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Abstract

Epidemiological models can provide the dynamic evolution of a pandemic but they are

based on many assumptions and parameters that have to be adjusted over the time the

pandemic lasts. However, often the available data are not sufficient to identify the model

parameters and hence infer the unobserved dynamics. Here, we develop a general frame-

work for building a trustworthy data-driven epidemiological model, consisting of a workflow

that integrates data acquisition and event timeline, model development, identifiability analy-

sis, sensitivity analysis, model calibration, model robustness analysis, and projection with

uncertainties in different scenarios. In particular, we apply this framework to propose a modi-

fied susceptible–exposed–infectious–recovered (SEIR) model, including new compart-

ments and model vaccination in order to project the transmission dynamics of COVID-19 in

New York City (NYC). We find that we can uniquely estimate the model parameters and

accurately project the daily new infection cases, hospitalizations, and deaths, in agreement

with the available data from NYC’s government’s website. In addition, we employ the cali-

brated data-driven model to study the effects of vaccination and timing of reopening indoor

dining in NYC.

Author summary

The transmission dynamics of pandemics are often modeled by ordinary differential

equations, which normally involve many undetermined parameters needed to be esti-

mated from data. In this study, we provide a general framework, which includes

identifiability analysis, sensitivity analysis, model robustness analysis, and uncertainty

quantification, to examine the relationship between the model dynamics, data, and

parameters. We apply our framework to the modeling of the COVID-19 outbreak in New

York City and project the evolution of the pandemic.
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Introduction

This study aims to answer a fundamental question: given epidemiological data, how to develop

an appropriate model and identify which parameters we can accurately infer that would, in

turn, allow us to correctly project the states of interest such as daily cases, hospitalizations, and

deaths. The objective of this work is to provide a systematic way to model a pandemic accu-

rately through carefully formulating a suitable model, uniquely identifying the model parame-

ters, and projecting outbreaks under uncertainties based on the different epidemiological data

available. To address the above fundamental question, we propose a general integrated frame-

work to approach the problem systematically through identifiability analysis, sensitivity analy-

sis, model robustness analysis, and projection under uncertainties.

Numerous modeling approaches have been used to gain insight into epidemic disease’s

ever-evolving dynamics and the effects the interventions have had on containing the spread.

Mathematical modeling is an efficient way to test and evaluate the effectiveness of hypothetical

interventions that cannot be tested out due to practical or ethical limitations. Describing the

disease’s development involves representing a highly complex process affected by social, envi-

ronmental, and biological factors. Compartmental models have traditionally been used to

depict systems that include individuals with different health statuses that change in time. In

particular, mathematical modeling of COVID-19 using compartmental models described by

ordinary differential equations (ODEs) such as susceptible–infectious–recovered (SIR) [1–3],

modified SIR [1, 4–6], susceptible–exposed–infectious–recovered (SEIR) [7–9] and modified

SEIR models [10, 11] has been used extensively in an attempt to capture the virus’ spread.

These types of lumped mechanistic models, unlike data-driven models, can explore future out-

comes of the pandemic and evaluate the effects of various interventions. Compartmental mod-

els are commonly applied in epidemiology as they are simple and easily tractable. However,

their accuracy is constrained by parameter uncertainties and gaps in information about the

disease dynamics. Likewise, assumptions to maintain model simplicity may affect the esti-

mated values. For a long-lasting pandemic, the model parameters change with time; hence the

parameter identification problem becomes nontrivial given the fact that typically a limited

amount of relevant data is available.

In an ODE-based epidemiological model, the system parameters usually contain critical

information that often cannot be measured directly, such as the transmission rate, which

needs to be inferred from data. A necessary condition for the well-posedness of a parameter

estimation problem in ODE theory is the model’s structural identifiability if we assume noise-

free data. The structural identifiability analysis can be performed without any experimental

data; it addresses whether the parameter estimation problem is well-posed under ideal condi-

tions. Should the postulated model not be structurally identifiable, the parameters obtained

will be unreliable. However, a model can be structurally identifiable (a necessary condition)

but may not be practically identifiable. Thus, the structural identifiability analysis may con-

clude that a model’s parameters are uniquely determined, yet when real-life, noisy data are

used, the estimated parameter values could still be unreliable. To conduct the practical iden-

tifiability analysis, we compute the correlation matrices of model parameters in different set-

tings using Fisher Information Matrices (FIMs) following lines of approach in [12, 13].

Non-identifiability is a problem frequently encountered in pandemics modeling since, typi-

cally, not every state variable is available. In recent literature, model identifiability issues have

been studied due to the wide variation in model projections in the context of the COVID-19

pandemic [2, 14–16]. Tuncer et al. analyzed the structural and practical identifiability of some

of the most widely-used pandemic models, including SIR, SIR with treatment, and SEIR,

assuming only one observed data type is available using simulated data [17]. Roda et al.
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extended these ideas by studying SIR and SEIR models’ practical identifiability using data

from the COVID-19 outbreak in Wuhan, using only the counts of infected individuals as the

available data [2]. They found that complex mechanistic models are more likely to have iden-

tifiability issues compared to simpler models. Massoni et al. provided a systematical structural

identifiability and observability analysis of 255 available compartmental models for COVID-

19 and found that approximately one-third of them have structurally non-identifiable parame-

ters [14]. Therefore, an identifiability test should be conducted as a sanity check when a new

ODE-based mechanistic model is proposed, to ensure trustworthy parameter estimation.

Furthermore, precise estimates of parameters allow us to determine an epidemiologically

relevant value called the basic reproduction number, R0. The basic reproduction number is

defined as the average number of infections caused by one infected individual in an entirely

susceptible population when disease control is absent, and it determines whether an outbreak

will occur.

Still, uncertainty about parameter values could be relatively high at the beginning of an out-

break even if identifiability is guaranteed. Therefore, determining the response of a model’s

output to parameter variation helps identify sources of uncertainty. Sensitivity analysis studies

how the uncertainty in the model’s output can be allocated to different inputs’ uncertainty

sources [18]. It allows a better understanding of the model to analyze how the model parame-

ters affect the output.

In the present work, we propose to integrate these steps of identifiability and sensitivity

analysis together with policy change timelines, data availability, and uncertainties in projec-

tion. We apply the proposed general framework to introduce a modified SEIR model, which

we extend to include vaccination, and project the transmission dynamics of COVID-19 in

New York City (NYC) under vaccination and different safety measures relaxation scenarios.

Daily cases, hospitalizations, and deaths in NYC are used to demonstrate the way to employ

the proposed framework for simulating the ongoing COVID-19 pandemic in the city from

early 2020 until February 2021.

COVID-19, which emerged in China in late 2019, has caused an outbreak affecting over

200 countries worldwide and was declared a pandemic on March 11, 2020 [19] by the World

Health Organization. The strategies to control the spread of the virus in 2020 (before a

vaccine was available) were mainly directed towards non-pharmaceutical interventions, such

as isolation of infected individuals, social distancing, and face-mask use. COVID-19 was

detected in a patient in NYC in early 2020 [20, 21]. The high population density and lack of

control measures in the first three weeks produced an exponential increase in cases, which

exceeded 20,000 before the statewide stay-at-home order was put in place on March 22, 2020

[22]. Between March 22, 2020, and June 8, 2020, a host of social distancing measures and non-

essential businesses closings in NYC lowered the incidence from almost 2,000 daily cases in

April to a couple hundred daily cases by June 8, 2020 [23]. The city’s first phase of its four-

phase reopening plan began on June 8, 2020, and the final stage started on July 20, 2020.

