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Dysregulation of the peripheral
glutamatergic system: A key player in
migraine pathogenesis?
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Abstract

Background: Although the role of glutamate in migraine pathogenesis remains uncertain, there has been significant

interest in the development of drug candidates that target glutamate receptors. Activation of trigeminovascular afferent

fibers is now recognized as a crucial step to the onset of a migraine episode. New evidence suggests a dysfunction in

peripheral glutamate regulation may play a role in this process.

Objective: To provide a narrative review of the role of peripheral glutamate dysfunction in migraine.

Method: A review of recent literature from neurobiological, pharmacological and genomic studies was conducted to

support peripheral glutamate dysfunction as a potential element in migraine pathogenesis.

Results: Studies in rats suggest that elevated blood glutamate mechanically sensitizes trigeminal afferent fibers and

stimulates the release of calcitonin-gene related peptide and other neuropeptides to promote and maintain neurogenic

inflammation. These effects may be driven by upregulation of glutamate receptors, and modifications to reuptake and

metabolic pathways of glutamate. Furthermore, genome wide association studies have found polymorphisms in gluta-

mate receptor and transporter genes that are associated with migraine.

Conclusion: The role of peripheral glutamate signalling in the onset and maintenance of migraine is not completely

elucidated and future studies are still needed to confirm its role in migraine pathogenesis.
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Introduction

Activation of the trigeminovascular system is a major

pathological step in the initiation of a migraine attack

(1). However, exactly how this system is activated

remains uncertain. Glutamate, an endogenous excitato-

ry amino acid neurotransmitter present in the central

and peripheral nervous systems has been implicated as

a contributing factor in this process (2–4). Preclinical

and clinical studies provide evidence of the role gluta-

mate plays in migraine pathogenesis and have conse-

quently led to the development of drugs targeting

glutamate receptors. These drug candidates were spe-

cifically designed to target central glutamate receptors

but failed to provide superior efficacy when compared

to current therapies or produced unacceptable centrally

mediated adverse effects (2,3,5). Furthermore, given

the recent recognition of the importance of

calcitonin-gene related peptide (CGRP) in migraine
headache pathogenesis, attention has been focused
away from the role of the glutamatergic system in
migraine. Nevertheless, new insights into migraine
pathogenesis, glutamate signalling, receptor expression
and their influence on the peripheral structures
involved in migraine pathogenesis may re-ignite this
interest.

Scientific evidence supports the notion of an imbal-
ance of glutamate regulation within the peripheral
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nervous system in migraine attacks. For example,

serum levels of glutamate have been found to be ele-

vated in migraine patients particularly after a migraine

attack (6,7). Meanwhile, studies in rats have found that

elevated levels of glutamate lowered the mechanical

force required to excite trigeminovascular neurons
and increased dural blood flow (8). These findings

may indicate the potential for dysregulation of gluta-

matergic system in the periphery to contribute to

migraine pathogenesis. This narrative review discusses

recent findings from pharmacological, neurobiological

and genomic studies on the role of glutamate signalling

in craniofacial pain mechanisms.

Current understanding of pain generation

in migraine

It is thought that peripheral sensitization of the trige-

minovascular system is key to the onset of a migraine

attack (9,10). Peripheral sensitization results in

increased nociceptor excitability. It is driven by the
release of vasoactive substances including neuropepti-

des such as CGRP, substance P and, possibly, gluta-

mate, from afferent fiber endings that innervate the

dura and its blood vessels (11,12). In addition to vaso-

dilation, release of these substances leads to plasma

protein extravasation and release of other inflammato-

ry mediators (kinins, amines, prostaglandins, growth

factors, chemokines, cytokines, protons, adenosine tri-

phosphate and glutamate) from surrounding tissues,
which results in a process known as sterile neurogenic

inflammation (13,14). These inflammatory mediators

can further reduce afferent activation threshold and

increase afferent responsiveness to noxious stimuli

(sensitization) (15,16).
The intensity and duration of a migraine attack is

thought, in part, to be due to the development of cen-
tral sensitization. Central sensitization is described as

