inhomogeneous intensity. We implemented an automated pre-processing 
pipeline for MR images in RAW format, to create images that are compatible with existing deep-learning mod-
els. We then applied a novel U-Net model to the task of segmenting VS using multi-parametric MR images of 
lesions with a solid region (high-intensity T1W+C) as well as a cystic region (high-intensity T2W) (Fig. 1C). To 
the best of our knowledge, this is the first example of an end-to-end deep-learning segmentation method using 
multi-parametric MR images. Testing was performed using 1290 follow-up multi-parametric MR images from 
381 VS patients. Note that the tumors were also delineated manually at the time of GKRS as well as at the time of 
follow-up for use as ground truth results. The accuracy of the AI model exceeded 99% in measuring the volume 
of tumor, and descripting the direction of tumor progression, regression, or pseudo-regression after radiation 
treatment. In the future, the proposed AI scheme could be applied to longitudinal follow-up assessments fol-
lowing a variety of therapeutic interventions.

In our previous study, Yang et al.5 constructed a two-level machine-learning model to predict the occur-
rence of transient pseudoprogression after GKRS. The prediction of transient pseudoprogression achieved an 
accuracy of 85.0% based on another five radiomic features associated with the inhomogeneous hypointensity 
pattern of contrast enhancement and the variation of T2-weighted intensity. Similarly, Speckter et al.10 found 
significant correlation of volumetric changes with texture analysis parameters of T2WI MR images for progres-
sion, pseudo-progression and regression. Langenhuizen et al.17 also found the correlations of textures on MRI 
for treatment outcome, particularly for pseudo-progression. In the near future, the imaging features within the 
tumor can predict the treatment response, and accurate longitudinal volumetric measurements showed in this 
study will be more and more important.

In conclusion, this paper outlines a novel approach to the evaluation of treatment responses (i.e., volumetric 
measurement of tumors) using MR images along a GKRS timeline. Artificial intelligence based on a deep-learning 

Figure 2.  Longitudinal analysis of parametric MR images from 381 VS patients. Regardless of the state of the 
tumor (progressed, pseudo-progressed, or regressed), there were negligible differences between the predictions 
of the proposed AI model and clinical measurements obtained by expert radiologists. The median differences 
are presented here at each follow-up time point: + 1.74%, − 0.31%, − 0.44%, − 0.19%, − 0.01%, and + 0.26 (Mean: 
average, Std: standard deviation, MIN: minimum, IQ1: 25th interquartile, IQ3: 75th interquartile, MED: 
median, MAX: maximum).
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model was applied to a longitudinal MR imaging dataset of VS. Our results provide sequential snapshots of 
dynamic processes indicative of GKRS effects.

Study limitations. This study faced a number of limitations, including those inherent to retrospective data 
collection. Because the location and contrast intensity of VSs were mostly consistent, the precision of AI model 
can be higher than other tumor identities (e.g. meningioma), and the generalizing ability to other data still need 
to be validated using external data. Hence, the applicability of the proposed AI model to other brain tumors 
will need to be carefully verified. We were unable to overcome the partial volume effects due to the fact that the 
upper and lower cut of tumors were amplified, which led to overestimates of tumor volume. We opted to include 
T2W images to deal with instances of cystic VS and VS with loss of central enhancement; however, this slightly 
elevated the errors in cases of VS with homogenous contrast enhancement. Finally, the registration of T1W+C 
and T2W images inevitably leads to small errors, regardless of the software used. In most cases, error of 0.1 mm 
is generally considered acceptable; however, errors of even this small magnitude would be sufficient to under-
mine the performance of the proposed AI model.

Methods
Patient population. A total of 381 patients were recruited for analysis, the clinical details of which are 
summarized in Table 1. The median age was 53.9 years old, and most of the patients were female (57.3%). Most 
of the VS were on the right side (n = 209, 54.9%), and the median tumor volume was 2.05 ml, based on estimates 
from MR images. Most of the patients presented neurological deficits, including hearing impairment (74.8%), 
vestibular deficits (68.0%), facial palsy (12.6%), adjacent cranial neuropathy (12.1%), and signs of brainstem 
or cerebellum compression, including long-tract (11.5%), and cerebellar (11.0%). Few of patients who had no 
symptoms and signs (n = 30, 7.9%) were incidentally found, and underwent GKRS directly.

Patient consent and institutional review. Totally 381 patients,  who underwent VS radiosurgery 
between 1993 and 2017, extracted from GKRS database of Taipei Veteran General Hospital (TVGH) constituted 
the patient cohort of current study. Patients with age of < 20-year-old at GKRS were excluded from the study. 
All patients gave written informed consent for their radiosurgery. The institutional review board (IRB) of TVGH 
approved the current study with exempting consent form (IRB number: 2018-11-008AC). The current study was 
anonymized, and followed the requirements of ethical regulation of the country and TVGH research guidelines 
and regulation.