The proposed model considers presymptomatic, asymptomatic, hospitalized, isolated, and

deceased individuals. Structural identifiability, practical identifiability, and sensitivity of the

model are studied. Once the parameters that can be reliably estimated are identified, the

parameter estimation portion of the study is broached. Then, the NYC outbreak data (daily

infected, hospitalized, and deceased individuals) are employed to estimate the model parame-

ters to understand how public policy such as isolation, public closings, and other social dis-

tancing measures impact the transmission dynamics. Moreover, confidence intervals are

computed, and the model’s projective capabilities are analyzed by considering the uncertainty

of policies in constant flux. Next, we further investigate model robustness. The main modeling

assumption is that the transmission rate is changing in time, following different policy
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measures, in a piecewise fashion. The vaccination deployment in NYC is incorporated into the

model, and we evaluate the combined effect of vaccination and the gradual reopening process

currently underway.

The novelty of this work is multi-fold:

• We develop a general framework and workflow for building a trustworthy data-driven epi-

demiological model;

• We propose a modified SEIR model with vaccination and validate it with the pandemic data

in New York City (daily cases, hospitalizations, and deaths); every parameter in our model

has physical meaning;

• We systematically study the structural identifiability, practical identifiability, and sensitivity

to examine the relationship between the model dynamics, data, and parameters;

• We treat the transmission rate, hospitalization ratio, and death from hospital ratio as time-

dependent model parameters based on the event-timeline, and calibrate the identifiable

model parameters using simulated annealing and MCMC simulations. We also investigate

model robustness by studying how the model behaves under random perturbations;

• We demonstrate the model’s projective capabilities under uncertainties for different future

scenarios;

• We specifically investigate the effects of indoor dining reopening and vaccination scenarios

as a reference for policymakers.

General framework and workflow

Holmdahl and Buckee, in [24], discussed different types of models for the COVID-19 epi-

demic as well as the distinct challenges in these approaches. The authors highlighted that

“models are a way to formalize what we know about the viral transmission and explore possi-

ble futures of a system that involves nonlinear interactions, something that is almost impossi-

ble to do using intuition alone.” They further elaborate that “models will be useful for

exploring possibilities rather than making strong projections about longer-term disease

dynamics.” Thus, a systematic way of designing an effective data-driven model is essential for

assessing ongoing control strategies endowed with uncertainty quantification.

To systematically design an effective data-driven model, we propose a general framework

for building a trustworthy data-driven epidemiological model, which constructs a workflow to

integrate data acquisition and event timeline, model development, identifiability analysis, sen-

sitivity analysis, model calibration, model robustness analysis, model projection with uncer-

tainties and investigation of reopening scenarios together. Fig 1 gives an overview of the

framework, with details for each stage provided below.

(I). Acquire data and look for major interventions or events that could affect the transmis-

sion dynamics of the epidemic.

(II). Develop an epidemiological model that accommodates the data and events in (I). The

intervention events can be encoded through time-dependent parameters in the model.

(III). Use both structural and practical identifiability analysis to determine the parameters to

fit. Domain knowledge can also be incorporated in this step to help choose the parame-

ters. If the model is not identifiable but one prefers unique parameters, one should fix

some of the non-identifiable parameters in the model or propose other models. Other-

wise, one can proceed to (IV).
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(IV). Conduct sensitivity analysis to find the most sensitive parameters to each observable.

In cases when an observable is insensitive to a parameter, even if the parameter is non-

identifiable, one can still use the model to calibrate that observable.

(V). Calibrate the most sensitive and identifiable model parameters. Estimate the model

compartments and the reproduction number.

(VI). Check model robustness assuming different types of noise in the data. If the model is

robust to noise, then one can proceed to (VII), otherwise one should go back to (II)

and fix some model parameters or employ other models.

(VII). Project the future development of the epidemic with uncertainties assuming the cur-

rent control measures. Then investigate how policy changes could influence the trans-

mission dynamics of the epidemic.

We evaluate the effectiveness of the proposed framework by applying all the outlined steps

to the outbreak dataset in NYC. One of the advantages of the framework’s generality is that it

is not limited to a single dataset or model. In general, it provides a guideline on how to build

an effective and trustworthy epidemiological model with the available data. For illustration

purposes, we show how our framework can handle different data types by assuming scenarios

when some observables in the NYC dataset are missing. However, for practical use, one should

determine the data that are fed to the model at the very beginning.

(I) Data acquisition and event timeline

We use the data consisting of daily cases, hospitalizations, and deaths between February 29,

2020, and February 4, 2021, to fit the model’s parameters. All the data used in this paper were

extracted from the NYC’s government’s website and collected by the NYC Health Department

Fig 1. A general framework for building a trustworthy data-driven epidemiological model—An overview of the main contribution. In this work,

we propose a general framework for building a trustworthy data-driven epidemiological model, which constructs a workflow to integrate data

acquisition and event timeline, model development, identifiability analysis, sensitivity analysis, model calibration, model robustness analysis, and

projection with uncertainties and scenarios. We first introduce a modified SEIR model that accommodates the pandemic data in New York City.

Secondly, we study the structural identifiability, practical identifiability, and sensitivity to examine the relationship between the model’s data and

parameters. We then calibrate the identifiable model parameters using simulated annealing and MCMC simulation. Model robustness is then checked

to study how the model behaves under random perturbations. In addition, we demonstrate the model’s projective capabilities with uncertainties.

Finally, reopening scenarios are investigated as a reference for policymakers.

https://doi.org/10.1371/journal.pcbi.1009334.g001
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[23]. Hospitalization data were collected from several sources, such as NYC public hospitals,

non-public hospitals, and the Health Department’s syndromic surveillance database, which

track hospital admissions across NYC. The data on the NYC online repository [23] are pub-

lished by the date of the event, rather than the date of the report. A person is classified as a

confirmed COVID-19 case when they test positive in a molecular test (PCR). A deceased indi-

vidual is classified as a disease-related death if they had a positive PCR test for the virus within

the last 60 days.

Since the first case of COVID-19 was reported in NYC on February 29, 2020, local authori-

ties have implemented several non-pharmaceutical interventions, such as social distancing and

mask-wearing [22, 23]. These restrictions were later relaxed as the incidence decreased. Any

control measures implemented would have an impact on the transmission term β. Thus, we

identified seven time periods defined based on the interventions implemented (also see Fig 2):

• Stage 1 (no control): February 29, 2020–March 22, 2020

The New York State governor declared a state of emergency on March 7, 2020, after 89 posi-

tive cases were identified [25]. However, most businesses operated as usual until March 14,

Fig 2. COVID-19 epidemic in New York City: Data and event timeline. (a) Daily confirmed cases (February 29, 2020–February 4, 2021). A person is

classified as a confirmed COVID-19 case when they test positive in a molecular test (PCR). We split the data into seven time periods based on

interventions implemented. The starting times of interventions are shown on the top of each subfigure. (b) Daily hospitalized population (February 29,

2020–February 4, 2021). (c) Daily deceased population. (February 29, 2020–February 4, 2021). A deceased individual is classified as a disease-related

death if they had a positive PCR test for the virus within the last 60 days. (d) Daily vaccinated population. (December 14, 2020–February 4, 2021).

https://doi.org/10.1371/journal.pcbi.1009334.g002
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2020, when some public libraries closed. Nightclubs, theaters, and concert venues followed

suit on March 17, 2020.

• Stage 2 (stay-at-home order): March 22, 2020–April 17, 2020

A stay-at-home order (also known as PAUSE) issued by the New York State’s governor’s

office went into effect on March 22, 2020. The PAUSE plan comprised a 10-point policy that

mandated all non-essential businesses statewide to close, cancel gatherings of any size, and

businesses that provide essential services must facilitate social distancing of at least six feet,

among others. Schools and universities closed and moved to remote instruction.