an abnormal amplification in central nociceptive proc-

essing, and results in the spread of the painful area

beyond the original site of injury (18). The initial

changes that lead to central sensitization in response

to noxious stimulation of craniofacial tissues, including

the dura, involve an increased response to synaptically

released glutamate as a result of phosphorylation of N-

methyl-D-aspartate (NMDA) receptor subunits (19–

22). Altered transmission within the trigeminal neuro-
vascular system can also result in a decrease in descend-

ing inhibition and/or enhanced descending facilitation

of nociception (23,24). This has numerous implications

within the context of the development of chronic

migraine, where the lowered sensory threshold from

recurrent migraine attacks is argued to be mediated

by activity-independent sensitization of central

trigeminothalamic pathways (12). Central sensitization
is driven by neuroplasticity, which occurs due to recur-
rent intense sensory inputs from the periphery (25,26).
These neuroplastic alterations in trigeminovascular
neurons include a reduction in threshold, exaggerated
response to noxious stimulus and increase in spontane-
ous firing, which ultimately leads to increase pain
intensity and duration. In this regard, glutamate is
thought to play an integral role in contributing to
these neuroplastic changes. One possibly is through
downstream upregulation of NMDA and a-amino-3-
hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)
receptors on primary afferent endings, thereby modify-
ing activation threshold and the development of central
sensitization (27).

In addition to its action on central sensitization,
other central glutamatergic mechanisms have been pro-
posed in migraine pathogenesis. Specifically in
migraine with aura, the aura symptom is thought to
be explained by cortical spreading depression (CSD)
(28). Cortical spreading depression is a wave of depo-
larization of neuronal and glial cells followed by a sus-
tained suppression of spontaneous neuronal activity
(28). Central glutamate mechanisms are thought to
play a role in this phenomenon (29,30). Local release
of glutamate by neurons is thought to initiate CSD and
the subsequent activation of post-synaptic central glu-
tamate receptors is argued to explain its propagation
(29–31). Furthermore, inhibition of CSD by meman-
tine, an NMDA receptor antagonist, also suggests a
key role for activation of neuronal glutamate receptors
in the initiation of CSD (32). In preclinical studies,
tonabersat, a gap-junction inhibitor, has also been
shown to reduce and inhibit CSD (33). Despite the
ability of tonabersat in inhibiting aura, tonabersat
showed no advantage in migraine headache relief
(33,34). This suggests that migraine aura may be disso-
ciated from the development of migraine headaches.
Therefore, while central glutamatergic mechanisms
are implicated in both aura and central sensitization,
the prophylactic use of centrally acting glutamate
receptor antagonists for migraine is limited by central
nervous system (CNS) adverse effects. Since peripheral
glutamate receptor mechanisms are proposed to be
involved in migraine headache pathogenesis and inhi-
bition of these receptors would be less likely to lead to
CNS adverse effects, drugs that selectively inhibit these
receptors would be of interest (12,35).

Peripheral glutamatergic pharmacology

The functional role of glutamate in sensory transmis-
sion provides the first hint of its importance in
migraine pathogenesis. Two main types of glutamate
receptors exist: ionotropic and metabotropic glutamate
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receptors. It should be noted that only details relevant
to migraine are covered in this review as the structure
and function of glutamate receptors have been more
comprehensively appraised in previous literature
(36,37).

Inotropic glutamate receptors

The ionotropic glutamate receptors are subdivided into
N-methyl-D-aspartate (NMDA), a-amino-3-hydroxy-
5-methyl-4-isoxazole propionic acid (AMPA) and kai-
nate receptors (38). Ionotropic glutamate receptors are
involved in fast synaptic signalling and thus are vital to
the relay of nociceptive input from the periphery to the
brain. Interestingly, all three ionotropic glutamate
receptors have been characterized and found to be con-
stitutively expressed in trigeminal ganglion neurons (8).
However, while the expression of ionotropic glutamate
receptors on trigeminal ganglion neurons that inner-
vate the dura-mater specifically has not been character-
ized, NMDA receptors are expressed by afferent fibers
that innervate the dura blood vessels (8). The role these
peripheral receptors play in craniofacial pain condi-
tions that include migraine needs to be better
understood.