Gamma Knife radiosurgery and follow‑up strategy. Radiosurgery was performed using Leksell 
Gamma Unit Model B, C, or Perflexion (Elekta Instrument, Inc). The prescription dose was generally set at an 
isodose level of 50–60%, and the median margin dose was 12 Gy. After GKRS, all of the patients underwent 
MRI examinations at 6-month intervals. Estimates of tumor volume were obtained through the analysis of MR 
 images5,6. MRI analysis was used to classify tumor responses to GKRS within three categories: (1) regressed 
(i.e., stable) tumor volume was defined as a residual tumor volume of less than 110% of the original volume; (2) 
increased tumor volume was defined as a residual tumor volume exceeding 110% of the original tumor volume 
at the time of treatment; (3) pseudo-progression was defined as a transient increase in tumor volume within 
6–18 months after GKRS. These classifications require confirmation via meticulous analysis of the images and 
volumetric measurements at each follow-up time point.

Volumetric measurement. In the current study, we developed an end-to-end deep-learning scheme with 
automated pre-processing pipeline to elucidate changes in tumor volume. We applied the proposed method to 
multiple parametric MR images (T1W+C, and T2W) obtained from a series of 381 VS patients (1290 MR exami-
nations). Note that all images were acquired using consistent imaging acquisition protocols.

In the following, we detail the imaging procedure and outline the evaluation metrics. The automated volu-
metric measurement scheme was implemented in three steps: (1) automated pre-processing of parametric MR 
images acquired after GKRS; (2) automated prediction of the tumor mask using a novel dual-pathway model; 
(3) estimation of tumor volume based on the predicted tumor mask and voxel size in MR images.

Proposed MR image acquisition and image pre‑processing schemes. All stereotactic MR images 
were scanned using a GE scanner (1.5T). The MR images included (1) Axial 2D Spin Echo (TR = 416  ms, 
TE = 9 ms, flip angle = 90°) T1W+C images with a matrix size of 512 × 512 and voxel size 0.5 × 0.5 × 3  mm3 and 
(2) Axial 2D Spin Echo (TR = 4050 ms, TE = 109 ms, flip angle = 90°) T2W images with a matrix size of 512 × 512 
and voxel size of 0.5 × 0.5 × 3  mm3 (Fig. 4a). Note that scanning a patient after GKRS could in no way guarantee 
that the acquisition position would match those of the stereotactic MR images used to train the deep-learning 
model. We sought to overcome some of the difficulties in applying follow-up MR images by constantly updating 
the training database with additional follow-up MR images.

We developed an automated image pre-processing module to ensure that all of the images used by the CNN 
were fixed in terms of size. T2W images were aligned to individual T1W+C images using a 12-parameter rigid-
body registration algorithm in SPM12 (Statistic Parametric Mapping)18. We compensated for inter-subject varia-
tions in the number of slices by applying zero padding (cases of < 20 slices) or removing slices (cases of > 20 slices) 
to ensure that there were precisely 20 slices in each image volume. Otsu’s  threshold19 was then used to generate 
a binary slice-wise image mask, which indicate the head region and also for the background noise suppression. 



6

Vol:.(1234567890)

Scientific Reports |         (2021) 11:3106  | https://doi.org/10.1038/s41598-021-82665-8

www.nature.com/scientificreports/



7

Vol.:(0123456789)

Scientific Reports |         (2021) 11:3106  | https://doi.org/10.1038/s41598-021-82665-8

www.nature.com/scientificreports/

The center of bounding box (256 × 216 px) was set at the center of head region to crop the MR images. Finally, 
the images were translated from 512 × 512 × n slices into 256 × 216 × 20 slices (Fig. 4b).

Proposed end‑to‑end deep‑learning scheme. The proposed dual-pathway model was implemented 
as an encode–decode convolutional neural network (Fig. 5) inspiring by U-Net. The two convolution pathways 
in the encoder used convolution kernels of different sizes: 3 × 3 × 1 (for the extraction of in-plane features from 
anisotropic MR images) and 1 × 1 × 3 (for the extraction of through-plane features). Our dual-pathway U-Net 
model was trained using dice  loss20 with additional  L2 regularization. The dice loss was used to evaluate similari-
ties in overlap between model predictions and the ground truth, whereas  L2 regularization was used to prevent 
overfitting. We defined x as the position of each voxel in the predicted mask p(x) ∈ [0,1] or ground-truth mask 
gt(x) ∈ {0,1} . The weights in the CNN model were denoted by W , and ‖W‖2 was used as the L2 regularization 
term. The total number of training epochs was 60 with a batch size of 4. In the first 40 epochs, we used the Adam 
optimizer with a learning rate of 0.001. The loss function in the first 40 epochs was defined as follows:

We set ǫ = 1× 10−5 as the smoothing term, and set �1 = 1× 10−5 as the weight decay rate. In the last 20 
epochs, we employed the Tversky index as a loss  function21,22 and a stochastic gradient decent optimizer with 
a lower learning rate of 0.0001. We respectively defined p(x) and gt(x) as the complement of p(x) and gt(x) in 
order to calculate the incidence of false positives and false negatives in the prediction results. The Tversky loss 
function was defined as follows:

We used α and β to adjust the weights of false positives and false negatives in the loss function. Initial trial-
and-error analysis led us to set the two parameters respectively at 0.3 and 0.7.