• Stage 3 (mask mandate): April 17, 2020–June 8, 2020

New York State was one of the first states to issue orders mandating face coverings in public

spaces [26]. This decision followed the Centers for Disease Control and Prevention (CDC)

guidelines, which encouraged people to wear masks to prevent transmission of the virus

through droplets generated when an infected person coughs or sneezes [27].

• Stage 4 (four-phase reopening): June 8, 2020–September 30, 2020

The stay-at-home order was effective in bringing down the disease’s incidence. As a result,

a four-phase reopening plan was developed, taking into account seven health metrics the

city needed to meet before reopening [28]. NYC entered Phase 1 of reopening on June 8,

Phase 2 on June 22, Phase 3 on July 6, and Phase 4 on July 20. Each phase had specific poli-

cies that determined what businesses could reopen and in what capacity. Industries that

posed the lowest risk of infection for employees and customers were allowed to reopen in

Phase 1. These included but were not limited to construction, manufacturing, and whole-

sale supply-chain businesses and retailers for curbside pickup, in-store pickup, or drop-off

[29]. Phase 2 allowed offices, places of worship (25% capacity), finance and insurance,

administrative support, among others, to reopen if they follow established social distanc-

ing guidelines [30]. In Phase 3, some personal services were allowed to reopen; indoor din-

ing was not allowed in NYC, even though this phase allowed other areas of the state to

enable indoor dining at a reduced capacity. NYC entered reopening Phase 4 on July 20.

Restrictions regarding group gatherings were eased, and meetings of up to 50 people were

allowed. Indoor religious meetings were allowed to resume at 33% capacity. Malls, zoos,

and botanical gardens were also permitted to reopen in this phase. NYC stayed at Phase 4

until September 30, 2020, when indoor dining at 25% capacity was allowed.

• Stage 5 (indoor dining reopens at reduced capacity): September 30, 2020–December 14,

2020

The careful reopening process, which followed the strict stay-at-home order, maintained a

low infection rate in the city (below 1%) [31]. NYC resumed indoor dining services at 25%

capacity on September 30, 2020, intending to double the capacity if infection rates remained

low. Restaurants were required to follow an extensive set of rules upon reopening, such as

temperature checks, contact tracing reporting, mask usage except when seated, and a mid-

night curfew.

• Stage 6 (indoor dining closes and vaccination begins): December 14, 2020–January 6,

2021

In December 2020, the increasing rate of virus transmission in NYC threatened to over-

whelm hospital capacity. Although contact tracing data from NYC placed indoor dining

as the fifth source of new infections in the state, the CDC designated indoor dining as a

“high risk” activity [32]. The governor’s decision to ban indoor dining was an attempt to halt

the steep increase in cases and avoid a broader shutdown. In the same week when the
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governor’s office closed indoor dining again, the first coronavirus vaccine was administered

in Queens on December 14, 2020 [33].

• Stage 7 (Christmas and New Year holiday ends): January 6, 2021–February 14, 2021

The increased social activities during Christmas and New Year celebrations had a signifi-

cant impact on the outbreak’s spread. This final period is defined by an event, the end of

the holidays, and restaurants’ reopening in limited capacity announced for February 14,

2021.

Two shipments from drug companies Pfizer and Moderna aim to cover a quarter of the

estimated 1.8 million people deemed high priority to receive the vaccine in the first phase

of distribution in the state. However, even though vaccination started on December 14,

2020, people vaccinated do not develop immunity to the virus immediately. The Pfizer

vaccine’s first dose needs about 14 days to be 52% effective. The second dose should be

administered three weeks after the first dose. The reported effectiveness of the Pfizer vac-

cine is 95%, while Moderna reports 94.1% when two doses are received [34, 35]. It is worth

noting that if a person only receives one dose, its effectiveness varies depending on the

company that produced the vaccine. For example, the Pfizer-BioNTech vaccine is roughly

52% effective after the first dose, while the Moderna vaccine can provide 80.2% protection

after one dose [34]. At–risk groups, such as older people in nursing homes and public

health professionals, are prioritized for vaccination in NYC in this first phase. We use data

reported by NYC Health, extracted from the Citywide Immunization Registry (CIR). The

data include the daily numbers of individuals who have received the first and second dose

[33]; see Fig 2.

(II) Epidemiological model development

Classic SIR and SEIR models do not include the exposed and presymptomatic periods,

which play an important role in this particular disease. Recent studies have revealed the role

of asymptomatic [39–42] and presymptomatic individuals [43–45] in the disease’s transmis-

sion chain. Additionally, due to CDC recommendations, infected individuals are required

to self-isolate once they test positive for ten days [27]. We put these individuals in the iso-

lated compartment of our model. Therefore, to account for the complete epidemiological

characteristics of a COVID-19 infection, in this model we modify an SEIR model to include

presymptomatic, asymptomatic, hospitalized, isolated, and deceased compartments; see

Fig 3.

These modifications allow a more accurate description of the biology of the disease. Since

this study focuses on a single outbreak, births and other deaths are not considered. When the

epidemic begins, all individuals are susceptible and transit to the exposed class via contact with

presymptomatic, symptomatic, or asymptomatic individuals. Moreover, we assume that there

is no reinfection. In other words, once an individual recovers, they do not become susceptible

again. In addition, we do not include disease transmission from hospitalized individuals. We

divide the total population into nine different compartments: susceptible (S), exposed (E), pre-

symptomatic infected (P), symptomatic infected (I), asymptomatic infected (A), hospitalized

(H), isolated (Q), deceased (D), and recovered (R). The contribution to the transmission of

COVID-19 from asymptomatic individuals (A) relative to the transmission from symptomatic

individuals (I) is labeled as �. Therefore, if � = 0.75, this means that an asymptomatic individual

is 75% as infectious as a symptomatic individual. Similar to [37], we assume that presymptom-

atic individuals (P) are just as infectious as asymptomatic individuals (A). The transmission

rate of the disease is denoted by β. After a latent period (1/dE), an exposed individual becomes
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presymptomatic infectious. A presymptomatic infectious individual develops symptoms with

probability δ or is asymptomatic with probability (1 − δ) after (1/dP) days. Asymptomatic indi-

viduals recover after an infective period of (1/dA). A proportion p of symptomatic individuals

are hospitalized after an infective period of (1/dI), while the rest of them are isolated (for exam-

ple, isolated at home) but do not go to the hospital. The isolation period is (1/dQ). The hospital-

ization period is (1/dH), at the end of which, a proportion q of the hospitalized individuals die

while the rest of them recover. Asymptomatic cases pose a challenge to identify since there is

no widespread systematic testing of the population [39]. Thus, there is a wide range of esti-

mates for the proportion of symptomatic individuals δ. In this study, we use the best estimate

of δ provided by the CDC [36].

Moreover, the proposed model has considered the vaccination deployment in NYC and

the impact on the city’s daily cases, hospitalizations, and deaths. A susceptible individual

Fig 3. Transition diagram between epidemiological classes. We modify the classic SEIR model to include presymptomatic (P), asymptomatic (A),

hospitalized (H), isolated (Q), and deceased (D) individuals. The given data are the inflows of symptomatic (I), hospitalized (H), and deceased (D)

individuals. The parameters to estimate are (β, p, q). See Table 1 for the notations and the initial values. See Table 2 for the parameters. See Eq (1) for the

corresponding ODE system.

https://doi.org/10.1371/journal.pcbi.1009334.g003

Table 1. Notations and initial values for the model in Fig 3.