NMDA receptors are tetrameric ion channels com-
posed of two GluN1 subunits and two GluN2 subunits
or two GluN3 subunits, although tetramers containing
GluN3 subunits are not functional (39,40). NMDA
receptors are permeable to calcium (Ca2þ) and mono-
valent cations (Kþ, Naþ) (41). There are four types of
GluN2 subunits: GluN2A, GluN2B, GluN2C and
GluN2D (42). Two (2) glutamate molecules must
bind to sites on the GluN2 subunits for receptor acti-
vation (43). NMDA receptors also possess regulatory
sites that require the binding of the co-agonists, glycine
and/or d-serine to the GluN1 subunit (43). Still, at rest-
ing potential, the receptor channel is blocked by an
Mg2þ ion and so the membrane potential must be suf-
ficiently depolarized to repel the Mg2þ from the chan-
nel to allow channel opening (40,44). This makes
NMDA receptors voltage dependent (43) and high-
lights the complexities of their gating mechanism and
role in synaptic tuning. Intriguingly, NMDA receptors
have been shown to be expressed in trigeminal ganglion
neurons, including those that transmit noxious stimuli
(45) (Figure 1(a)). Of the NMDA receptors expressed
in these neurons, the GluN1-GluN2B subunits are the
most abundantly expressed (42). Intraganglionic injec-
tion of glutamate can excite trigeminal ganglion (TG)
neurons through activation of NMDA receptors
(Figure 1(b)). Preclinical studies suggest that the acti-
vation threshold of trigeminovascular neurons to
mechanical stimulation of the dura is decreased after
intravenous administration of monosodium glutamate,

which is restricted to the vascular compartment (8).
This effect was blocked by 5-aminophosphonovaleric
acid (APV; a NMDA receptor antagonist), which
also does not effectively cross the blood-brain barrier.
These findings suggest that peripheral NMDA receptor
activation may play a role in regulating the sensitivity
of the trigeminovascular pathway, but it is unclear if
their activation contributes directly to the initiation of
a migraine attack.

The majority of fast excitatory neurotransmission
that occurs in the central nervous system is mediated
by AMPA receptors (46). Like NMDA receptors,
AMPA receptors are tetramers consisting of one or
more GluA1-4 protein subunits (47,48). These recep-
tors respond to glutamate, which results in opening
of a cation conducting channel and depolarization of
the post-synaptic membranes (49). Associated with
each AMPA receptor are four types of auxiliary sub-
units (TARP, GSGL1, Cornichon, CKamp/Shisa),
which regulate the trafficking, gating, pharmacology,
and ion permeation of these receptors (47,50,51).
AMPA receptors are expressed abundantly in the
peripheral nervous system, including the trigeminal
afferent endings, axons and ganglion somas (52).
However, not very much is known about the role
of peripheral AMPA receptors play in pain
transmission and their contribution to the onset of a
migraine attack.

Kainate receptors are a tetrameric assembly of sub-
units and are structurally similar to their NMDA and
AMPA counterparts (53). There are five receptor sub-
units that may assemble to form the tetramer unit:
GluR5, GluR6, GluR7, KA1 and KA2 (54,55).
Kainate receptor subunit RNAs (GluR5 and KA2 con-
taining receptors) are expressed in the TG of rats but to
a lower extent compared to NMDA and AMPA recep-
tors (52,56). Nevertheless, their presence in the TG may
have functional implications in migraine pathophysiol-
ogy. Interestingly, the expression of kainate receptors
within trigeminal ganglion neurons has been shown to
increase after an injection of nitroglycerin (10 mg/kg),
which is used in preclinical models of migraine (57).
Another study also found that activation of GluR5
kainate receptors inhibited neurogenic dural vasodila-
tion produced by electrical stimulation of the dura
mater (58). Since CGRP and glutamate release is medi-
ated by calcium channels, a possible explanation of
how kainate receptors may mediate these effects is
through pre-synaptic inhibition of calcium and
sodium channels at the primary afferent endings
(56,59). However, given the low expression of kainate
receptors in TG neurons compared to their NMDA
and AMPA counterparts, it is unlikely that their acti-
vation alone results in sufficient inhibition to affect the
development of a migraine episode. Additional
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research is needed to elucidate the exact mechanisms

and contributory role kainate receptors play in these

processes.