The proposed dual-pathway model was trained using 416 MR image volumes from 416 patients (prior to 
GKRS), and 121 follow-up MR image volumes from 82 patients, and was tested via independent 100 image 
volumes from the other 100 patients (prior to GKRS). Each of training subject’s T1W+C and T2W image vol-
umes were respectively normalized using z-score normalization, and concatenated together to serve as the 
multi-parametric input. The tumor masks that were used as training and testing ground truth were manually 
delineated by experienced neuroradiologists (coauthors including HM Wu, CC Wu, and WY Guo, specified in 
neuroradiology for at least 5 years) and neurosurgeon (conauthors including CC Lee, HC Yang, and WY Chung, 
specified in radiosurgery for at least 5 years) during treatment planning of GKRS or follow-up. For each MRI 
set, a neuroradiologist and a neurosurgeon would check the tumor delineation at the same time. The training 
process applied fourfold cross-validation.

For comparison, we also developed a single-pathway model with the same dual-pathway architecture but with 
all of the kernels (except those after concatenation) changed to 3 × 3 × 3. Note that the training data and training 
parameters were also the same ones used for the dual-pathway model.

The training platform and CNN model were implemented using Python 3.6, Tensorflow 1.15. The system ran 
on a PC with an i7-8700 CPU, 48 GB of RAM, and two 11-GB NVidia RTX 2080Ti GPUs.

Volume estimation. After training and testing, the proposed model was used to segment out regions indic-
ative of VS from 1290 follow-up MR image volumes. This made it possible to calculate the volume of the tumors 
using the predicted tumor mask and voxel size in the MR images. The total number of voxels N(t) predicted by 
the model was then multiplied by the voxel size  (mm3) in the MR images to obtain the tumor volume  (cm3), as 
follows:

(1)LDICE = 1− (2
∑

p(x)
⋂

gt(x))/(
∑

p(x)+
∑

gt(x)+ ǫ),

(2)Lfirst40epochs = LDICE + �1�W�2.

(3)Ltversky = 1−

(

∑

p(x)
⋂

gt(x))/(
∑

p(x)
⋂

gt(x)+ α
∑

gt(x)p(x)+ β
∑

gt(x)p(x)+ ǫ

)

,

(4)Llast20epochs = Ltversky + �1�W�2.

(5)Tumor volume
(

mm3
)

= [N(t)× voxel size]/1000.

Figure 3.  Case demonstration: (A) 46 y/o female VS patient who underwent GKRS and sequential MRI 
follow-up (follow-up MR images revealed positive response to radiation and ongoing tumor regression); (B) 
53 y/o male VS patient who underwent GKRS and sequential MRI follow-up (follow-up MR images also 
showed positive response to radiation treatment with loss of MR imaging signal in center of tumor but transient 
enlargement of tumor); (C) 43-year-old female VS patient who underwent GKRS and sequential MRI follow-up 
(follow-up MR images obtained at 6 months after GKRS showed poor response to radiation treatment). A loss 
of central enhancement was observed in the early stage after GKRS; however, the tumor continued growing. At 
most follow-up time points, the differences between the predictions of AI models and clinical measurements 
were less than 10%. The trends of the tumor progression or regression predicted by the proposed AI model were 
remarkably accurate.

◂
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Evaluation metrics. The performance of the models was evaluated using the dice  coefficient23, which indi-
cates the degree of similarity between model predictions P (x) and the ground truth GT (x) . A dice coefficient of 
1 indicates that the predicted value is identical to the ground truth, as shown below:

(6)Dice = 2
∑

P(x)
⋂

GT(x)/
∑

P(x)+
∑

GT(x).

Figure 4.  (A) Sagittal, coronal, and axial views of anisotropic MR images; (B) these raw MR images will be 
processed follow the steps showing here: co-registration between the various parametric images, and unified the 
image volume size before input our proposed dual-pathway U-Net model.

Figure 5.  Architecture of proposed dual-pathway U-Net model for VS segmentation.
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In order to compare the performance of clinically-measured tumor volume (CTV) with the tumor volumes 
measured by our proposed model (MTV), we adopted relative volume difference (RVD), defined in the follow-
ing, as the evaluation metric:

Data availability
All data generated or analysed during this study are included in this published article (and its Supplementary 
Information files).

Code availability
Source codes of the study are published in GitHub with the following link: https ://githu b.com/KenLe e1996 /
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