Notation Meaning Initial value Note

N Total population 8399000 We assume constant total population in NYC

S Susceptible 8398713 S(0) = N − E(0) − P(0) − I(0) − A(0) − H(0) − Q(0) − D(0) − R(0)

E Exposed 270 E(0) = E�/δ, where E� is the number of cases from day (2/dP + 1) to day (2/dP + 2/dE) (Mar 6–10, 2020)

P Presymptomatic 15 P(0) = P�/δ, where P� is the number of cases from day 1 to day 2/dP (Mar 1–5, 2020)

I Symptomatic 1 I(0) = 1 from data

A Asymptomatic 1 A(0) = I(0) × (1 − δ)/δ � 1

H Hospitalized 0 H(0) = 0 from data

Q Isolated 0 Q(0) = 0

D Deceased 0 D(0) = 0 from data

R Recovered 0 R(0) = 0

Isum Cumulative cases 1 Isum(0) = 1 from data

Hsum Cumulative hospitalizations 0 Hsum(0) = 0 from data

Dsum Cumulative deaths 0 Dsum(0) = 0 from data

https://doi.org/10.1371/journal.pcbi.1009334.t001
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leaves the (S) class and joins the recovered individuals (R) once they are effectively vacci-

nated, i.e., they are vaccinated and the vaccine prevents them from getting the disease in the

future. To calculate the number of effectively vaccinated individuals that takes into account

the vaccine efficacy, we use a weighted sum of the number of the first doses and second

doses administered. See Fig 3, where v is defined as the daily number of effectively vacci-

nated individuals.

The ODE system for our model (see Fig 3) is the following:

dS
dt
¼ � b

I þ �Aþ �P
N

S �
v
N
S

dE
dt
¼ b

I þ �Aþ �P
N

S � dEE

dP
dt
¼ dEE � dPP

dI
dt
¼ ddPP � dII

dA
dt

¼ ð1 � dÞdPP � dAA

dH
dt

¼ pdII � dHH

dQ
dt

¼ ð1 � pÞdII � dQQ

dD
dt

¼ qdHH

dR
dt
¼ dAAþ ð1 � qÞdHH þ dQQþ

v
N
S:

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð1Þ

Note that the compartments (I, H, D) represent the current symptomatic individuals, hospi-

talizations, and deaths. In order to represent the daily cases Inew, hospitalizations Hnew, and

deaths Dnew, we add the following ODEs that take into account the inflow of the these

Table 2. Parameters for the model in Fig 3.

Parameter Meaning Calibration Range/Value Note

β Transmission rate fitted [0, 1] Fitted within wide range

p Hospitalization ratio fitted [0, 1] By definition

q Death from hospital ratio fitted [0, 1] By definition

� Infectivity ratio of asymptomatic to symptomatic fixed 0.75 Ref. [36]

δ Proportion of symptomatic individuals fixed 0.6 Ref. [36]

1/dE Latent period fixed 2.9 days Ref. [37]

1/dP Mean infectious period of P class fixed 2.3 days Ref. [37]

1/dI Mean infectious period of I class fixed 2.9 days Ref. [37]

1/dA Mean infectious period of A class fixed 7 days Ref. [38]

1/dH Mean duration of H class fixed 6.9 days Ref. [36]

1/dQ Mean duration of Q class fixed 10 days Ref. [27]

https://doi.org/10.1371/journal.pcbi.1009334.t002
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compartments to record the cumulative cases Isum, hospitalizations Hsum, and deaths Dsum:

dIsum
dt

¼ ddPP

dHsum

dt
¼ pdII

dDsum

dt
¼ qdHH:

8
>>>>>>>><

>>>>>>>>:

ð2Þ

Now, the daily numbers are just the increments of the cumulative numbers:

InewðtÞ ¼ IsumðtÞ � Isumðt � 1Þ

HnewðtÞ ¼ HsumðtÞ � Hsumðt � 1Þ

DnewðtÞ ¼ DsumðtÞ � Dsumðt � 1Þ

8
>>><

>>>:

ð3Þ

for t = 1, 2, 3, � � �.

Time-dependent model parameters (piecewise constant β, p, and q)

The transmission rate of a disease, β, is the per capita rate of infection when a contact occurs.

Directly measuring the transmission rate is not possible for most infections [46]. Nevertheless,

if we want to quantify the effects of public health policies that directly impact the transmission

rate, estimating this value accurately is critical. Moreover, public health policy and the discov-

ery of better therapies and treatments affect other parameters besides the disease’s transmis-

sion rate. Notably, the percentage of disease-related deaths changes over the course of the

outbreak [47]. Similarly, the hospitalization ratio varies due to increased resources channeled

to the healthcare system in the city [23, 48]. Control measures implemented in NYC and the

subsequent relaxation of restrictions impact the incidence curve in different ways—most of

them non-linear. Therefore, defining the transmission rate β(t) as a piecewise constant func-

tion is a simplification that allows us to estimate the impact each policy has in each stage. Simi-

larly, we define the piecewise constant hospitalization ratio p(t) and death from hospital ratio q
(t), which also exhibit varying values over time:

bðtÞ; pðtÞ; qðtÞ ¼

b1; p1; q1 t 2 Stage 1

b2; p2; q2 t 2 Stage 2

b3; p3; q3 t 2 Stage 3

b4; p4; q4 t 2 Stage 4

b5; p5; q5 t 2 Stage 5

b6; p6; q6 t 2 Stage 6

b7; p7; q7 t 2 Stage 7:

8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

ð4Þ

We fit the parameters in each stage defined by policy changes, such as the stay-at-home

order and the subsequent reopening processes; see Fig 2.

Reproduction number

The basic (control) reproduction number, denoted by R0 (Rc), is the average number of sec-

ondary infections caused by one infected individual in an entirely susceptible well-mixed
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population in the absence (presence) of disease control. The control reproduction number of

the model is:

Rc ¼ b
�

dP
þ
d

dI
þ
ð1 � dÞ�

dA

� �

: ð5Þ

In this particular study, given that the model parameters are defined in a piecewise fashion

and there was no control in Stage 1, the basic reproduction number, R0, is computed by using

β = β1.

The transmission of the disease slows down when there are more immune individuals.

Since Rc is the number in an entirely susceptible population, we can calculate the effective

reproduction number:

Re ¼ Rc �
S
N
: ð6Þ

By setting Re ¼ 1, we obtain the immunity threshold of the ODE system, which is the criti-

cal portion of the population needed to be immune to stop the transmission of the disease:

IT ¼ 1 �
1

Rc
: ð7Þ

The herd immunity threshold (HIT) is calculated by substituting Rc with R0. A higher R0

results in a higher HIT.

(III) Identifiability analysis

In this section we address whether a set of unknown parameters in the proposed model is glob-

ally identifiable from the available data. Fitting a model to the data is not sufficient to show

how reliable the estimated parameters are. Insufficient or noisy data can produce drastically

different sets of parameters without affecting the fit to data if a model is non-identifiable

[2]. Furthermore, depending on the available data (observables), different models may be

appropriate.

Formally speaking, a parameter in a dynamical system is considered to be identifiable if the

solutions can uniquely determine it. Two different types of identifiability, namely structural

and practical identifiability are considered in this paper. Structural identifiability analysis stud-

ies the uniqueness of parameter values from the perspective of the structure of the equations

and is normally conducted before the fitting of the model, thus commonly referred to as a pri-

ori identifiability. Global (structural) identifiability provides conclusions about a parameter’s

identifiability in the entire parameter space [49–52]. In particular, it guarantees the opportu-

nity of uniquely identifying the model parameters from the data [49–51, 53]. In some cases,

however, local structural identifiability may be sufficient, and hence the range of values of the

parameter to be identified should be limited. On the other hand, practical identifiability analy-

sis mainly addresses the issue of nonuniqueness when fitting the model on the discrete data

points, i.e., a posteriori. Structural identifiability does not imply practical identifiability

because of the amount and quality of the data. A detailed explanation of these two types of

identifiability can be found in S4 Text. We use the open-source software SIAN [54] and Gen-

SSI2.0 [55] for structural identifiability and use correlation matrix calculated from Fisher

Information Matrix (FIM) for practical identifiability. Details of the implementation can also

be found in the Supporting information.