Metabotropic glutamate receptors

Metabotropic glutamate receptors (mGluR) are G-pro-

tein-coupled receptors that are responsible for slow

neuromodulatory responses to glutamate (60). They

are divided into three groups based on their amino

acid sequence homology (61). Group I (mGluR1 and

mGluR5), Group II (mGluR2 and mGluR3) and

Group III (mGluR4,6-8). Each group displays differ-

ences in downstream signalling of intracellular second

messengers (61). Group I metabotropic glutamate

receptors (mGluR1 and mGluR5) are coupled to Gq

which, upon activation, leads to an increase in inositol

triphosphate (IP3) and diacyl glycerol (DAG) and ulti-

mately cytosolic Ca2þ levels. The functional outcome

of activation of these receptors on the cell is excitatory;

mechanisms include promotion of NMDA receptor

migration to the cell membrane, increasing NMDA

receptor conductance and enhanced vesicular release

of glutamate from the presynaptic nerve endings

(62,63). TG neurons along with their associated

satellite glial cells have been shown to express

mGluR1a subtypes specifically (64). Other studies

have found a functional role for group 1 mGluRs on

sensory processing within the periphery and thus a link

to painful conditions (65). One study revealed that

stimulation of mGluR1 in the muscles of rodents is

nociceptive (66). Likewise, local inflammation using

injection of complete Freud’s adjuvant (CFA) into

the masseter muscle of rodents yielded an increased

expression of mGluR5 receptors in the TG (67).
Group II and group III mGluRs are coupled with Gi

protein, which inhibits the activation of adenylyl

cyclase and leads to a subsequent reduction in intracel-

lular cyclic adenosine monophosphate (cAMP) concen-

trations (68). The functional effect of group II and III

mGluR activation on the neuron is largely inhibitory;

reducing conductance of L-type Ca2þ channels and

postsynaptic potentials by inhibiting vesicular release

of glutamate (69). Several studies have examined the

functional effects of the activation of group II and III

mGluRs with respect to sensory processing in the

periphery. Group II mGluRs have been shown to be

co-expressed with transient receptor potential channel

vanilloid 1 (TrpV1) receptors on peripheral nociceptors

and upon activation inhibit painful sensory
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Figure 1. (a) The image is of trigeminal ganglion neurons that express the NR2B subunit of the NMDA receptor (red). The white
arrow indicates a neuron that projected to the ipsilateral temporalis muscle (blue). The yellow arrows indicate trigeminal ganglion
neurons that expressed both the NR2B subunit and CGRP (green) (unpublished data). (b) The peristimulus histogram shows
the response of a trigeminal ganglion neuron that innervated the temporalis muscle to intraganglionic injection of glutamate (500 mM,
0.3 ml) at 0 min and 30 min. Responses to glutamate were relatively reproducible. (c) The bar chart shows the afferent mechanical
activation threshold before and after repeated intraganglionic administration glutamate shown in (b). The mechanical activation
threshold from the temporalis muscle was decreased by 60%. This afferent fiber was recorded in a female rat and had an estimated
conduction velocity of 5.2 m/s (data from (75)) (created with personal license of BioRender).
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transmission mediated by TrpV1 activation (70).
Similarly, it has been revealed that stimulation of
group II and III mGluRs hyperpolarizes the endings
of trigeminal afferent fibers to inhibit their spontane-
ous discharge (71). Activation of group II mGluRs
have also been shown to reduce interlukin-1b (IL-
b)-induced mechanical allodynia in the orofacial
region in conscious rodents (72). The current evidence
suggests that peripheral metabotropic glutamate recep-
tors have the potential to mediate several components
of sensory processing within the trigeminovascular neu-
rons, which could include neurogenic inflammation,
and therefore warrant further research into their role
in migraine pathogenesis.