In our framework, we analyze both structural and practical identifiability, and use the

results as guidelines for parameter selection. The importance of performing both types of
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analysis resides in the fact that structural identifiability itself does not guarantee the goodness-

of-fit of the model. It turns out that in our case, fitting all structural identifiable parameters

would lead to practically non-identifiable results.

Structural identifiability

There are 11 undetermined parameters in the proposed model, and it is impossible to fit every

parameter without fixing some of the values. For example, it is unnecessary to fit biologically

determined parameters such as the time an individual spends in the exposed or infected clas-

ses. Since dE, dP, dI, dA, dH, and dQ are determined by the biology of the disease, we fix these

values according to [37]. The initial conditions of all state variables are fixed as in Table 1.

We analyze the structural identifiability of the rest of the parameters when different types of

data are given. Note that for general use of our modeling framework, one should fix the dataset

at Step (I). Here we consider all the scenarios just for illustration purpose. Specifically, we

assume that the data are given as the cumulative cases Isum, cumulative hospitalizations Hsum,

and cumulative deaths Dsum, or a subset of the three aforementioned observables, because

these quantities can be calculated directly from daily quantities Inew, Hnew, and Dnew. In other

words, it is equivalent to assume Xnew or Xsum to be given as one of the observables, where X
can be I, H, and D. The effectively vaccinated population v is treated as an input variable to the

system. According to Table 3, when Hsum or Dsum is not available, the model is not identifiable

and the fitting result will not be unique. The results are to be interpreted in the following way.

In the case of lacking deceased individual counts, the death from hospital ratio q cannot be

inferred accurately. If the hospitalization data are not available, neither the hospitalization

ratio p nor the death from hospital ratio q may be inferred accurately.

The analysis above shows that it is hard to draw conclusions about the fitting correctness of

transmission rate, proportion of isolated individuals, and proportion of disease-related deaths

when Hsum or Dsum is missing. One of the main differences between the proposed model and

most other existing SEIR-based models is that our model integrates information of infectious,

hospitalized, and deceased populations simultaneously, therefore producing more reliable

results on these estimated parameter values. Since we have data for all three observables in

NYC, we should utilize all of them.

In practice, hospitalization data could be reported in different ways; some databases provide

daily reports of the number of hospitalized individuals, whereas others register the number of

currently hospitalized individuals. Regardless of the data type available, structurally identifia-

bility of the model remains the same according to S2 Table.

Practical identifiability

We then proceed with fitting 5 undetermined parameters using all the available data, i.e., Isum,

Hsum, and Dsum. The model-fitting techniques, including the loss function and optimization

method, are detailed in the next section. The fitted parameter values can be found in Table 4.

Table 3. Structural identifiability of β, p, q, �, δ with different observables. Global/not means structurally globally/not identifiable, respectively. We fix all the rest of the

parameters as in Table 2. We fix the initial condition of each state variable as in Table 1.

Parameter Isum, Hsum, Dsum Isum, Hsum Isum, Dsum Hsum, Dsum Isum Hsum Dsum

β global global global global global global global

p global global not global not global not

q global not not global not not not

� global global global global global global global

δ global global global global global global global

https://doi.org/10.1371/journal.pcbi.1009334.t003
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We see that the values of � and δ vary a lot among different stages, which is inconsistent with

the reality. This poses a question on the practical identifiability of the model.

There are two approaches commonly applied to determine the practical identifiability of

ODE models, namely Monte Carlo methods and Fisher information matrix (FIM) based meth-

ods, with details given in S4 Text. Monte Carlo methods are computationally heavy and could

produce unreliable results when the number of undetermined parameters is large. On the

other hand, it is easier to use FIM computationally, even in high dimensions. Thus, we suggest

to apply FIM-based methods first to determine a set of parameters that are not practically iden-

tifiable and fix them (or only use the identifiable combinations). Once these parameters are

fixed, one can then apply the Monte Carlo methods to check whether the rest of the parameters

are identifiable or not. To distinguish those two approaches, we refer to Monte Carlo methods

for determining practical identifiability as model robustness analysis, which is detailed in (VI).

The calculation of FIM and the correlation matrices is given in S4 Text.

As shown in Fig 4(b), there is a strong correlation between �, δ, and β, while either p or q is

uncorrelated with the rest of the parameters. The same phenomenon is observed when we

Table 4. Practical identifiability and estimation of parameters when fixing dE, dP, dI, dA, dH, dQ. The symbol✔/✘means practically identifiable/not identifiable, respec-

tively. The fitted values will not be counted towards our final result because the model is not identifiable in this case.

Parameter Identifiable Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6 Stage 7

β ✘ 0.64 0.25 0.32 0.19 0.59 0.20 0.43

p ✔ 0.38 0.31 0.15 0.12 0.08 0.08 0.08

q ✔ 0.14 0.38 0.35 0.22 0.13 0.16 0.19

� ✘ 1.00 0.42 0.05 0.76 0.00 1.00 0.00

δ ✘ 1.00 0.95 0.68 0.62 0.77 0.64 0.78

https://doi.org/10.1371/journal.pcbi.1009334.t004

Fig 4. The procedure of choosing parameters to fit. (a) The procedure of determining parameters to fit. We fix dE, dP, dI, dA, dH, dQ because they are

biologically determined, and then fix �, δ due to the result from the correlation matrix analysis. (b) The correlation matrix of five parameters. Each

colored off-diagonal cell represents the correlation between two parameters. Green means (almost) not statistically correlated while yellow/purple

represents positively/negatively correlated, respectively.

https://doi.org/10.1371/journal.pcbi.1009334.g004
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calculate the correlation matrix based on the parameters obtained in other stages; see S2 Fig.

This indicates that �, δ, and β are not practically identifiable. Two of them need to be fixed,

while the rest and p, q can be fitted. In this paper, we fix �, δ and fit β, p, q for the following rea-

son: β, which represents the transmission rate, is highly affected by local government policy

and does not have a stable and universal value compared to � and δ. This means that the value

of β could be very different across different datasets and is hard to determine a priori. There-

fore, we fix � and δ according to [36]. After that, the model becomes practically identifiable as

shown in S3 Fig. A summary of the reasoning is shown in Fig 4(a). FIM is known to have limi-

tations when their asymptotic assumptions are not satisfied, and they have limited ability to

capture nonlinear dynamics. However, we observe that the fitted values of p and q in Table 4

are close to the results in Table 5 (when � and δ are fixed), while the results for β are different.

This indicates that FIM gives the correct result.

(IV) Sensitivity analysis

Variance-based sensitivity analysis, also called Sobol sensitivity analysis, is a global method

that measures sensitivity across the whole input space. It decomposes the model’s output vari-

ance into fractions that can be attributed to individual inputs or groups of inputs [18]. Suppose

we are given a black box model:

y ¼ f ðYÞ; ð8Þ

where y 2 R is the output and Θ = [θ1, θ2, � � �, θk]2[0, 1]k are independent and uniformly dis-

tributed uncertain inputs. If some components of Θ are not within [0, 1], we may transform Θ
into the unit hypercube.

First-order sensitivity index measures the contribution to the output variance by a single

input θi alone:

SiðyÞ ¼
VaryiðEY�iðyjyiÞÞ

VarðyÞ
; ð9Þ

where Θ�i = [θ1, � � �, θi−1, θi+1, � � �, θk]. Total-order sensitivity index measures the contribution

to the output variance by an input, including its first-order effect and all higher-order interac-

tions with other inputs:

STiðyÞ ¼ 1 �
VarY�iðExi

ðyjY�iÞÞ
VarðyÞ

: ð10Þ

Note that

STiðyÞ � SiðyÞ ð11Þ

Table 5. Estimation of parameters, control reproduction number, and immunity threshold. The transmission rate β and the control reproduction number Rc change

between different stages, indicating that local government policies in New York City and public holidays have a strong impact on the transmission dynamics of the

pandemic.

Meaning Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6 Stage 7

β Transmission rate 0.82 0.17 0.11 0.19 0.24 0.22 0.19

p Hospitalization ratio 0.41 0.30 0.13 0.12 0.08 0.08 0.09

q Death from hospital ratio 0.15 0.37 0.35 0.22 0.13 0.16 0.19

Rc Control reproduction number 4.55 0.97 0.60 1.07 1.35 1.24 1.06

IT Immunity threshold 78.0% 0.0% 0.0% 6.4% 26.2% 19.3% 5.8%

https://doi.org/10.1371/journal.pcbi.1009334.t005
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by definition, and

Xk

i¼1

STiðyÞ � 1 ð12Þ

since the interaction between θi and θj is counted in both STi(y) and STj(y).

Sensitivity analysis does not rely on any data. Instead, it analyzes the dependence relation-

ship between the outputs and the inputs of a given model from the level of parametric equa-

tions when a specific initial condition to the system is given. Regarding the model in Fig 3, the

cumulative infectious population Isum in each stage of the pandemic is a function of the param-

eters β, p, and q (they are assumed constant during each period). So are the cumulative hospi-

talized population Hsum and the cumulative death population Dsum. Using Sobol’s method, we

obtain the first-order sensitivity and total-order sensitivity of each model output of interest

(Isum, Hsum, Dsum) with respect to each parameter (β, p, q). The ranges for β, p, and q are [0, 1].

For each model output, 8000 samples are generated using Saltelli’s sampling scheme. The

results are plotted in Fig 5. We can see that the cumulative cases Isum does not depend on p or

q. For the cumulative hospitalizations Hsum, β is the most important parameter while q does

not have any impact. For the cumulative deaths Dsum, β is the most influential parameter as

well. The qualitative relationship between the scale of sensitivity indices for different parame-

ters is the same across all stages.

In the proposed model, the parameter β is the most important parameter for the projec-

tion of all Isum, Hsum, and Dsum. Since p and q do not contribute to Isum, our model may proj-

ect Isum even if p and q were inaccurate. Similarly, our model may project Hsum even if q were

inaccurate.

Fig 5. Sensitivity of each quantity of interest (Isum, Hsum,Dsum) with respect to each parameter (β, p, q). The parameter β is the most important

parameter for all three quantities of interest in every stage of the pandemic. The parameter p has no influence on Isum. The parameter q has no influence

on Isum or Hsum.

https://doi.org/10.1371/journal.pcbi.1009334.g005
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(V) Model calibration

Estimation of the number of effective vaccinations

The vaccination data of COVID-19 in NYC are given in the form of the number of first and

second doses administered from December 14, 2020 to February 4, 2021 (see Fig 2). We choose

the Pfizer vaccine as a representative vaccine since it is the most commonly administered vac-

cine in the United States [56]. We use the parameters for the vaccine efficacy in the model

from Pfizer’s official data. The vaccine efficacy is 52% for only one dose and 95% for both

doses [34]. As the vaccines are not 100% effective, in order to calculate the number of effec-

tively vaccinated individuals that takes into account the vaccine efficacy, we use a weighted

sum of the number of the first doses and second doses administered:

Effectively vaccinated individuals per day ¼ 0:52D1 þ ð0:95 � 0:52ÞD2

¼ 0:52ðD1 � D2Þ þ 0:95D2;
ð13Þ

where D1 is the number of individuals who receive the first dose and D2 is the number of indi-

viduals who receive the second dose on that day. As the vaccines provide immunity 14 days

after they are received, we remove the effectively vaccinated individuals from the susceptible

(S) class and join them to the recovered (R) class 14 days after they have received the vaccines.

To simplify the study, we approximate and project the number of daily effective vaccinations

linearly with a cap of 20, 000 per day, which corresponds to a maximum capacity of about 40,

000 total doses per day; see Fig 6. This approximated and projected number is used as the

time-dependent parameter v in our model (see Fig 3). Before any vaccine is effective, we have

v� 0.

Parameter estimation via simulated annealing

The data of daily cases, hospitalizations, and deaths of COVID-19 in NYC from February 29,

2020 to February 4, 2021 are given in Fig 2. We assume a constant population size of 8.399 mil-

lion people in NYC and do not consider migration. Using the data with the model in Fig 3, ini-

tial values in Table 1, and parameters in Table 2, we fit the transmission rate β, hospitalization

ratio p, and death from hospital ratio q within the range [0, 1]. The fitting is split into seven

stages defined by the public policies described in Fig 2. In each stage, the parameters (β, p, q)

are assumed to be constant as in Eq (4). We use simulated annealing, a global optimization

algorithm, to search for the optimal parameter values in each stage. The objective is to mini-

mize the following loss function:

Loss ¼
MSEðInewÞ þMSEðHnewÞ þMSEðDnewÞ

3
ð14Þ

in the region β, p, q 2 [0, 1], where “MSE” stands for mean squared error. The estimated final

value in the previous stage is the initial value for the next stage. The results of all compartments

are plotted in Figs 6 and 7. The time-dependent parameters (β, p, q) and the control reproduc-

tion number Rc are shown in Fig 8, Tables 5 and 6.

The control reproduction number Rc, whose expression is in Eq (5), depends on six param-

eters: β, �, δ, dP, dI, and dA. Since �, δ, dP, dI, and dA are fixed as in Table 2, Rc is proportional

to the transmission rate β; see Fig 8. We plot the evolution of Rc over time and overlay the

scaled daily cases to demonstrate how the number of daily cases and Rc (or β) are related to

each other. Before any closures took place on March 22, 2020, we had a high Rc with exponen-

tial growth of daily cases. Once the strict control measures were rolled out, Rc was consider-

ably reduced below 1 along with a decline of daily cases. During the reopening Phases 1–4, Rc
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rose to around 1 with a stabilized number of daily cases. When indoor dining was reopened on

September 30, 2020, Rc rose to above 1 with another wave of daily cases. After indoor dining

was closed again on December 14, 2020, Rc decreased. After the end of holidays, Rc further

decreased.

Bayesian posterior simulation via MCMC

We use the loss function Eq (14) as the negative log-likelihood of the posterior distribution of

the parameters (β, p, q). We assume that each parameter’s prior distribution is independent

and uniformly distributed in [0, 1]. Using Markov chain Monte Carlo (MCMC) simulation,

we may simulate the posterior distribution of each parameter associated with our approach. As

before, the simulation is done within each stage where (β, p, q) are assumed to be constant. In

each stage, four chains of 1000 samples are drawn with 200 burn-in samples in every chain.