Glutamate transporters

Glutamate transporters are synaptic transmembrane
proteins that play a fundamental role in the regulation
of extracellular glutamate levels in the central and
peripheral nervous system. They cluster in high densi-
ties in the plasma membrane and contribute to inacti-
vation of glutamate signaling. There are five excitatory
amino acid transporters (EAAT 1-5) that are responsi-
ble for the uptake of glutamate from the extracellular
space into cells: Glutamate/aspartate transporter
(GLAST¼EAAT1), glutamate transporter 1
(GLT1¼EAAT2), excitatory amino acid carrier
(EAAC1¼EAAT3), excitatory amino acid transporter
4 (EAAT4), and excitatory amino acid transporter 5
(EAAT5) (73). The GLT-1 transporter is responsible
for approximately 90% of glutamate reuptake from
the synaptic cleft and maintains peripheral glutamate
levels between 30–80mM (73). In the central nervous
system, GLT-1 and GLAST are expressed constitutive-
ly on astrocytes and microglia and are upregulated fol-
lowing spinal nerve ligation in the rat (74). Satellite
glial cells (SGCs) that form functional units with tri-
geminal ganglion neurons also express glutamate trans-
porters and help to regulate extracellular glutamate
levels in the ganglion (75). The functional consequence
of glutamate transporter blockade in the TG has also
been studied to some extent. One study revealed that
inhibition of glutamate uptake by SGCs in the trigem-
inal ganglion increased neuronal discharge in response
to glutamate (75). A dysfunction of glutamate trans-
porters within the trigeminal ganglion and in other tis-
sues could contribute to the peripheral sensitization
that is thought to underlie migraine pathogenesis.

Vesicular transporters VGluT1 and VGluT2 permit
the uptake of glutamate into synaptic vesicles and have
also been shown to be co-expressed in the cell bodies
and axons terminals of most trigeminal ganglion neu-
rons including nociceptors that transmit noxious stim-
uli signals to the central nervous system (76). VGluT3

has been characterized in a smaller subset of ganglion
neurons whose axons are unmyelinated (77). The
expression of glutamate transporters by trigeminal
afferent fibers suggests that glutamate is contained
within vesicles at afferent terminal endings and released
under conditions that lead to neurogenic inflammation.

The role of glutamate in

trigeminovascular system: Activation,

sensitization and neurogenic

inflammation

The trigeminal ganglion soma are surrounded by satel-
lite glial cells, collagen fibers and capillary blood ves-
sels and are not protected by the blood-brain barrier
(78–80). This therefore suggests that TG function is
susceptible to changes in blood chemistry (81,82).
Indeed, exogenous administration of monosodium glu-
tamate (MSG) (50 mg/kg) can be shown to substantial-
ly elevate glutamate levels in the TG (Figure 2(a)).
Intra-ganglionic injection of glutamate evokes ganglion
neuron discharge and can also mechanically sensitize
the peripheral endings to trigeminal afferent fibers
(Figure 1(b),(c)) (75). SGCs express excitatory amino
acid transporters (EAATs), and it has been demon-
strated that ganglion neuron discharge evoked by
intra-ganglionic injection of glutamate is increased by
(3S)-3-[[3-[[4-(trifluoromethyl)benzoyl]amino]phenyl]
methoxy]-L-aspartic acid (TFB-TBOA), an EAAT1,2
inhibitor (75). Further, SGCs contain glutamate (75).
Depolarization of SGCs results in the vesicular medi-
ated release of glutamate, which could then diffuse to
affect trigeminal ganglion neurons (Figure 2(b))
(75,83). These findings suggest that increased gluta-
mate concentrations in the trigeminal ganglion could,
therefore, lead to sensitization of facial skin and cranial
muscle afferent fibers, which could be perceived as skin
and muscle sensitivity. Muscle and skin sensitivity are
common features associated with migraine headaches,
although these have generally been thought to reflect
central nervous system mechanisms.