We initialize the chains at the estimation given by simulated annealing to speed up the algo-

rithm; see S5–S11 Figs for the posterior distributions and the sampling processes. We can see

that the chains are well-mixed, which implies the convergence of the sampling. The narrow

posterior distributions indicate that our numerical algorithm is robust, the quantity of data is

Fig 6. Estimation of daily cases, hospitalizations, deaths, and vaccinations in New York City. (a) Estimation of daily cases. (b) Estimation of daily

hospitalizations. (c) Estimation of daily deaths. (d) We calculate the number of effective vaccinations as a weighted sum of the number of first and

second doses administered as shown in Fig 2; we approximate the daily number of effective vaccinations linearly and assume it grows linearly until it

reaches the maximum capacity of 20,000 per day.

https://doi.org/10.1371/journal.pcbi.1009334.g006
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sufficient for our approach of minimizing the loss function (14), and the parameters are indeed

close to constant in every stage. As a result, the parameter estimation is reliable.

(VI) Model robustness analysis

Using the fitted parameter values in Table 5, we perform the Monte Carlo simulation to check

the robustness of our model to perturbations, adapting ideas from [17, 57]. The model robust-

ness analysis is another form of practical identifiablity analysis, which can be seen as a comple-

ment to the FIM-based approaches. The computational cost of this method is high due to its

Monte Carlo nature. However, it is necessary because FIM-based methods are known to have

limitations, as discussed in (III).

We first multiply the daily increase in the calibrated data (a subset of {Isum, Hsum, Dsum}) by

independent and identically distributed Gaussian random noise of mean 1 and standard devia-

tion σ to generate a new dataset, which looks like our original dataset with measurement error.

Then, we estimate the parameters by fitting the model to the artificially generated dataset and

compare the result with the parameter values obtained in Table 5. The same procedure is

repeated for M = 1000 times, and we compute the average error between the parameter values

estimated from the original and the generated datasets. The quantity we obtained is named

Fig 7. Estimation of the unobserved dynamics in all the model compartments (S,E, P, I, A, H, Q, D, R). The number of susceptible individuals (S)

drops significantly as the number of cases hikes after December 2020.

https://doi.org/10.1371/journal.pcbi.1009334.g007
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average relative error (ARE):

AREðyiÞ ¼
1

Ms

XM

j¼1

ŷ
ðjÞ
i � yi
yi

�
�
�
�
�

�
�
�
�
�
; ð15Þ

where θi is the fitted value of the ith parameter (i.e., β, p, q) on the original dataset, and ŷ
ðjÞ
i is

the fitted value of the ith parameter on the jth generated dataset.

Fig 8. Estimation of parameters and reproduction numbers. (a) Estimated time-dependent transmission rate β(t). (b) Estimated time-dependent

hospitalization ratio p(t), compared with daily hospitalizations over daily cases calculated from the raw data. (c) Estimated time-dependent death from

hospital ratio q(t), compared with daily deaths over daily hospitalizations calculated from the raw data. (d) Estimated control reproduction number Rc
and effective reproduction number Re calculated by the estimated parameters, compared with 1/2 of the logarithm of daily cases.

https://doi.org/10.1371/journal.pcbi.1009334.g008

Table 6. Percentage changes of parameters and control reproduction number between contiguous stages. The stay-at-home order in Stage 2, mask mandate in Stage 3,

closing of indoor dining and starting of vaccination in Stage 6, and end of the holidays in Stage 7 lead to decreases in the transmission rate β and the reproduction number

Rc. The four-phase reopening in Stage 4 and reopening of indoor dining in Stage 5 lead to increases in β and Rc.

Meaning Stage 1–2 Stage 2–3 Stage 3–4 Stage 4–5 Stage 5–6 Stage 6–7

β Transmission rate −78.7% −38.3% + 78.0% + 26.8% −8.5% −14.4%

p Hospitalization ratio −26.2% −55.9% −10.4% −30.4% −7.0% + 13.9%

q Death from hospital ratio + 150.4% −5.3% −38.2% −41.0% + 26.7% + 18.8%

Rc Control reproduction number −78.7% −38.3% + 78.0% + 26.8% −8.5% −14.4%

https://doi.org/10.1371/journal.pcbi.1009334.t006

PLOS COMPUTATIONAL BIOLOGY An integrated framework for building trustworthy data-driven epidemiological models

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009334 September 8, 2021 20 / 29

https://doi.org/10.1371/journal.pcbi.1009334.g008
https://doi.org/10.1371/journal.pcbi.1009334.t006
https://doi.org/10.1371/journal.pcbi.1009334


When the parameters are piecewise constant and fitted separately, we define the overall

ARE of that parameter to be the largest ARE calculated in every stage. For example, in this

paper, ARE(β) = maxs2{1,� � �,7} ARE(βs). Finally, we define the maximum average relative error

(MARE) of the model to be the largest ARE of all the model parameters:

MARE ¼ max
i2f1;���;kg

AREðyiÞ; ð16Þ

where k is the total number of parameters to be estimated. If MARE < 1, we say the model is

robust to perturbation. The algorithm is detailed in S5 Text.

The first column in Fig 9 shows that when (Isum, Hsum, Dsum) or (Hsum, Dsum) are given, our

model is robust to noise, which justifies the fitting result (since β, p, q are also identifiable) and

provides a theoretical backup for the projection in the next section. The other columns in Fig 9

show that even when Hsum or Dsum is missing, the model would not be robust to perturbation,

which is consistent with the structural identifiability result.

(VII) Projection with uncertainties and scenarios

The situation in NYC evolves day by day. The city reinstated indoor dining restrictions in

mid-December due to the steady increase in the virus incidence. The ever-changing policies

add a high level of uncertainty to any long term projection we can make. Here, we explore our

model’s ability to project the number of daily cases, hospitalizations, and deaths in the city

with uncertainty.

The MCMC simulation provides us with a way to quantify uncertainty. We may sample

from the posterior distribution of the parameters in the last stage (see S11 Fig) and run the

model after that to obtain a distribution of the projected daily cases, hospitalizations, and

deaths. However, this approach assumes that the situation remains the same after the last

stage, which may not be the case. There might be policy changes or other events. As a result,

Fig 9. Average Relative Error (ARE) of (β, p, q) in different observable settings. Each row corresponds to a standard deviation level of random noise

multiplied to the observables. Each column represents an observable setting. When (Isum, Hsum, Dsum) or (Hsum, Dsum) are given, ARE is lower than the

threshold 1. Therefore, our model is robust to noise in the NYC dataset. In the rest of of the missing observable cases, our model would not be robust to

perturbations, which is consistent with the structural identifiability result.

https://doi.org/10.1371/journal.pcbi.1009334.g009
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we perturb the transmission rate β by a percentage to reflect future policy changes or other

events. We sample from the posterior distribution of the parameters (β, p, q) in the last stage.

Then, we multiply β by a random number drawn from a uniform distribution (Uð0:95; 1:05Þ

or Uð0:85; 1:15Þ). In other words, we perturb β by 5% or 15%. As a reference, see Table 6 for

the historical changes of β between contiguous stages. We run the model with the initial value

as the ending value of the last stage to project daily cases, hospitalizations, and deaths. After

repeating 4000 times, we obtain a distribution of the daily cases, hospitalizations, and deaths at

every timestamp after the last stage. Then, the 95% confidence interval at every timestamp is

plotted.

In Fig 10, we consider three different scenarios: no indoor dining, reopening indoor dining

on February 14, and reopening indoor dining on March 14. The uncertainties given by the

perturbed β’s are plotted in each scenario. For indoor dining, we assume it is a 25% reopening,

which is the same as what happened in Stage 5 (September 30, 2020 to December 14, 2020).

Fig 10. Projection of daily cases, hospitalizations, and deaths in New York City with uncertainties and scenarios. Reopening scenarios on February

14 and March 14 are considered. An increase in infectious, hospitalized, and deceased population is expected if the restaurants are reopened in the same

way as Stage 5 (September 30, 2020 to December 14, 2020). Postponing the reopening of restaurants from February 14 to March 14 may reduce the

number of infectious, hospitalized, and deceased individuals. The actual situation might vary depending on the details and implementations of the

actual indoor dining policies that take place in 2021. Remarks: The projections were made and the paper was submitted in February. When updating

the paper in June, we overlaid the new data of daily cases, hospitalizations, and deaths from February to June as the testing data. Indoor dining was

actually reopened on February 14.

https://doi.org/10.1371/journal.pcbi.1009334.g010
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We multiply β by β5/β6 to represent the change of the transmission rate caused by the reopen-

ing of indoor dining. An increase in infectious, hospitalized, and deceased population is

expected if the restaurants are reopened. Postponing the reopening of restaurants from Febru-

ary 14 to March 14 may reduce the number of infectious, hospitalized, and deceased individu-

als. The actual situation might vary depending on the details and implementations of the

actual indoor dining policies that take place in 2021.

Discussion

The COVID-19 epidemic is an unprecedented worldwide public health challenge, especially in

densely populated areas such as New York City (NYC). Epidemiological models can provide

the dynamic evolution of a pandemic but they are based on many assumptions and parameters

that have to be adjusted over the time when the pandemic lasts. However, the available data

might not be sufficient to identify the model parameters and hence infer the unobserved

dynamics. This is typical of any past epidemics or pandemics, and hence a systematic integrated

framework is required to make existing or modified models useful for designing health policies.

To this end and after studying the current pandemic for almost a year, we have designed a

general framework as shown in Fig 1 for building a trustworthy data-driven epidemiological

model, which constructs a workflow to integrate data acquisition and event timeline, model

development, identifiability analysis, sensitivity analysis, model calibration, model robustness

analysis, and projection with uncertainties in different scenarios. The proposed general frame-

work can provide guidance on how to build the appropriate epidemiological model based on

the available data in a specific region. The proposed framework can help to assess the structural

and practical identifiability of model parameters so that model parameters can be uniquely

estimated, and the calibrated model can make more robust and reliable projections that can be

used for evaluating the effect of vaccination and various other scenarios.

In particular, we apply this framework to first endow the SEIR model with more compart-

ments, and subsequently we extend to include vaccination, with the objective of projecting the

transmission dynamics of COVID-19 in NYC under vaccination and different safety measures

relaxation scenarios. Based on the proposed general framework, we first acquire data from the

NYC’s government’s website and look for major intervention events that could affect the trans-

mission dynamics of the pandemic. We then develop a mathematical model that describes the

COVID-19 infection’s biological characteristics by extending the SEIR model to include pre-

symptomatic, asymptomatic, isolated, hospitalized, and deceased individuals. This model takes

advantage of all the epidemiological data available from the COVID-19 outbreak in NYC by

fitting hospitalizations and disease-related deaths in addition to the daily cases. Furthermore,

we incorporate the effects of intervention strategies in the outbreak’s evolution by including

time-dependent parameters to capture these variations.

Given a model and epidemiological data, this framework addresses the problem of identify-

ing which parameters can be inferred accurately. We perform two types of identifiability analy-

sis, structural identifiability and practical identifiability analysis, to address this problem. From

the structural identifiability analysis, we conclude that five parameters (β, p, q, �, δ) of the pro-

posed model are structurally globally identifiable when daily cases (Inew), hospitalizations

(Hnew) and deaths (Dnew) are provided, which is the case for the NYC dataset. However, when

Hsum or Dsum is not available, one cannot get a trustworthy estimation of these parameters

since at least one of the model parameters would be non-identifiable. For the purpose of reli-

able parameter estimation, one should utilize all the provided data in NYC.

The Fisher correlation matrix method enables us to determine that two out of five parame-

ters need to be fixed due to practical non-identifiability, even if all the data (Inew, Hnew, Dnew)
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in the NYC dataset are given. Therefore, we use the values of δ and � provided by the CDC

pandemic planning scenarios, and once we fix these two parameters (�, δ), the other three

parameters are practically identifiable. For some other cities, however, it can be challenging to

maintain careful records of infected, hospitalized, and deceased individuals in an ongoing epi-

demic. The robustness analysis allows us to conclude that we can still project some variables

with a degree of accuracy despite missing infectious data since in this case the model is still

robust to noise.

As a result, we fit three parameters (β, p, q) given three observables (Inew, Hnew, Dnew). Sensi-

tivity analysis demonstrates that the parameter β is the most important parameter for the pro-

jection of all Isum, Hsum, and Dsum. Since p and q do not contribute to Isum, our model may

project Isum even if p and q were inaccurate. Similarly, our model may project Hsum even if q
were inaccurate.

We observe that the proposed data-driven epidemiological model can uniquely estimate the

model parameters. The fitted daily cases, hospitalizations, and deaths match with the data

from the NYC’s government’s website. In addition, we employ Monte Carlo simulations to

quantify the uncertainties in the parameters and project under uncertainties. We employ the

calibrated data-driven model to study the effects of the timing of reopening indoor dining.

The projection results indicate that postponing the reopening of restaurants from February 14

to March 14 may reduce the number of infectious, hospitalized, and deceased individuals.

Such a projection can be readily updated as new data are accumulated. The actual situation

might vary depending on the details and implementations of the actual indoor dining policies

that take place in 2021 and corresponding updates are required.

Assumptions and limitations of the model

This study has some limitations resulting from the model’s structure and the consideration of

identifiability. Therefore, the results are subject to several simplifying assumptions.

• As a modified SEIR model, our model assumes that there is no migration into or out of NYC,

no births or other deaths besides COVID-related deaths, and the population is well mixed.

• We are fitting to the observed COVID-19 cases without correcting for undetected symptom-

atic infections. Although we do not include the undetected infections in the main model in

the manuscript, we explore an alternative model taking into account the ascertainment ratio

in NYC in S6 Text.

• All symptomatic infections will either self-isolate or become hospitalized. In the case of

NYC, due to the NYC Test & Trace Corps, a high percentage of symptomatic and detected

individuals adhered to self quarantine [58]. The Global Health Governance Program reports

that in-person tracers locate approximately 80% of people at home [58, 59].

• Hospitalized individuals do not transmit the disease. The percentage of hospital-acquired

infections is highly dependent on the location and varies widely. Hospital-acquired cases

reached 16.2% in England [60]; however, in a study in US hospitals, such as the one by Rhee

et al. [61], the incidence of hospital-acquired COVID-19 is low and negligible. Rhee et al.

studied all patients admitted to Brigham and Women’s Hospital (Boston, Massachusetts)

between March 7, 2020 and May 30, 2020. They found 1 COVID-19 patient deemed to be

hospital-acquired and another one deemed likely to be hospital-acquired, though with no

known exposures [61].

• All deceased individuals have gone through the hospital (H) compartment. The NYC’s gov-

ernment’s official data classify confirmed deaths as deaths within 60 days of a positive
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molecular test, i.e., they have gone through the symptomatic (I) compartment, but they

might not have been admitted to hospital in practice. The daily deaths reported may be from

non-hospital settings such as nursing homes. Our model assumes that all deaths are from

hospital for the sake of identifiability and is based on the situation in NYC, where the non-

hospital deaths are of very low proportion within all the reported deaths. As a result, the

death from hospital ratio (q) might be slightly over estimated.

• Initial conditions are calculated directly from the available data.

• Date ranges that determine the different stages are fixed and based on state/city policy

changes.

• If we were to implement this model at the early stage of a pandemic, we might expect lower

accuracy due to uncertainties about the values of the fixed parameters.
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