Preclinical studies have provided evidence that glu-
tamate can activate and sensitize trigeminal afferent
fibers. In rats, intravenous administration of 50 mg/
kg of MSG increased masseter muscle interstitial glu-
tamate concentrations from a baseline of around
20 mM to about 60 mM and induced mechanical sensi-
tization of afferent fibers that innervate this muscle
(8,68). Still, other studies revealed that activation of
ionotropic and group I metabotropic glutamate recep-
tors on sensory neurons produce nociception (85,86).
In healthy humans, baseline plasma glutamate is
around 35 mM (87–89). Thirty minutes after oral
administration of 150 mg/kg of MSG, plasma
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Figure 2. (a) The line graph illustrates how glutamate concentration is altered in the trigeminal ganglion after exogenous admin-
istration of MSG (unpublished data). Glutamate concentration was measured in the trigeminal ganglion of an anesthetized male rat
with a glutamate selective biosensor (Pinnacle Technology Inc., USA) before and after administration of 50 mg/kg monosodium
glutamate (MSG). During the 5-min baseline the average glutamate concentration was 9.5 mM. MSG was injected into the carotid
artery at time 0. There was a prolonged increase in trigeminal ganglion glutamate concentration after injection that approached a peak
of just under 30mM, which suggests that the concentration of glutamate in the trigeminal ganglion can be increased by exogenous
administration of MSG. (b) The diagram illustrates how exogenous and endogenous glutamate could affect trigeminal ganglion neuron
function. 1. Plasma glutamate enters the trigeminal ganglion from capillaries or is released by satellite glial cells and diffuses to the
soma of trigeminal neurons. 2. Glutamate binds to and activates glutamate receptors (NMDA, AMPA, Kainate and mGluR) expressed
on trigeminal ganglion cell membrane. 3. The influx of cations depolarizes the cell membrane and triggers the release of neuropeptides
(CGRP, Substance P, etc.). 4. CGRP activates satellite glial cells which release additional glutamate to maintain glutamate signalling and
sensitization in a vicious cycle (created with personal license of BioRender).
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glutamate levels increase to around 100 mM, and in
many subjects are associated with reports headache
and craniofacial muscle sensitivity. In a small group

of migraine patients without aura, plasma glutamate
levels were reported to be, on average, 60 mM (90).
These findings suggest that a 3–4 times increase of
plasma glutamate levels can result in peripheral sensi-
tization, and in healthy individuals may lead to reports
of headache.

Plasma glutamate may play a role in the initiation
and maintenance of sterile neurogenic inflammation in
the dura. Immunohistochemistry studies illustrate that
rat TG neurons, which innervate the masticatory

muscles, express NMDA receptors and contain
CGRP and substance P (Figure 1(a)) (91). Afferent
fibers of the dural meningeal arteries, as well as many
trigeminal ganglion neurons, express both CGRP and
substance P (92,93). The nerve fibers that innervate the
rat dural vasculature also express NMDA receptors,

and intravenous administration of MSG increases
dural blood flow and lowers the threshold for trigemi-
novascular neuron response to mechanical stimulation
of the dura (8). Functional studies have demonstrated
that TG afferent fibers release CGRP and substance P
after activation of glutamate receptors (15). For exam-
ple, injection of MSG into the masseter muscle produ-

ces afferent mechanical sensitization through activation
of NMDA receptors and vasodilation through CGRP
and substance P (94). We propose that elevated plasma
levels of glutamate could act on NMDA receptors
expressed by dural vascular afferent fibers to release
CGRP and substance P and produce neurogenic

inflammation. This suggests that elevations in plasma
glutamate may not only promote neurogenic inflamma-
tion but may also maintain this process. This could
lead to further sensitization of these fibers in a vicious
cycle (Figure 3). Future studies will be needed to con-
firm this hypothesis.

Structural modifications and changes in

the expression of peripheral glutamate

receptors and transporters

Increased expression of NMDA and AMPA receptors
in trigeminovascular neurons might also lower the
afferent activation threshold and contribute to

migraine initiation. Studies show that inhibiting
peripheral AMPA and NMDA receptors decreases
pain behaviour and nociception in rats with masseter
muscle myositis (95,96). Injection of nerve growth
factor (NGF) has been shown to induce mechanical
sensitization and increase the expression of NMDA

receptors within trigeminal afferent fibers that inner-
vate the masseter muscle (97). This upregulation of

NMDA receptors by NGF injections followed a sexu-

ally dimorphic pattern, where greater sensitization was

observed in slowly conducting A-delta fibers in female

rats compared with male rats (97). The sex differences

seen in the effect of NMDA receptor activation and

expression in rats is parallel to the sex differences

observed in migraine occurrence in humans.
Few studies have specifically examined the function-

al consequences of peripheral glutamate receptor mor-

phology changes and how these changes influence

sensory transmission though the TG. Structural

changes that increase glutamate binding affinity to its

inotropic receptors could potentially lower the activa-

tion threshold and heighten sensory signalling in the

TG. Post-translational phosphorylation of AMPA

receptors yields lower affinity for glutamate and is

mediated by NMDA receptor mechanisms (98), while

phosphorylation of the NMDA receptor enhances

receptor activity and function as discussed above

(99). This is demonstrated in “pain states,” where the

NMDA receptor is phosphorylated as a mechanism to
enhance receptor function (100). It is plausible

that increased phosphorylation of peripheral NMDA

receptors might increase neuronal excitation in the tri-

geminovascular afferent fibers and thus lower activa-

tion thresholds. Studies have yet to be conducted

to confirm if this phenomenon occurs and if there are

functional implications to the development of a

migraine.
Alterations in the expression and function of periph-

eral glutamate transporters could also have detrimental

effects on trigeminal sensory relays. However, it is
unknown what structural change or variation in

expression levels of glutamate transporters could

result in functional deficits within peripheral structures

relevant to migraine. Nevertheless, studies from other

neurological diseases provide clues into how this might

be possible. Glycosylation of EAAT1 and EAAT2 is

crucial to their ability to bind to glutamate. One study

demonstrated that less glycosylation of EAAT1 and

EAAT2 leads to increased neuronal excitation in

schizophrenic patients (101). Although not confirmed

in migraine-related structures, it is possible that low

glycosylation of EAAT1 and EAAT2 transporters

could contribute to lower glutamate affinity and clear-

ance and thus prolong trigeminal neuron activation.

This is an area yet to be explored in migraine research.
To this end, glutamate oxaloacetate transaminase

(GOT), an endogenous enzyme that catalyses the

reversible conversion of L-aspartate to glutamate and

vice versa, has been demonstrated to be reduced in

migraine patients with elevated levels of blood gluta-

mate (102). A deficit in this enzyme might lead to dys-

function in amino-acid metabolism, including increased
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blood glutamate concentrations, which could lead to
sensitization of trigeminovascular afferent fibers.

Genome-wide association studies

implicate peripheral glutamate

dysfunction in migraine

Genome-wide association studies (GWAS) have identi-

fied a potential dysregulation of glutamate reuptake

mechanisms in migraine. Polymorphisms in the gluta-

mate transporter EAAT2 have been identified in some

people living with chronic migraine, and are associated
with a tendency towards increased usage of analgesics

in these patients (103). The EAAT2 transporter expres-

sion is regulated by the metadherin (MTDH) gene (a

gene involved in glutamate homeostasis) (104). One
study found that a polymorphism in the promoter of

the MTDH gene was associated with higher sustained

plasma glutamate concentrations together with higher

frequency of neurological deterioration in patients with

acute hemispheric stroke (103). Furthermore, a meta-

analysis of GWAS studies in migraine patients revealed

a modest gene-based association between the MTDH

gene and migraine (105). It is therefore possible that

polymorphisms of the MTDH gene could decrease the

expression of EAAT2 transporters and alter glutamate

metabolism in the periphery. The full potential of an

association between EAAT2 glutamate transporter

polymorphisms and migraine as well as the functional

implications on sensory transmission is yet to be

confirmed.
Other GWAS studies have identified SNPs in

migraine patients that are associated with glutamate

receptor expression and function. One population-

based GWAS study in women indicated a significant

association between the rs11172113 (2q13.3, LDL

Related Receptor-1(LRP1)) SNP and migraine (106).

They found that the LRP1 are co-expressed with

NMDA receptors and postulated that polymorphisms

in these receptors may influence glutamate receptor
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functionality (106). Similarly, one study examined the
association of GRIA1-GRIA4 genes (which encode for
the four subunits of the AMPA receptors; GluR1–4) in
migraine with and or without aura (107). They discov-
ered that the rs548294 variant of the GRIA1 gene was
associated primarily with the migraine without aura
phenotype (107). These GWAS studies suggests a pos-
sible link between abnormal glutamate signalling and
specific phenotypes or symptoms of migraine.

Clinical implication of peripheral
glutamate signalling in migraine

NMDA receptor antagonist drugs such as ketamine
and memantine have been investigated for migraine
treatment and prophylaxis, respectively (108–110).
Several studies have also investigated the use of
NMDA (ketamine) or AMPA (LY293558; BGG492)
antagonists as abortive therapies in migraine with
aura and familial hemiplegic migraine (5,108,111,112).
Although most of these studies concluded that these
drugs possessed limited or at best moderate efficacy
in reduction of severity of headaches and analgesic con-
sumption, the presence of side effects owing to their
effects on central glutamate receptors limited future
exploration of their use in migraine (2). In this
regard, peripherally restricted glutamate receptor
antagonists may offer an alternative with a lower
potential for adverse effects. It has been proposed
that targeting the glutamatergic system does not play
a decisive role once migraine has begun (3). This sug-
gests that targeting peripheral glutamate receptors
might be most beneficial in migraine prophylaxis ther-
apy. The effectiveness of memantine as a migraine pro-
phylactic hints at the potential usefulness of novel
glutamate receptor antagonists for migraine prophy-
laxis (110,113).

Elucidation of the role of peripheral glutamate sig-
nalling in migraine may also benefit non-
pharmacologic approaches to managing migraine.
MSG is the third most common dietary trigger for

headaches. In healthy people, ingestion of 150 mg/kg
MSG has been shown to increase reports of headache,
nausea, and vomiting, symptoms also associated with
acute migraine attacks (84). In fibromyalgia patients,
reduced dietary MSG intake has been associated with
reduction in musculoskeletal pain (114). This suggests
that, at least for some people living with migraine, ini-
tiation of a diet low in MSG may be effective in pre-
venting attacks. In children with primary headaches,
exclusion of dietary headache triggers, which included
MSG, was reported to decrease headaches (115). While
future studies are needed to investigate the benefit of a
low MSG diet in migraine, diets low in MSG are avail-
able and have few if any negative consequences. They
should be considered as part of a migraine prophylactic
regimen in patients who report perceived MSG
sensitivity.

Concluding remarks and future
perspective

Preclinical evidence suggests that the peripheral gluta-
matergic system might be a target for migraine prophy-
lactic therapy (2,8). This opens up the possibility of
conducting clinical trials to investigate glutamate
receptor antagonists that are restricted to the periphery
as prophylactic migraine treatments. Furthermore,
there is an opportunity to develop a novel class of glu-
tamate receptor modulators that could target specific
glutamate receptor subtypes and/or glutamate trans-
porters based on expression levels in the trigeminovas-
cular primary afferent fibers. One possible target, based
on preclinical studies, is the NR2B containing NMDA
receptors, as these have been shown to be highly
expressed in trigeminal ganglion neurons and their sur-
round cerebral blood vessels (8). Additionally, modu-
lation of glutamate transporters is a potential
therapeutic approach yet to be examined. Further
investigation into peripheral glutamatergic dysfunction
is needed to provide support for glutamate as a key
player in migraine.

Key findings

• Elevated plasma glutamate levels may trigger migraine and perpetuate neurogenic inflammation.
• Peripheral glutamate receptors and regulation of glutamate levels may be potential new targets for

migraine prophylactic agents.
• Further evidence is required to reveal and confirm the function of peripheral glutamate dysfunction in

migraine.
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